Общая информация
Название [Tutorialsplanet.NET] Udemy - Machine Learning, Deep Learning and Bayesian Learning
Тип
Размер 5.54Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[Tutorialsplanet.NET].url 128б
[Tutorialsplanet.NET].url 128б
[Tutorialsplanet.NET].url 128б
[Tutorialsplanet.NET].url 128б
[Tutorialsplanet.NET].url 128б
001 Intro_en.vtt 865б
001 Intro_en.vtt 5.39Кб
001 Intro_en.vtt 473б
001 Intro_en.vtt 3.18Кб
001 Intro_en.vtt 1.19Кб
001 Intro.mp4 2.89Мб
001 Intro.mp4 10.37Мб
001 Intro.mp4 632.60Кб
001 Intro.mp4 5.97Мб
001 Intro.mp4 2.52Мб
001 Introduction_en.vtt 2.22Кб
001 Introduction_en.vtt 1.23Кб
001 Introduction_en.vtt 2.57Кб
001 Introduction.mp4 41.80Мб
001 Introduction.mp4 2.23Мб
001 Introduction.mp4 25.31Мб
001 Introduction and Terminology_en.vtt 8.34Кб
001 Introduction and Terminology.mp4 18.13Мб
001 Introduction to Transformers_en.vtt 1.63Кб
001 Introduction to Transformers.mp4 3.41Мб
001 Kaggle part 1_en.vtt 2.63Кб
001 Kaggle part 1.mp4 6.75Мб
001 Principal Component Analysis (PCA) theory_en.vtt 8.98Кб
001 Principal Component Analysis (PCA) theory.mp4 20.54Мб
001 Some advice on your journey_en.vtt 3.78Кб
001 Some advice on your journey.mp4 13.56Мб
001 Transfer Learning Introduction_en.vtt 1.99Кб
001 Transfer Learning Introduction.mp4 4.46Мб
001 Word2vec and Embeddings_en.vtt 8.33Кб
001 Word2vec and Embeddings.mp4 43.96Мб
001 Your reviews are important to me!.mp4 2.05Мб
002 Basic Data Structures_en.vtt 6.41Кб
002 Basic Data Structures.mp4 21.89Мб
002 Bayesian Learning Distributions_en.vtt 10.45Кб
002 Bayesian Learning Distributions.mp4 35.95Мб
002 Coco Dataset + Augmentations for Segmentation with Torchvision_en.vtt 5.94Кб
002 Coco Dataset + Augmentations for Segmentation with Torchvision.mp4 18.90Мб
002 DL theory part 1_en.vtt 6.15Кб
002 DL theory part 1.mp4 17.23Мб
002 Fashion MNIST feed forward net for benchmarking_en.vtt 3.50Кб
002 Fashion MNIST feed forward net for benchmarking.mp4 19.66Мб
002 Fashion MNIST PCA_en.vtt 10.46Кб
002 Fashion MNIST PCA.mp4 102.09Мб
002 How to tackle this course_en.vtt 6.21Кб
002 How to tackle this course.mp4 48.85Мб
002 Kaggle + Word2Vec_en.vtt 10.54Кб
002 Kaggle + Word2Vec.mp4 27.79Мб
002 Kaggle part 2_en.vtt 3.27Кб
002 Kaggle part 2.mp4 11.13Мб
002 Kaggle problem description_en.vtt 2.79Кб
002 Kaggle problem description.mp4 9.19Мб
002 ----------- Numpy -------------.html 129б
002 Pytorch TensorDataset_en.vtt 5.01Кб
002 Pytorch TensorDataset.mp4 12.40Мб
002 Saving Models_en.vtt 3.12Кб
002 Saving Models.mp4 7.56Мб
002 Stop words and Term Frequency_en.vtt 4.94Кб
002 Stop words and Term Frequency.mp4 10.70Мб
002 The illustrated Transformer (blogpost by Jay Alammar)_en.vtt 8.95Кб
002 The illustrated Transformer (blogpost by Jay Alammar).mp4 23.59Мб
003 Bayes rule for population mean estimation_en.vtt 8.98Кб
003 Bayes rule for population mean estimation.mp4 50.16Мб
003 Dictionaries_en.vtt 3.80Кб
003 Dictionaries.mp4 18.79Мб
003 DL theory part 2_en.vtt 3.94Кб
003 DL theory part 2.mp4 22.80Мб
003 Encoder Transformer Models The Maths_en.vtt 5.59Кб
003 Encoder Transformer Models The Maths.mp4 28.66Мб
003 FastAPI intro_en.vtt 5.31Кб
003 FastAPI intro.mp4 11.64Мб
003 Gradient Descent_en.vtt 16.58Кб
003 Gradient Descent.mp4 43.40Мб
003 Installations and sign ups_en.vtt 4.75Кб
003 Installations and sign ups.mp4 42.79Мб
003 Keras Conv2D layer_en.vtt 8.57Кб
003 Keras Conv2D layer.mp4 44.46Мб
003 K-means_en.vtt 7.61Кб
003 K-means.mp4 22.30Мб
003 Pytorch Dataset and DataLoaders_en.vtt 5.73Кб
003 Pytorch Dataset and DataLoaders.mp4 35.35Мб
003 PyTorch datasets + Torchvision_en.vtt 4.19Кб
003 PyTorch datasets + Torchvision.mp4 14.72Мб
003 Term Frequency - Inverse Document Frequency (Tf - Idf) theory_en.vtt 3.04Кб
003 Term Frequency - Inverse Document Frequency (Tf - Idf) theory.mp4 6.05Мб
003 Theory part 1_en.vtt 6.74Кб
003 Theory part 1.mp4 13.54Мб
003 Unet Architecture overview_en.vtt 6.37Кб
003 Unet Architecture overview.mp4 14.70Мб
003 Word2Vec keras Model API_en.vtt 13.27Кб
003 Word2Vec keras Model API.mp4 45.20Мб
004 Bayesian learning Population estimation pymc3 way_en.vtt 8.86Кб
004 Bayesian learning Population estimation pymc3 way.mp4 70.57Мб
004 BERT - The theory_en.vtt 3.77Кб
004 BERT - The theory.mp4 8.14Мб
004 Deep Learning with PyTorch nn.Sequential models_en.vtt 5.70Кб
004 Deep Learning with PyTorch nn.Sequential models.mp4 11.04Мб
004 FastAPI serving model_en.vtt 7.51Кб
004 FastAPI serving model.mp4 29.27Мб
004 Financial News Sentiment Classifier_en.vtt 9.99Кб
004 Financial News Sentiment Classifier.mp4 33.71Мб
004 Jupyter Notebooks_en.vtt 4.94Кб
004 Jupyter Notebooks.mp4 8.71Мб
004 Kmeans part 1_en.vtt 11.79Кб
004 Kmeans part 1.mp4 78.37Мб
004 Model fitting and discussion of results_en.vtt 2.91Кб
004 Model fitting and discussion of results.mp4 17.41Мб
004 Other clustering methods_en.vtt 7.17Кб
004 Other clustering methods.mp4 48.05Мб
004 Python functions (methods)_en.vtt 5.55Кб
004 Python functions (methods).mp4 27.58Мб
004 PyTorch Model Architecture_en.vtt 3.58Кб
004 PyTorch Model Architecture.mp4 13.55Мб
004 PyTorch transfer learning with ResNet_en.vtt 4.43Кб
004 PyTorch transfer learning with ResNet.mp4 15.43Мб
004 Recurrent Neural Nets - Theory_en.vtt 10.55Кб
004 Recurrent Neural Nets - Theory.mp4 19.06Мб
004 Tensorflow + Keras demo problem 1_en.vtt 16.43Кб
004 Tensorflow + Keras demo problem 1.mp4 43.33Мб
004 Theory part 2 + code_en.vtt 6.28Кб
004 Theory part 2 + code.mp4 27.28Мб
005 Activation functions_en.vtt 5.51Кб
005 Activation functions.mp4 15.37Мб
005 Coin Toss Example with Pymc3_en.vtt 8.03Кб
005 Coin Toss Example with Pymc3.mp4 70.71Мб
005 Course Material.html 130б
005 DBSCAN theory_en.vtt 6.90Кб
005 DBSCAN theory.mp4 13.21Мб
005 Deep Learning - Long Short Term Memory (LSTM) Nets_en.vtt 11.78Кб
005 Deep Learning - Long Short Term Memory (LSTM) Nets.mp4 90.97Мб
005 Deep Learning with Pytorch Loss functions_en.vtt 8.69Кб
005 Deep Learning with Pytorch Loss functions.mp4 52.44Мб
005 Dropout theory and code_en.vtt 6.99Кб
005 Dropout theory and code.mp4 23.67Мб
005 Kaggle Multi-lingual Toxic Comment Classification Challenge_en.vtt 1.97Кб
005 Kaggle Multi-lingual Toxic Comment Classification Challenge.mp4 6.82Мб
005 Kmeans part 2_en.vtt 19.71Кб
005 Kmeans part 2.mp4 63.19Мб
005 NLTK + Stemming_en.vtt 7.82Кб
005 NLTK + Stemming.mp4 45.59Мб
005 Numpy functions_en.vtt 10.64Кб
005 Numpy functions.mp4 62.44Мб
005 PyTorch Hooks_en.vtt 7.29Кб
005 PyTorch Hooks.mp4 24.69Мб
005 PyTorch Lightning Model_en.vtt 3.94Кб
005 PyTorch Lightning Model.mp4 9.42Мб
005 Streamlit Intro_en.vtt 2.56Кб
005 Streamlit Intro.mp4 5.95Мб
005 Titanic dataset_en.vtt 15.21Кб
005 Titanic dataset.mp4 116.30Мб
006 Broadcasting_en.vtt 9.64Кб
006 Broadcasting.mp4 27.13Мб
006 Conditional statements_en.vtt 3.92Кб
006 Conditional statements.mp4 12.60Мб
006 Data Setup for Bayesian Linear Regression_en.vtt 4.71Кб
006 Data Setup for Bayesian Linear Regression.mp4 17.11Мб
006 Deep Learning - Stacking LSTMs + GRUs_en.vtt 2.15Кб
006 Deep Learning - Stacking LSTMs + GRUs.mp4 5.03Мб
006 Deep Learning with Pytorch Stochastic Gradient Descent_en.vtt 8.07Кб
006 Deep Learning with Pytorch Stochastic Gradient Descent.mp4 79.46Мб
006 First example with Relu_en.vtt 5.40Кб
006 First example with Relu.mp4 32.62Мб
006 Gaussian Mixture Models (GMM) theory_en.vtt 7.88Кб
006 Gaussian Mixture Models (GMM) theory.mp4 19.99Мб
006 MaxPool (and comparison to stride)_en.vtt 5.39Кб
006 MaxPool (and comparison to stride).mp4 17.68Мб
006 N-grams_en.vtt 4.04Кб
006 N-grams.mp4 13.79Мб
006 PyTorch Hooks Step through with breakpoints_en.vtt 8.80Кб
006 PyTorch Hooks Step through with breakpoints.mp4 67.56Мб
006 PyTorch Lightning Trainer + Model evaluation_en.vtt 6.33Кб
006 PyTorch Lightning Trainer + Model evaluation.mp4 50.24Мб
006 Sklearn classification prelude_en.vtt 5.26Кб
006 Sklearn classification prelude.mp4 14.31Мб
006 Streamlit functions_en.vtt 6.07Кб
006 Streamlit functions.mp4 20.79Мб
006 Tokenizers and data prep for BERT models_en.vtt 10.79Кб
006 Tokenizers and data prep for BERT models.mp4 29.06Мб
007 Bayesian Linear Regression with pymc3_en.vtt 9.97Кб
007 Bayesian Linear Regression with pymc3.mp4 60.07Мб
007 Cifar-10_en.vtt 10.08Кб
007 Cifar-10.mp4 27.28Мб
007 CLIP model_en.vtt 7.32Кб
007 CLIP model.mp4 18.74Мб
007 Deep Learning for Cassava Leaf Classification_en.vtt 1.07Кб
007 Deep Learning for Cassava Leaf Classification.mp4 4.14Мб
007 Deep Learning with Pytorch Optimizers_en.vtt 3.40Кб
007 Deep Learning with Pytorch Optimizers.mp4 10.19Мб
007 Distilbert (Smaller BERT) model_en.vtt 10.77Кб
007 Distilbert (Smaller BERT) model.mp4 48.78Мб
007 For loops_en.vtt 4.17Кб
007 For loops.mp4 12.38Мб
007 MNIST and Softmax_en.vtt 10.43Кб
007 MNIST and Softmax.mp4 55.76Мб
007 PyTorch Weighted CrossEntropy Loss_en.vtt 9.06Кб
007 PyTorch Weighted CrossEntropy Loss.mp4 65.19Мб
007 ---------------- Scikit Learn -------------------------------------.html 72б
007 Sklearn classification_en.vtt 14.46Кб
007 Sklearn classification.mp4 89.99Мб
007 Transfer Learning - GLOVE vectors_en.vtt 11.45Кб
007 Transfer Learning - GLOVE vectors.mp4 74.57Мб
007 Word (feature) importance_en.vtt 3.75Кб
007 Word (feature) importance.mp4 12.41Мб
008 Bayesian Rolling Regression - Problem setup_en.vtt 5.60Кб
008 Bayesian Rolling Regression - Problem setup.mp4 14.84Мб
008 Cassava Leaf Dataset_en.vtt 4.85Кб
008 Cassava Leaf Dataset.mp4 15.28Мб
008 Dealing with missing values_en.vtt 5.75Кб
008 Dealing with missing values.mp4 50.76Мб
008 Deep Learning Input Normalisation_en.vtt 3.16Кб
008 Deep Learning Input Normalisation.mp4 10.35Мб
008 Dictionaries again_en.vtt 3.11Кб
008 Dictionaries again.mp4 6.17Мб
008 Intro_en.vtt 4.95Кб
008 Intro.mp4 35.38Мб
008 Nose Tip detection with CNNs_en.vtt 12.48Кб
008 Nose Tip detection with CNNs.mp4 68.69Мб
008 Pytorch Lightning + DistilBERT for classification_en.vtt 17.26Кб
008 Pytorch Lightning + DistilBERT for classification.mp4 102.68Мб
008 Pytorch Model API_en.vtt 5.50Кб
008 Pytorch Model API.mp4 33.24Мб
008 Sequence to Sequence Introduction + Data Prep_en.vtt 7.99Кб
008 Sequence to Sequence Introduction + Data Prep.mp4 80.10Мб
008 Spacy intro_en.vtt 5.58Кб
008 Spacy intro.mp4 33.22Мб
008 Weights and Biases Logging images_en.vtt 1.92Кб
008 Weights and Biases Logging images.mp4 15.83Мб
009 Bayesian Rolling regression - pymc3 way_en.vtt 9.26Кб
009 Bayesian Rolling regression - pymc3 way.mp4 54.76Мб
009 Data Augmentation with Torchvision Transforms_en.vtt 5.90Кб
009 Data Augmentation with Torchvision Transforms.mp4 56.52Мб
009 Feature Extraction with Spacy (using Pandas)_en.vtt 9.84Кб
009 Feature Extraction with Spacy (using Pandas).mp4 76.46Мб
009 Linear Regresson Part 1_en.vtt 12.25Кб
009 Linear Regresson Part 1.mp4 90.54Мб
009 -------------------------------- Pandas --------------------------------.html 61б
009 Pytorch in GPUs_en.vtt 2.57Кб
009 Pytorch in GPUs.mp4 4.97Мб
009 Semantic Segmentation training with PyTorch Lightning_en.vtt 16.21Кб
009 Semantic Segmentation training with PyTorch Lightning.mp4 130.17Мб
009 Sequence to Sequence model + Keras Model API_en.vtt 8.73Кб
009 Sequence to Sequence model + Keras Model API.mp4 30.48Мб
009 Softmax theory_en.vtt 5.52Кб
009 Softmax theory.mp4 58.32Мб
009 --------- Time Series -------------------.html 255б
010 Batch Norm_en.vtt 5.66Кб
010 Batch Norm.mp4 17.04Мб
010 Bayesian Rolling Regression - forecasting_en.vtt 5.34Кб
010 Bayesian Rolling Regression - forecasting.mp4 30.34Мб
010 Classification Example_en.vtt 4.28Кб
010 Classification Example.mp4 24.10Мб
010 Deep Learning Intro to Pytorch Lightning_en.vtt 9.27Кб
010 Deep Learning Intro to Pytorch Lightning.mp4 52.37Мб
010 Intro_en.vtt 2.41Кб
010 Intro_en.vtt 5.91Кб
010 Intro.mp4 5.02Мб
010 Intro.mp4 11.41Мб
010 Linear Regression Part 2_en.vtt 11.21Кб
010 Linear Regression Part 2.mp4 71.55Мб
010 Sequence to Sequence models Prediction step_en.vtt 13.13Кб
010 Sequence to Sequence models Prediction step.mp4 104.69Мб
010 Train vs Test Augmentations + DataLoader parameters_en.vtt 3.31Кб
010 Train vs Test Augmentations + DataLoader parameters.mp4 7.73Мб
011 Batch Norm Theory_en.vtt 8.29Кб
011 Batch Norm Theory.mp4 53.89Мб
011 Classification and Regression Trees_en.vtt 6.44Кб
011 Classification and Regression Trees.mp4 19.98Мб
011 Deep Learning Transfer Learning Model with ResNet_en.vtt 3.30Кб
011 Deep Learning Transfer Learning Model with ResNet.mp4 8.01Мб
011 Loss functions_en.vtt 7.15Кб
011 Loss functions.mp4 46.45Мб
011 Over-sampling_en.vtt 5.81Кб
011 Over-sampling.mp4 32.84Мб
011 Pandas simple functions_en.vtt 11.39Кб
011 Pandas simple functions.mp4 38.33Мб
011 Variational Bayes Intro_en.vtt 3.22Кб
011 Variational Bayes Intro.mp4 8.64Мб
012 CART part 2_en.vtt 20.53Кб
012 CART part 2.mp4 166.49Мб
012 FB Prophet part 1_en.vtt 9.77Кб
012 FB Prophet part 1.mp4 78.03Мб
012 Pandas Subsetting_en.vtt 6.27Кб
012 Pandas Subsetting.mp4 22.05Мб
012 -------- Regularization ------------.html 218б
012 Setting up PyTorch Lightning for training_en.vtt 3.53Кб
012 Setting up PyTorch Lightning for training.mp4 8.36Мб
012 Variational Bayes Linear Classification_en.vtt 7.51Кб
012 Variational Bayes Linear Classification.mp4 44.30Мб
013 Cross Entropy Loss for Imbalanced Classes_en.vtt 3.95Кб
013 Cross Entropy Loss for Imbalanced Classes.mp4 8.50Мб
013 FB Prophet part 2_en.vtt 4.09Кб
013 FB Prophet part 2.mp4 24.45Мб
013 Introduction_en.vtt 2.62Кб
013 Introduction.mp4 8.35Мб
013 Pandas loc and iloc_en.vtt 7.62Кб
013 Pandas loc and iloc.mp4 41.82Мб
013 Random Forest theory_en.vtt 2.53Кб
013 Random Forest theory.mp4 4.82Мб
013 Variational Bayesian Inference Result Analysis_en.vtt 3.75Кб
013 Variational Bayesian Inference Result Analysis.mp4 7.37Мб
014 Minibatch Variational Bayes_en.vtt 3.86Кб
014 Minibatch Variational Bayes.mp4 11.05Мб
014 MSE recap_en.vtt 6.14Кб
014 MSE recap.mp4 18.30Мб
014 Pandas loc and iloc 2_en.vtt 5.21Кб
014 Pandas loc and iloc 2.mp4 13.84Мб
014 PyTorch Test dataset setup and evaluation_en.vtt 2.87Кб
014 PyTorch Test dataset setup and evaluation.mp4 7.10Мб
014 Random Forest Code_en.vtt 6.66Кб
014 Random Forest Code.mp4 36.74Мб
014 Theory behind FB Prophet_en.vtt 5.89Кб
014 Theory behind FB Prophet.mp4 16.86Мб
015 Deep Bayesian Networks_en.vtt 3.17Кб
015 Deep Bayesian Networks.mp4 7.27Мб
015 Gradient Boosted Machines_en.vtt 9.70Кб
015 Gradient Boosted Machines.mp4 67.61Мб
015 L2 Loss Ridge Regression intro_en.vtt 3.57Кб
015 L2 Loss Ridge Regression intro.mp4 10.04Мб
015 ------------ Model Diagnostics -----.html 112б
015 Pandas map and apply_en.vtt 8.21Кб
015 Pandas map and apply.mp4 31.43Мб
015 WandB for logging experiments_en.vtt 5.39Кб
015 WandB for logging experiments.mp4 21.51Мб
016 Deep Bayesian Networks - analysis_en.vtt 4.07Кб
016 Deep Bayesian Networks - analysis.mp4 10.49Мб
016 Overfitting_en.vtt 6.99Кб
016 Overfitting.mp4 19.33Мб
016 Pandas groupby_en.vtt 7.04Кб
016 Pandas groupby.mp4 18.34Мб
016 Ridge regression (L2 penalised regression)_en.vtt 7.90Кб
016 Ridge regression (L2 penalised regression).mp4 46.97Мб
017 Cross Validation_en.vtt 8.26Кб
017 Cross Validation.mp4 53.72Мб
017 ----- Plotting --------.html 47б
017 S&P500 data preparation for L1 loss_en.vtt 7.13Кб
017 S&P500 data preparation for L1 loss.mp4 25.22Мб
018 L1 Penalised Regression (Lasso)_en.vtt 5.60Кб
018 L1 Penalised Regression (Lasso).mp4 31.42Мб
018 Plotting resources (notebooks).html 92б
018 Stratified K Fold_en.vtt 9.92Кб
018 Stratified K Fold.mp4 58.11Мб
019 Area Under Curve (AUC) Part 1_en.vtt 9.21Кб
019 Area Under Curve (AUC) Part 1.mp4 84.11Мб
019 L1 L2 Penalty theory why it works_en.vtt 3.78Кб
019 L1 L2 Penalty theory why it works.mp4 23.22Мб
019 Line plot_en.vtt 3.24Кб
019 Line plot.mp4 8.55Мб
020 Area Under Curve (AUC) Part 2_en.vtt 6.96Кб
020 Area Under Curve (AUC) Part 2.mp4 19.50Мб
020 Plot multiple lines_en.vtt 3.91Кб
020 Plot multiple lines.mp4 45.39Мб
021 Histograms_en.vtt 7.87Кб
021 Histograms.mp4 21.62Мб
022 Scatter Plots_en.vtt 6.39Кб
022 Scatter Plots.mp4 18.60Мб
023 Subplots_en.vtt 6.00Кб
023 Subplots.mp4 15.31Мб
024 Seaborn + pair plots_en.vtt 7.95Кб
024 Seaborn + pair plots.mp4 49.67Мб
30889860-course-code-material.zip 26.20Мб
31237618-03-0-plotting.zip 2.80Мб
31283222-multi-plot.py 440б
31762302-06-0-reguralisation.zip 2.56Мб
31919076-bayesian-inference.zip 1.80Мб
32725408-09-tensorflow.zip 2.66Мб
34142844-04-pairplots.ipynb 200.49Кб
external-assets-links.txt 122б
external-assets-links.txt 52б
external-assets-links.txt 264б
Статистика распространения по странам
Россия (RU) 1
США (US) 1
Всего 2
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент