Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
001 Case study 1 - Finding the winning strategy in a card game.m4v |
785.75Кб |
002 Ch1. Computing probabilities using Python This section covers.m4v |
5.62Мб |
003 Ch1. Problem 2 - Analyzing multiple die rolls.m4v |
6.17Мб |
004 Ch2. Plotting probabilities using Matplotlib.m4v |
5.76Мб |
005 Ch2. Comparing multiple coin-flip probability distributions.m4v |
6.27Мб |
006 Ch3. Running random simulations in NumPy.m4v |
3.71Мб |
007 Ch3. Computing confidence intervals using histograms and NumPy arrays.m4v |
5.09Мб |
008 Ch3. Deriving probabilities from histograms.m4v |
5.59Мб |
009 Ch3. Computing histograms in NumPy.m4v |
5.19Мб |
010 Ch3. Using permutations to shuffle cards.m4v |
3.59Мб |
011 Ch4. Case study 1 solution.m4v |
3.68Мб |
012 Ch4. Optimizing strategies using the sample space for a 10-card deck.m4v |
3.93Мб |
013 Case study 2 - Assessing online ad clicks for significance.m4v |
2.92Мб |
014 Ch5. Basic probability and statistical analysis using SciPy.m4v |
6.13Мб |
015 Ch5. Mean as a measure of centrality.m4v |
4.70Мб |
016 Ch5. Variance as a measure of dispersion.m4v |
6.72Мб |
017 Ch6. Making predictions using the central limit theorem and SciPy.m4v |
5.06Мб |
018 Ch6. Comparing two sampled normal curves.m4v |
3.57Мб |
019 Ch6. Determining the mean and variance of a population through random sampling.m4v |
5.59Мб |
020 Ch6. Computing the area beneath a normal curve.m4v |
5.64Мб |
021 Ch7. Statistical hypothesis testing.m4v |
3.79Мб |
022 Ch7. Assessing the divergence between sample mean and population mean.m4v |
4.83Мб |
023 Ch7. Data dredging - Coming to false conclusions through oversampling.m4v |
5.85Мб |
024 Ch7. Bootstrapping with replacement - Testing a hypothesis when the population variance is unknown 1.m4v |
4.65Мб |
025 Ch7. Bootstrapping with replacement - Testing a hypothesis when the population variance is unknown 2.m4v |
4.71Мб |
026 Ch7. Permutation testing - Comparing means of samples when the population parameters are unknown.m4v |
4.14Мб |
027 Ch8. Analyzing tables using Pandas.m4v |
4.89Мб |
028 Ch8. Retrieving table rows.m4v |
4.33Мб |
029 Ch8. Saving and loading table data.m4v |
3.80Мб |
030 Ch9. Case study 2 solution.m4v |
3.56Мб |
031 Ch9. Determining statistical significance.m4v |
3.82Мб |
032 Case study 3 - Tracking disease outbreaks using news headlines.m4v |
772.36Кб |
033 Ch10. Clustering data into groups.m4v |
5.87Мб |
034 Ch10. K-means - A clustering algorithm for grouping data into K central groups.m4v |
5.73Мб |
035 Ch10. Using density to discover clusters.m4v |
4.96Мб |
036 Ch10. Clustering based on non-Euclidean distance.m4v |
4.87Мб |
037 Ch10. Analyzing clusters using Pandas.m4v |
3.06Мб |
038 Ch11. Geographic location visualization and analysis.m4v |
4.49Мб |
039 Ch11. Plotting maps using Cartopy.m4v |
3.30Мб |
040 Ch11. Visualizing maps.m4v |
6.38Мб |
041 Ch11. Location tracking using GeoNamesCache.m4v |
6.02Мб |
042 Ch11. Limitations of the GeoNamesCache library.m4v |
6.63Мб |
043 Ch12. Case study 3 solution.m4v |
3.68Мб |
044 Ch12. Visualizing and clustering the extracted location data.m4v |
6.68Мб |
045 Case study 4 - Using online job postings to improve your data science resume.m4v |
2.35Мб |
046 Ch13. Measuring text similarities.m4v |
3.73Мб |
047 Ch13. Simple text comparison.m4v |
4.82Мб |
048 Ch13. Replacing words with numeric values.m4v |
4.44Мб |
049 Ch13. Vectorizing texts using word counts.m4v |
4.67Мб |
050 Ch13. Using normalization to improve TF vector similarity.m4v |
4.32Мб |
051 Ch13. Using unit vector dot products to convert between relevance metrics.m4v |
3.99Мб |
052 Ch13. Basic matrix operations, Part 1.m4v |
5.30Мб |
053 Ch13. Basic matrix operations, Part 2.m4v |
3.40Мб |
054 Ch13. Computational limits of matrix multiplication.m4v |
4.47Мб |
055 Ch14. Dimension reduction of matrix data.m4v |
5.47Мб |
056 Ch14. Reducing dimensions using rotation, Part 1.m4v |
4.04Мб |
057 Ch14. Reducing dimensions using rotation, Part 2.m4v |
3.56Мб |
058 Ch14. Dimension reduction using PCA and scikit-learn.m4v |
6.43Мб |
059 Ch14. Clustering 4D data in two dimensions.m4v |
4.85Мб |
060 Ch14. Limitations of PCA.m4v |
3.12Мб |
061 Ch14. Computing principal components without rotation.m4v |
4.70Мб |
062 Ch14. Extracting eigenvectors using power iteration, Part 1.m4v |
4.38Мб |
063 Ch14. Extracting eigenvectors using power iteration, Part 2.m4v |
3.50Мб |
064 Ch14. Efficient dimension reduction using SVD and scikit-learn.m4v |
5.18Мб |
065 Ch15. NLP analysis of large text datasets.m4v |
4.49Мб |
066 Ch15. Vectorizing documents using scikit-learn.m4v |
7.16Мб |
067 Ch15. Ranking words by both post frequency and count, Part 1.m4v |
4.98Мб |
068 Ch15. Ranking words by both post frequency and count, Part 2.m4v |
4.57Мб |
069 Ch15. Computing similarities across large document datasets.m4v |
5.26Мб |
070 Ch15. Clustering texts by topic, Part 1.m4v |
6.09Мб |
071 Ch15. Clustering texts by topic, Part 2.m4v |
6.87Мб |
072 Ch15. Visualizing text clusters.m4v |
5.66Мб |
073 Ch15. Using subplots to display multiple word clouds, Part 1.m4v |
4.17Мб |
074 Ch15. Using subplots to display multiple word clouds, Part 2.m4v |
4.37Мб |
075 Ch16. Extracting text from web pages.m4v |
4.04Мб |
076 Ch16. The structure of HTML documents.m4v |
5.34Мб |
077 Ch16. Parsing HTML using Beautiful Soup, Part 1.m4v |
4.44Мб |
078 Ch16. Parsing HTML using Beautiful Soup, Part 2.m4v |
3.78Мб |
079 Ch17. Case study 4 solution.m4v |
3.56Мб |
080 Ch17. Exploring the HTML for skill descriptions.m4v |
4.71Мб |
081 Ch17. Filtering jobs by relevance.m4v |
7.00Мб |
082 Ch17. Clustering skills in relevant job postings.m4v |
6.20Мб |
083 Ch17. Investigating the technical skill clusters.m4v |
4.13Мб |
084 Ch17. Exploring clusters at alternative values of K.m4v |
5.22Мб |
085 Ch17. Analyzing the 700 most relevant postings.m4v |
3.73Мб |
086 Case study 5 - Predicting future friendships from social network data.m4v |
6.84Мб |
087 Ch18. An introduction to graph theory and network analysis.m4v |
6.05Мб |
088 Ch18. Analyzing web networks using NetworkX, Part 1.m4v |
3.88Мб |
089 Ch18. Analyzing web networks using NetworkX, Part 2.m4v |
4.64Мб |
090 Ch18. Utilizing undirected graphs to optimize the travel time between towns.m4v |
5.65Мб |
091 Ch18. Computing the fastest travel time between nodes, Part 1.m4v |
3.13Мб |
092 Ch18. Computing the fastest travel time between nodes, Part 2.m4v |
4.11Мб |
093 Ch19. Dynamic graph theory techniques for node ranking and social network analysis.m4v |
6.71Мб |
094 Ch19. Computing travel probabilities using matrix multiplication.m4v |
3.58Мб |
095 Ch19. Deriving PageRank centrality from probability theory.m4v |
4.29Мб |
096 Ch19. Computing PageRank centrality using NetworkX.m4v |
3.85Мб |
097 Ch19. Community detection using Markov clustering, Part 1.m4v |
5.93Мб |
098 Ch19. Community detection using Markov clustering, Part 2.m4v |
6.74Мб |
099 Ch19. Uncovering friend groups in social networks.m4v |
4.77Мб |
100 Ch20. Network-driven supervised machine learning.m4v |
4.33Мб |
101 Ch20. The basics of supervised machine learning.m4v |
4.29Мб |
102 Ch20. Measuring predicted label accuracy, Part 1.m4v |
4.74Мб |
103 Ch20. Measuring predicted label accuracy, Part 2.m4v |
5.44Мб |
104 Ch20. Optimizing KNN performance.m4v |
3.89Мб |
105 Ch20. Running a grid search using scikit-learn.m4v |
4.26Мб |
106 Ch20. Limitations of the KNN algorithm.m4v |
4.88Мб |
107 Ch21. Training linear classifiers with logistic regression.m4v |
5.63Мб |
108 Ch21. Training a linear classifier, Part 1.m4v |
4.74Мб |
109 Ch21. Training a linear classifier, Part 2.m4v |
6.30Мб |
110 Ch21. Improving linear classification with logistic regression, Part 1.m4v |
4.26Мб |
111 Ch21. Improving linear classification with logistic regression, Part 2.m4v |
3.88Мб |
112 Ch21. Training linear classifiers using scikit-learn.m4v |
4.75Мб |
113 Ch21. Measuring feature importance with coefficients.m4v |
7.38Мб |
114 Ch22. Training nonlinear classifiers with decision tree techniques.m4v |
6.36Мб |
115 Ch22. Training a nested if_else model using two features.m4v |
5.34Мб |
116 Ch22. Deciding which feature to split on.m4v |
5.96Мб |
117 Ch22. Training if_else models with more than two features.m4v |
5.38Мб |
118 Ch22. Training decision tree classifiers using scikit-learn.m4v |
4.95Мб |
119 Ch22. Studying cancerous cells using feature importance.m4v |
5.41Мб |
120 Ch22. Improving performance using random forest classification.m4v |
5.12Мб |
121 Ch22. Training random forest classifiers using scikit-learn.m4v |
4.31Мб |
122 Ch23. Case study 5 solution.m4v |
3.61Мб |
123 Ch23. Exploring the experimental observations.m4v |
4.09Мб |
124 Ch23. Training a predictive model using network features, Part 1.m4v |
3.98Мб |
125 Ch23. Training a predictive model using network features, Part 2.m4v |
4.13Мб |
126 Ch23. Adding profile features to the model.m4v |
5.21Мб |
127 Ch23. Optimizing performance across a steady set of features.m4v |
4.03Мб |
128 Ch23. Interpreting the trained model.m4v |
4.55Мб |
Manning.Data.science.bookcamp.5.real-world.python.projects.2021.pdf |
11.77Мб |