Общая информация
Название [Manning] Data science bookcamp (hevc) (2021) [EN]
Тип
Размер 622.20Мб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
001 Case study 1 - Finding the winning strategy in a card game.m4v 785.75Кб
002 Ch1. Computing probabilities using Python This section covers.m4v 5.62Мб
003 Ch1. Problem 2 - Analyzing multiple die rolls.m4v 6.17Мб
004 Ch2. Plotting probabilities using Matplotlib.m4v 5.76Мб
005 Ch2. Comparing multiple coin-flip probability distributions.m4v 6.27Мб
006 Ch3. Running random simulations in NumPy.m4v 3.71Мб
007 Ch3. Computing confidence intervals using histograms and NumPy arrays.m4v 5.09Мб
008 Ch3. Deriving probabilities from histograms.m4v 5.59Мб
009 Ch3. Computing histograms in NumPy.m4v 5.19Мб
010 Ch3. Using permutations to shuffle cards.m4v 3.59Мб
011 Ch4. Case study 1 solution.m4v 3.68Мб
012 Ch4. Optimizing strategies using the sample space for a 10-card deck.m4v 3.93Мб
013 Case study 2 - Assessing online ad clicks for significance.m4v 2.92Мб
014 Ch5. Basic probability and statistical analysis using SciPy.m4v 6.13Мб
015 Ch5. Mean as a measure of centrality.m4v 4.70Мб
016 Ch5. Variance as a measure of dispersion.m4v 6.72Мб
017 Ch6. Making predictions using the central limit theorem and SciPy.m4v 5.06Мб
018 Ch6. Comparing two sampled normal curves.m4v 3.57Мб
019 Ch6. Determining the mean and variance of a population through random sampling.m4v 5.59Мб
020 Ch6. Computing the area beneath a normal curve.m4v 5.64Мб
021 Ch7. Statistical hypothesis testing.m4v 3.79Мб
022 Ch7. Assessing the divergence between sample mean and population mean.m4v 4.83Мб
023 Ch7. Data dredging - Coming to false conclusions through oversampling.m4v 5.85Мб
024 Ch7. Bootstrapping with replacement - Testing a hypothesis when the population variance is unknown 1.m4v 4.65Мб
025 Ch7. Bootstrapping with replacement - Testing a hypothesis when the population variance is unknown 2.m4v 4.71Мб
026 Ch7. Permutation testing - Comparing means of samples when the population parameters are unknown.m4v 4.14Мб
027 Ch8. Analyzing tables using Pandas.m4v 4.89Мб
028 Ch8. Retrieving table rows.m4v 4.33Мб
029 Ch8. Saving and loading table data.m4v 3.80Мб
030 Ch9. Case study 2 solution.m4v 3.56Мб
031 Ch9. Determining statistical significance.m4v 3.82Мб
032 Case study 3 - Tracking disease outbreaks using news headlines.m4v 772.36Кб
033 Ch10. Clustering data into groups.m4v 5.87Мб
034 Ch10. K-means - A clustering algorithm for grouping data into K central groups.m4v 5.73Мб
035 Ch10. Using density to discover clusters.m4v 4.96Мб
036 Ch10. Clustering based on non-Euclidean distance.m4v 4.87Мб
037 Ch10. Analyzing clusters using Pandas.m4v 3.06Мб
038 Ch11. Geographic location visualization and analysis.m4v 4.49Мб
039 Ch11. Plotting maps using Cartopy.m4v 3.30Мб
040 Ch11. Visualizing maps.m4v 6.38Мб
041 Ch11. Location tracking using GeoNamesCache.m4v 6.02Мб
042 Ch11. Limitations of the GeoNamesCache library.m4v 6.63Мб
043 Ch12. Case study 3 solution.m4v 3.68Мб
044 Ch12. Visualizing and clustering the extracted location data.m4v 6.68Мб
045 Case study 4 - Using online job postings to improve your data science resume.m4v 2.35Мб
046 Ch13. Measuring text similarities.m4v 3.73Мб
047 Ch13. Simple text comparison.m4v 4.82Мб
048 Ch13. Replacing words with numeric values.m4v 4.44Мб
049 Ch13. Vectorizing texts using word counts.m4v 4.67Мб
050 Ch13. Using normalization to improve TF vector similarity.m4v 4.32Мб
051 Ch13. Using unit vector dot products to convert between relevance metrics.m4v 3.99Мб
052 Ch13. Basic matrix operations, Part 1.m4v 5.30Мб
053 Ch13. Basic matrix operations, Part 2.m4v 3.40Мб
054 Ch13. Computational limits of matrix multiplication.m4v 4.47Мб
055 Ch14. Dimension reduction of matrix data.m4v 5.47Мб
056 Ch14. Reducing dimensions using rotation, Part 1.m4v 4.04Мб
057 Ch14. Reducing dimensions using rotation, Part 2.m4v 3.56Мб
058 Ch14. Dimension reduction using PCA and scikit-learn.m4v 6.43Мб
059 Ch14. Clustering 4D data in two dimensions.m4v 4.85Мб
060 Ch14. Limitations of PCA.m4v 3.12Мб
061 Ch14. Computing principal components without rotation.m4v 4.70Мб
062 Ch14. Extracting eigenvectors using power iteration, Part 1.m4v 4.38Мб
063 Ch14. Extracting eigenvectors using power iteration, Part 2.m4v 3.50Мб
064 Ch14. Efficient dimension reduction using SVD and scikit-learn.m4v 5.18Мб
065 Ch15. NLP analysis of large text datasets.m4v 4.49Мб
066 Ch15. Vectorizing documents using scikit-learn.m4v 7.16Мб
067 Ch15. Ranking words by both post frequency and count, Part 1.m4v 4.98Мб
068 Ch15. Ranking words by both post frequency and count, Part 2.m4v 4.57Мб
069 Ch15. Computing similarities across large document datasets.m4v 5.26Мб
070 Ch15. Clustering texts by topic, Part 1.m4v 6.09Мб
071 Ch15. Clustering texts by topic, Part 2.m4v 6.87Мб
072 Ch15. Visualizing text clusters.m4v 5.66Мб
073 Ch15. Using subplots to display multiple word clouds, Part 1.m4v 4.17Мб
074 Ch15. Using subplots to display multiple word clouds, Part 2.m4v 4.37Мб
075 Ch16. Extracting text from web pages.m4v 4.04Мб
076 Ch16. The structure of HTML documents.m4v 5.34Мб
077 Ch16. Parsing HTML using Beautiful Soup, Part 1.m4v 4.44Мб
078 Ch16. Parsing HTML using Beautiful Soup, Part 2.m4v 3.78Мб
079 Ch17. Case study 4 solution.m4v 3.56Мб
080 Ch17. Exploring the HTML for skill descriptions.m4v 4.71Мб
081 Ch17. Filtering jobs by relevance.m4v 7.00Мб
082 Ch17. Clustering skills in relevant job postings.m4v 6.20Мб
083 Ch17. Investigating the technical skill clusters.m4v 4.13Мб
084 Ch17. Exploring clusters at alternative values of K.m4v 5.22Мб
085 Ch17. Analyzing the 700 most relevant postings.m4v 3.73Мб
086 Case study 5 - Predicting future friendships from social network data.m4v 6.84Мб
087 Ch18. An introduction to graph theory and network analysis.m4v 6.05Мб
088 Ch18. Analyzing web networks using NetworkX, Part 1.m4v 3.88Мб
089 Ch18. Analyzing web networks using NetworkX, Part 2.m4v 4.64Мб
090 Ch18. Utilizing undirected graphs to optimize the travel time between towns.m4v 5.65Мб
091 Ch18. Computing the fastest travel time between nodes, Part 1.m4v 3.13Мб
092 Ch18. Computing the fastest travel time between nodes, Part 2.m4v 4.11Мб
093 Ch19. Dynamic graph theory techniques for node ranking and social network analysis.m4v 6.71Мб
094 Ch19. Computing travel probabilities using matrix multiplication.m4v 3.58Мб
095 Ch19. Deriving PageRank centrality from probability theory.m4v 4.29Мб
096 Ch19. Computing PageRank centrality using NetworkX.m4v 3.85Мб
097 Ch19. Community detection using Markov clustering, Part 1.m4v 5.93Мб
098 Ch19. Community detection using Markov clustering, Part 2.m4v 6.74Мб
099 Ch19. Uncovering friend groups in social networks.m4v 4.77Мб
100 Ch20. Network-driven supervised machine learning.m4v 4.33Мб
101 Ch20. The basics of supervised machine learning.m4v 4.29Мб
102 Ch20. Measuring predicted label accuracy, Part 1.m4v 4.74Мб
103 Ch20. Measuring predicted label accuracy, Part 2.m4v 5.44Мб
104 Ch20. Optimizing KNN performance.m4v 3.89Мб
105 Ch20. Running a grid search using scikit-learn.m4v 4.26Мб
106 Ch20. Limitations of the KNN algorithm.m4v 4.88Мб
107 Ch21. Training linear classifiers with logistic regression.m4v 5.63Мб
108 Ch21. Training a linear classifier, Part 1.m4v 4.74Мб
109 Ch21. Training a linear classifier, Part 2.m4v 6.30Мб
110 Ch21. Improving linear classification with logistic regression, Part 1.m4v 4.26Мб
111 Ch21. Improving linear classification with logistic regression, Part 2.m4v 3.88Мб
112 Ch21. Training linear classifiers using scikit-learn.m4v 4.75Мб
113 Ch21. Measuring feature importance with coefficients.m4v 7.38Мб
114 Ch22. Training nonlinear classifiers with decision tree techniques.m4v 6.36Мб
115 Ch22. Training a nested if_else model using two features.m4v 5.34Мб
116 Ch22. Deciding which feature to split on.m4v 5.96Мб
117 Ch22. Training if_else models with more than two features.m4v 5.38Мб
118 Ch22. Training decision tree classifiers using scikit-learn.m4v 4.95Мб
119 Ch22. Studying cancerous cells using feature importance.m4v 5.41Мб
120 Ch22. Improving performance using random forest classification.m4v 5.12Мб
121 Ch22. Training random forest classifiers using scikit-learn.m4v 4.31Мб
122 Ch23. Case study 5 solution.m4v 3.61Мб
123 Ch23. Exploring the experimental observations.m4v 4.09Мб
124 Ch23. Training a predictive model using network features, Part 1.m4v 3.98Мб
125 Ch23. Training a predictive model using network features, Part 2.m4v 4.13Мб
126 Ch23. Adding profile features to the model.m4v 5.21Мб
127 Ch23. Optimizing performance across a steady set of features.m4v 4.03Мб
128 Ch23. Interpreting the trained model.m4v 4.55Мб
Manning.Data.science.bookcamp.5.real-world.python.projects.2021.pdf 11.77Мб
Статистика распространения по странам
Украина (UA) 2
Китай (CN) 1
Россия (RU) 1
Всего 4
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент