Общая информация
Название [FreeCourseSite.com] Udemy - [2022] Machine Learning and Deep Learning Bootcamp in Python
Тип
Размер 7.12Гб
Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[CourseClub.Me].url 122б
[FreeCourseSite.com].url 127б
[GigaCourse.Com].url 49б
001 Artificial neural networks - inspiration_en.srt 7.10Кб
001 Artificial neural networks - inspiration.mp4 24.16Мб
001 Boosting introduction - basics_en.srt 5.82Кб
001 Boosting introduction - basics.mp4 15.75Мб
001 Convolutional neural networks basics_en.srt 7.89Кб
001 Convolutional neural networks basics.mp4 25.00Мб
001 Course materials (source code and slides).html 66б
001 Decision trees introduction - basics_en.srt 10.36Кб
001 Decision trees introduction - basics.mp4 27.41Мб
001 Deep neural network implementation I_en.srt 8.99Кб
001 Deep neural network implementation I.mp4 17.33Мб
001 Deep neural networks_en.srt 6.88Кб
001 Deep neural networks.mp4 9.28Мб
001 Evolution of computer vision related algorithms_en.srt 5.02Кб
001 Evolution of computer vision related algorithms.mp4 8.68Мб
001 Exploration vs exploitation problem_en.srt 4.71Кб
001 Exploration vs exploitation problem.mp4 7.65Мб
001 Face detection implementation I - installing OpenCV_en.srt 3.48Кб
001 Face detection implementation I - installing OpenCV.mp4 7.64Мб
001 First steps in Python_en.srt 7.24Кб
001 First steps in Python.mp4 7.38Мб
001 Handwritten digit classification I_en.srt 15.41Кб
001 Handwritten digit classification I.mp4 54.32Мб
001 Histogram of oriented gradients basics_en.srt 4.98Кб
001 Histogram of oriented gradients basics.mp4 19.24Мб
001 How to measure the running time of algorithms_en.srt 14.37Кб
001 How to measure the running time of algorithms.mp4 18.29Мб
001 Images and pixel intensities_en.srt 6.94Кб
001 Images and pixel intensities.mp4 10.74Мб
001 Installing PyCharm and Python on Windows.html 1.54Кб
001 Introduction_en.srt 5.09Кб
001 Introduction.mp4 25.85Мб
001 K-means clustering introduction_en.srt 14.56Кб
001 K-means clustering introduction.mp4 16.62Мб
001 Lane detection - the problem_en.srt 2.49Кб
001 Lane detection - the problem.mp4 4.41Мб
001 Machine learning section.html 471б
001 Markov decision processes basics I_en.srt 7.14Кб
001 Markov decision processes basics I.mp4 23.20Мб
001 Neural networks and deep learning section.html 346б
001 Principal component analysis (PCA) introduction_en.srt 11.04Кб
001 Principal component analysis (PCA) introduction.mp4 38.24Мб
001 Pruning introduction_en.srt 8.75Кб
001 Pruning introduction.mp4 15.47Мб
001 Python crash course introduction_en.srt 3.11Кб
001 Python crash course introduction.mp4 3.97Мб
001 PythonMachineLearning.zip 565.12Мб
001 Showing the HOG features programatically_en.srt 13.86Кб
001 Showing the HOG features programatically.mp4 53.40Мб
001 Simple neural network implementation - XOR problem_en.srt 17.76Кб
001 Simple neural network implementation - XOR problem.mp4 36.70Мб
001 SSD implementation I_en.srt 7.67Кб
001 SSD implementation I.mp4 30.89Мб
001 The Olivetti dataset_en.srt 10.26Кб
001 The Olivetti dataset.mp4 22.83Мб
001 The standard convolutional neural network (CNN) way_en.srt 8.18Кб
001 The standard convolutional neural network (CNN) way.mp4 18.36Мб
001 Tic Tac Toe with deep Q learning implementation I_en.srt 5.26Кб
001 Tic Tac Toe with deep Q learning implementation I.mp4 21.12Мб
001 Tic tac toe with Q learning implementation I_en.srt 5.16Кб
001 Tic tac toe with Q learning implementation I.mp4 16.78Мб
001 Time series analysis example I_en.srt 5.71Кб
001 Time series analysis example I.mp4 14.07Мб
001 Types of neural networks_en.srt 4.88Кб
001 Types of neural networks.mp4 8.01Мб
001 Understanding the classification problem_en.srt 3.03Кб
001 Understanding the classification problem.mp4 4.78Мб
001 Viola-Jones algorithm_en.srt 14.84Кб
001 Viola-Jones algorithm.mp4 40.92Мб
001 What are functions_en.srt 5.73Кб
001 What are functions.mp4 8.09Мб
001 What are Support Vector Machines (SVMs)_en.srt 7.45Кб
001 What are Support Vector Machines (SVMs).mp4 20.14Мб
001 What is cross validation_en.srt 7.90Кб
001 What is cross validation.mp4 24.41Мб
001 What is deep Q learning_en.srt 6.20Кб
001 What is deep Q learning.mp4 9.29Мб
001 What is linear regression_en.srt 12.34Кб
001 What is linear regression.mp4 39.99Мб
001 What is logistic regression_en.srt 16.15Кб
001 What is logistic regression.mp4 40.20Мб
001 What is object oriented programming (OOP)_en.srt 3.17Кб
001 What is object oriented programming (OOP).mp4 5.23Мб
001 What is Q learning_en.srt 6.94Кб
001 What is Q learning.mp4 11.79Мб
001 What is reinforcement learning.html 899б
001 What is the CIFAR-10 dataset_en.srt 8.01Кб
001 What is the CIFAR-10 dataset.mp4 36.07Мб
001 What is the key advantage of NumPy_en.srt 5.81Кб
001 What is the key advantage of NumPy.mp4 8.16Мб
001 What is the k-nearest neighbor classifier_en.srt 7.90Кб
001 What is the k-nearest neighbor classifier.mp4 13.69Мб
001 What is the naive Bayes classifier_en.srt 14.13Кб
001 What is the naive Bayes classifier.mp4 42.38Мб
001 What is the SSD algorithm_en.srt 5.24Кб
001 What is the SSD algorithm.mp4 18.05Мб
001 What is the YOLO approach_en.srt 7.57Кб
001 What is the YOLO approach.mp4 12.37Мб
001 Why do recurrent neural networks are important_en.srt 5.69Кб
001 Why do recurrent neural networks are important.mp4 21.30Мб
001 Why to learn artificial intelligence and machine learning_en.srt 7.69Кб
001 Why to learn artificial intelligence and machine learning.mp4 14.01Мб
001 YOLO algorithm implementation I_en.srt 8.84Кб
001 YOLO algorithm implementation I.mp4 22.81Мб
002 Activation functions revisited_en.srt 12.42Кб
002 Activation functions revisited.mp4 26.21Мб
002 Applications of reinforcement learning_en.srt 3.56Кб
002 Applications of reinforcement learning.mp4 6.60Мб
002 Artificial neural networks - layers_en.srt 6.67Кб
002 Artificial neural networks - layers.mp4 11.03Мб
002 Bagging introduction_en.srt 10.09Кб
002 Bagging introduction.mp4 16.08Мб
002 Basic concept behind SSD algorithm (architecture)_en.srt 9.79Кб
002 Basic concept behind SSD algorithm (architecture).mp4 43.48Мб
002 Boosting introduction - illustration_en.srt 7.25Кб
002 Boosting introduction - illustration.mp4 11.17Мб
002 Class and objects basics_en.srt 3.73Кб
002 Class and objects basics.mp4 5.39Мб
002 Concept of lazy learning_en.srt 5.11Кб
002 Concept of lazy learning.mp4 15.24Мб
002 Creating and updating arrays_en.srt 9.57Кб
002 Creating and updating arrays.mp4 16.76Мб
002 Cross validation example_en.srt 6.96Кб
002 Cross validation example.mp4 25.13Мб
002 Data structures introduction_en.srt 4.50Кб
002 Data structures introduction.mp4 6.72Мб
002 Decision trees introduction - entropy_en.srt 10.88Кб
002 Decision trees introduction - entropy.mp4 40.84Мб
002 Deep neural network implementation II_en.srt 8.73Кб
002 Deep neural network implementation II.mp4 18.90Мб
002 Deep Q learning and ε-greedy strategy_en.srt 4.23Кб
002 Defining functions_en.srt 6.93Кб
002 Defining functions.mp4 9.60Мб
002 Face detection implementation II - CascadeClassifier_en.srt 12.57Кб
002 Face detection implementation II - CascadeClassifier.mp4 70.68Мб
002 Face detection with HOG implementation I_en.srt 7.71Кб
002 Face detection with HOG implementation I.mp4 15.45Мб
002 Feature selection_en.srt 5.49Кб
002 Feature selection.mp4 12.15Мб
002 Haar-features_en.srt 10.65Кб
002 Haar-features.mp4 22.13Мб
002 Handling pixel intensities I_en.srt 8.20Кб
002 Handling pixel intensities I.mp4 34.64Мб
002 Handwritten digit classification II_en.srt 16.79Кб
002 Handwritten digit classification II.mp4 55.59Мб
002 Histogram of oriented gradients - gradient kernel_en.srt 10.14Кб
002 Histogram of oriented gradients - gradient kernel.mp4 30.56Мб
002 Installing PyCharm and Python on Mac.html 1.55Кб
002 K-means clustering example_en.srt 10.54Кб
002 K-means clustering example.mp4 19.52Мб
002 Lane detection - handling videos_en.srt 7.50Кб
002 Lane detection - handling videos.mp4 13.69Мб
002 Linearly separable problems_en.srt 18.40Кб
002 Linearly separable problems.mp4 30.33Мб
002 Linear regression theory - optimization_en.srt 11.32Кб
002 Linear regression theory - optimization.mp4 45.04Мб
002 Logistic regression and maximum likelihood estimation_en.srt 6.68Кб
002 Logistic regression and maximum likelihood estimation.mp4 22.68Мб
002 Markov decision processes basics II_en.srt 8.37Кб
002 Markov decision processes basics II.mp4 14.15Мб
002 Naive Bayes classifier illustration_en.srt 6.24Кб
002 Naive Bayes classifier illustration.mp4 9.23Мб
002 N-armed bandit problem introduction_en.srt 10.81Кб
002 N-armed bandit problem introduction.mp4 19.56Мб
002 Preprocessing the data_en.srt 3.53Кб
002 Preprocessing the data.mp4 7.66Мб
002 Principal component analysis example_en.srt 14.22Кб
002 Principal component analysis example.mp4 26.79Мб
002 Q learning introduction - the algorithm_en.srt 9.32Кб
002 Q learning introduction - the algorithm.mp4 15.46Мб
002 Reading the images and constructing the dataset I_en.srt 7.63Кб
002 Reading the images and constructing the dataset I.mp4 25.08Мб
002 Recurrent neural networks basics_en.srt 11.80Кб
002 Recurrent neural networks basics.mp4 28.63Мб
002 Region proposals and convolutional neural networks (CNNs)_en.srt 13.67Кб
002 Region proposals and convolutional neural networks (CNNs).mp4 60.62Мб
002 Simple neural network implementation - Iris dataset_en.srt 17.75Кб
002 Simple neural network implementation - Iris dataset.mp4 84.96Мб
002 SSD implementation II_en.srt 3.08Кб
002 SSD implementation II.mp4 6.37Мб
002 Tic Tac Toe with deep Q learning implementation II_en.srt 8.87Кб
002 Tic Tac Toe with deep Q learning implementation II.mp4 40.62Мб
002 Tic tac toe with Q learning implementation II_en.srt 10.38Кб
002 Tic tac toe with Q learning implementation II.mp4 19.81Мб
002 Time series analysis example II_en.srt 7.47Кб
002 Time series analysis example II.mp4 13.04Мб
002 Types of artificial intelligence learning_en.srt 11.73Кб
002 Types of artificial intelligence learning.mp4 36.97Мб
002 Understanding the dataset_en.srt 7.82Кб
002 Understanding the dataset.mp4 45.89Мб
002 What are the basic data types_en.srt 6.35Кб
002 What are the basic data types.mp4 7.70Мб
002 YOLO algorithm - grid cells_en.srt 8.94Кб
002 YOLO algorithm - grid cells.mp4 38.38Мб
002 YOLO algorithm implementation II_en.srt 11.90Кб
002 YOLO algorithm implementation II.mp4 23.78Мб
003 Artificial neural networks - the model_en.srt 6.60Кб
003 Artificial neural networks - the model.mp4 21.55Мб
003 Booleans_en.srt 2.43Кб
003 Booleans.mp4 3.52Мб
003 Boosting introduction - equations_en.srt 8.95Кб
003 Boosting introduction - equations.mp4 13.42Мб
003 Bounding boxes and anchor boxes_en.srt 13.48Кб
003 Bounding boxes and anchor boxes.mp4 70.53Мб
003 Convolutional neural networks - kernel_en.srt 5.63Кб
003 Convolutional neural networks - kernel.mp4 8.90Мб
003 Credit scoring with simple neural networks_en.srt 5.52Кб
003 Credit scoring with simple neural networks.mp4 23.17Мб
003 Decision trees introduction - information gain_en.srt 10.52Кб
003 Decision trees introduction - information gain.mp4 38.24Мб
003 Deep neural network implementation III_en.srt 6.84Кб
003 Deep neural network implementation III.mp4 26.09Мб
003 Detecting bounding boxes with regression_en.srt 9.20Кб
003 Detecting bounding boxes with regression.mp4 22.10Мб
003 Dimension of arrays_en.srt 12.22Кб
003 Dimension of arrays.mp4 18.44Мб
003 Distance metrics - Euclidean-distance_en.srt 9.30Кб
003 Distance metrics - Euclidean-distance.mp4 21.73Мб
003 Face detection implementation III - CascadeClassifier parameters_en.srt 5.39Кб
003 Face detection implementation III - CascadeClassifier parameters.mp4 18.36Мб
003 Face detection with HOG implementation II_en.srt 16.75Кб
003 Face detection with HOG implementation II.mp4 52.33Мб
003 Finding optimal number of principal components (eigenvectors)_en.srt 7.78Кб
003 Finding optimal number of principal components (eigenvectors).mp4 23.63Мб
003 Fitting the model_en.srt 7.40Кб
003 Fitting the model.mp4 43.65Мб
003 Fundamentals of statistics_en.srt 10.33Кб
003 Fundamentals of statistics.mp4 33.22Мб
003 Handling pixel intensities II_en.srt 7.24Кб
003 Handling pixel intensities II.mp4 13.21Мб
003 Handwritten digit classification III_en.srt 7.51Кб
003 Handwritten digit classification III.mp4 35.17Мб
003 Histogram of oriented gradients - magnitude and angle_en.srt 10.31Кб
003 Histogram of oriented gradients - magnitude and angle.mp4 33.92Мб
003 Installing TensorFlow and Keras_en.srt 2.84Кб
003 Installing TensorFlow and Keras.mp4 9.70Мб
003 Integral images_en.srt 8.01Кб
003 Integral images.mp4 24.53Мб
003 K-means clustering - text clustering_en.srt 13.14Кб
003 K-means clustering - text clustering.mp4 37.68Мб
003 Lane detection - first transformations_en.srt 5.84Кб
003 Lane detection - first transformations.mp4 11.94Мб
003 Linear regression theory - gradient descent_en.srt 10.71Кб
003 Linear regression theory - gradient descent.mp4 39.45Мб
003 Logistic regression example I - sigmoid function_en.srt 14.73Кб
003 Logistic regression example I - sigmoid function.mp4 33.18Мб
003 Loss functions_en.srt 7.72Кб
003 Loss functions.mp4 15.42Мб
003 Markov decision processes - equations_en.srt 14.72Кб
003 Markov decision processes - equations.mp4 49.65Мб
003 Naive Bayes classifier implementation_en.srt 5.20Кб
003 Naive Bayes classifier implementation.mp4 11.08Мб
003 N-armed bandit problem implementation_en.srt 15.15Кб
003 N-armed bandit problem implementation.mp4 53.31Мб
003 Non-linearly separable problems_en.srt 9.22Кб
003 Non-linearly separable problems.mp4 22.96Мб
003 Positional arguments and keyword arguments_en.srt 12.83Кб
003 Positional arguments and keyword arguments.mp4 22.20Мб
003 Principal component analysis example II_en.srt 12.16Кб
003 Principal component analysis example II.mp4 22.27Мб
003 Q learning illustration_en.srt 14.70Кб
003 Q learning illustration.mp4 21.44Мб
003 Random forest classifier introduction_en.srt 7.08Кб
003 Random forest classifier introduction.mp4 12.29Мб
003 Reading the images and constructing the dataset II_en.srt 5.86Кб
003 Reading the images and constructing the dataset II.mp4 38.06Мб
003 Remember and replay_en.srt 4.65Кб
003 Remember and replay.mp4 7.00Мб
003 SSD implementation III_en.srt 6.65Кб
003 SSD implementation III.mp4 18.84Мб
003 Tic Tac Toe with deep Q learning implementation III_en.srt 13.94Кб
003 Tic Tac Toe with deep Q learning implementation III.mp4 74.29Мб
003 Tic tac toe with Q learning implementation III_en.srt 9.56Кб
003 Tic tac toe with Q learning implementation III.mp4 26.25Мб
003 Time series analysis example III_en.srt 8.97Кб
003 Time series analysis example III.mp4 20.06Мб
003 Using the constructor_en.srt 7.55Кб
003 Using the constructor.mp4 17.82Мб
003 Vanishing and exploding gradients problem_en.srt 11.96Кб
003 Vanishing and exploding gradients problem.mp4 27.18Мб
003 What are array data structures I_en.srt 9.16Кб
003 What are array data structures I.mp4 12.26Мб
003 YOLO algorithm implementation III_en.srt 11.42Кб
003 YOLO algorithm implementation III.mp4 24.71Мб
003 YOLO algorithm - intersection over union_en.srt 12.00Кб
003 YOLO algorithm - intersection over union.mp4 51.40Мб
004 Applications AB testing in marketing_en.srt 5.63Кб
004 Applications AB testing in marketing.mp4 12.13Мб
004 Bias and variance trade-off_en.srt 5.16Кб
004 Bias and variance trade-off.mp4 14.70Мб
004 Boosting in computer vision_en.srt 8.14Кб
004 Boosting in computer vision.mp4 23.41Мб
004 Boosting introduction - final formula_en.srt 10.59Кб
004 Boosting introduction - final formula.mp4 36.78Мб
004 Building the deep neural network model_en.srt 4.42Кб
004 Building the deep neural network model.mp4 9.55Мб
004 Class variables and instance variables_en.srt 5.66Кб
004 Class variables and instance variables.mp4 14.67Мб
004 Convolutional neural networks - kernel II_en.srt 7.63Кб
004 Convolutional neural networks - kernel II.mp4 8.88Мб
004 DBSCAN introduction_en.srt 9.50Кб
004 DBSCAN introduction.mp4 11.37Мб
004 Face detection implementation IV - tuning the parameters_en.srt 6.22Кб
004 Face detection implementation IV - tuning the parameters.mp4 18.00Мб
004 Face detection with HOG implementation III_en.srt 6.47Кб
004 Face detection with HOG implementation III.mp4 36.08Мб
004 Feature maps and convolution layers_en.srt 6.32Кб
004 Feature maps and convolution layers.mp4 13.86Мб
004 Gradient descent and stochastic gradient descent_en.srt 9.51Кб
004 Gradient descent and stochastic gradient descent.mp4 40.09Мб
004 Histogram of oriented gradients - normalization_en.srt 6.43Кб
004 Histogram of oriented gradients - normalization.mp4 22.59Мб
004 How to train the YOLO algorithm_en.srt 10.08Кб
004 How to train the YOLO algorithm.mp4 25.08Мб
004 Indexes and slicing_en.srt 10.50Кб
004 Indexes and slicing.mp4 16.72Мб
004 Kernel functions_en.srt 13.04Кб
004 Kernel functions.mp4 34.10Мб
004 Linear regression implementation I_en.srt 18.37Кб
004 Linear regression implementation I.mp4 90.81Мб
004 Logistic regression example II- credit scoring_en.srt 14.25Кб
004 Logistic regression example II- credit scoring.mp4 58.55Мб
004 Long-short term memory (LSTM) model_en.srt 14.00Кб
004 Long-short term memory (LSTM) model.mp4 33.39Мб
004 Markov decision processes - illustration_en.srt 9.37Кб
004 Markov decision processes - illustration.mp4 28.22Мб
004 Mathematical formulation of deep Q learning.html 272б
004 Mathematical formulation of principle component analysis (PCA).html 282б
004 Mathematical formulation of Q learning.html 262б
004 Multiclass classification implementation I_en.srt 10.71Кб
004 Multiclass classification implementation I.mp4 28.48Мб
004 Random forests example I - iris dataset_en.srt 5.57Кб
004 Random forests example I - iris dataset.mp4 13.50Мб
004 Returning values_en.srt 3.06Кб
004 Returning values.mp4 4.11Мб
004 SSD implementation IV_en.srt 10.59Кб
004 SSD implementation IV.mp4 50.57Мб
004 Strings_en.srt 9.85Кб
004 Strings.mp4 14.57Мб
004 The Gini-index approach_en.srt 12.39Кб
004 The Gini-index approach.mp4 20.11Мб
004 Tic Tac Toe with deep Q learning implementation IV_en.srt 7.31Кб
004 Tic Tac Toe with deep Q learning implementation IV.mp4 15.43Мб
004 Tic tac toe with Q learning implementation IV_en.srt 9.93Кб
004 Tic tac toe with Q learning implementation IV.mp4 46.16Мб
004 Time series analysis example IV_en.srt 3.48Кб
004 Time series analysis example IV.mp4 8.46Мб
004 Tuning the parameters - regularization_en.srt 12.76Кб
004 Tuning the parameters - regularization.mp4 60.49Мб
004 Understanding eigenfaces_en.srt 10.20Кб
004 Understanding eigenfaces.mp4 62.97Мб
004 What are array data structures II_en.srt 9.62Кб
004 What are array data structures II.mp4 12.30Мб
004 What is Canny edge detection_en.srt 8.95Кб
004 What is Canny edge detection.mp4 16.43Мб
004 What is text clustering_en.srt 10.94Кб
004 What is text clustering.mp4 38.50Мб
004 What is the Fast R-CNN model_en.srt 3.46Кб
004 What is the Fast R-CNN model.mp4 6.42Мб
004 Why convolution is so important in image processing_en.srt 16.96Кб
004 Why convolution is so important in image processing.mp4 38.48Мб
004 Why to use activation functions_en.srt 9.11Кб
004 Why to use activation functions.mp4 28.39Мб
004 YOLO algorithm implementation IV_en.srt 15.95Кб
004 YOLO algorithm implementation IV.mp4 69.67Мб
005 Bellman-equation_en.srt 7.13Кб
005 Bellman-equation.mp4 15.43Мб
005 Boosting implementation I - iris dataset_en.srt 8.79Кб
005 Boosting implementation I - iris dataset.mp4 31.13Мб
005 Cascading_en.srt 5.55Кб
005 Cascading.mp4 9.88Мб
005 Constructing the machine learning models_en.srt 5.62Кб
005 Constructing the machine learning models.mp4 13.36Мб
005 Convolutional neural networks - pooling_en.srt 7.90Кб
005 Convolutional neural networks - pooling.mp4 25.58Мб
005 DBSCAN example_en.srt 11.78Кб
005 DBSCAN example.mp4 21.15Мб
005 Decision trees introduction - pros and cons_en.srt 3.15Кб
005 Decision trees introduction - pros and cons.mp4 5.74Мб
005 Evaluating and testing the model_en.srt 4.78Кб
005 Evaluating and testing the model.mp4 12.52Мб
005 Face detection implementation V - detecting faces real-time_en.srt 6.96Кб
005 Face detection implementation V - detecting faces real-time.mp4 18.85Мб
005 Face detection with HOG implementation IV_en.srt 9.60Кб
005 Face detection with HOG implementation IV.mp4 32.31Мб
005 Gated recurrent units (GRUs)_en.srt 4.50Кб
005 Gated recurrent units (GRUs).mp4 6.41Мб
005 Getting the useful region of the image - masking_en.srt 17.47Кб
005 Getting the useful region of the image - masking.mp4 64.74Мб
005 Hard negative mining during training_en.srt 3.36Кб
005 Hard negative mining during training.mp4 6.12Мб
005 Histogram of oriented gradients - big picture_en.srt 4.37Кб
005 Histogram of oriented gradients - big picture.mp4 7.84Мб
005 Hyperparameters_en.srt 7.15Кб
005 Hyperparameters.mp4 26.92Мб
005 Image processing - blur operation_en.srt 7.05Кб
005 Image processing - blur operation.mp4 12.67Мб
005 K-nearest neighbor implementation I_en.srt 9.08Кб
005 K-nearest neighbor implementation I.mp4 16.50Мб
005 Linear regression implementation II_en.srt 5.63Кб
005 Linear regression implementation II.mp4 12.20Мб
005 Lists in Python_en.srt 7.25Кб
005 Lists in Python.mp4 10.51Мб
005 Logistic regression example III - credit scoring_en.srt 7.08Кб
005 Logistic regression example III - credit scoring.mp4 33.52Мб
005 Multiclass classification implementation II_en.srt 7.54Кб
005 Multiclass classification implementation II.mp4 26.72Мб
005 Neural networks - the big picture_en.srt 12.32Кб
005 Neural networks - the big picture.mp4 34.99Мб
005 Private variables and name mangling_en.srt 5.64Кб
005 Private variables and name mangling.mp4 15.30Мб
005 Random forests example II - credit scoring_en.srt 4.43Кб
005 Random forests example II - credit scoring.mp4 9.94Мб
005 Returning multiple values_en.srt 3.79Кб
005 Returning multiple values.mp4 6.00Мб
005 SSD implementation V_en.srt 4.57Кб
005 SSD implementation V.mp4 14.99Мб
005 String slicing_en.srt 8.22Кб
005 String slicing.mp4 12.66Мб
005 Support vector machine example I - simple_en.srt 14.42Кб
005 Support vector machine example I - simple.mp4 36.79Мб
005 Text clustering - inverse document frequency (TF-IDF)_en.srt 6.40Кб
005 Text clustering - inverse document frequency (TF-IDF).mp4 14.61Мб
005 Tic Tac Toe with deep Q learning implementation V_en.srt 6.35Кб
005 Tic Tac Toe with deep Q learning implementation V.mp4 31.32Мб
005 Tic tac toe with Q learning implementation V_en.srt 6.25Кб
005 Tic tac toe with Q learning implementation V.mp4 21.72Мб
005 Time series analysis example V_en.srt 5.69Кб
005 Time series analysis example V.mp4 14.59Мб
005 Types_en.srt 5.80Кб
005 Types.mp4 9.92Мб
005 What is the Faster R-CNN model_en.srt 2.53Кб
005 What is the Faster R-CNN model.mp4 3.97Мб
005 YOLO algorithm implementation V_en.srt 14.75Кб
005 YOLO algorithm implementation V.mp4 95.80Мб
005 YOLO algorithm - loss function_en.srt 6.77Кб
005 YOLO algorithm - loss function.mp4 16.29Мб
006 Boosting implementation II -wine classification_en.srt 14.82Кб
006 Boosting implementation II -wine classification.mp4 38.65Мб
006 Convolutional neural networks - flattening_en.srt 6.62Кб
006 Convolutional neural networks - flattening.mp4 26.77Мб
006 Decision trees implementation I_en.srt 7.65Кб
006 Decision trees implementation I.mp4 13.18Мб
006 Detecting lines - what is Hough transformation_en.srt 14.89Кб
006 Detecting lines - what is Hough transformation.mp4 45.00Мб
006 Hierarchical clustering introduction_en.srt 9.61Кб
006 Hierarchical clustering introduction.mp4 16.58Мб
006 How to solve MDP problems_en.srt 3.05Кб
006 How to solve MDP problems.mp4 5.70Мб
006 Image processing - edge detection kernel_en.srt 7.47Кб
006 Image processing - edge detection kernel.mp4 14.58Мб
006 K-nearest neighbor implementation II_en.srt 11.17Кб
006 K-nearest neighbor implementation II.mp4 48.51Мб
006 Lists in Python - advanced operations_en.srt 9.61Кб
006 Lists in Python - advanced operations.mp4 18.63Мб
006 Mathematical formulation of deep neural networks.html 290б
006 Mathematical formulation of linear regression.html 275б
006 Mathematical formulation of logistic regression.html 263б
006 Mathematical formulation of recurrent neural networks.html 258б
006 Naive Bayes example - clustering news_en.srt 18.49Кб
006 Naive Bayes example - clustering news.mp4 78.91Мб
006 Original academic research article.html 318б
006 Original academic research articles.html 311б
006 Original academic research articles.html 453б
006 Random forests example III - OCR parameter tuning_en.srt 13.07Кб
006 Random forests example III - OCR parameter tuning.mp4 31.90Мб
006 Regularization (data augmentation) and non-max suppression during training_en.srt 3.05Кб
006 Regularization (data augmentation) and non-max suppression during training.mp4 6.87Мб
006 Reshape_en.srt 10.09Кб
006 Reshape.mp4 16.97Мб
006 Support vector machine example II - iris dataset_en.srt 8.49Кб
006 Support vector machine example II - iris dataset.mp4 15.10Мб
006 Tic tac toe with Q learning implementation VI_en.srt 16.18Кб
006 Tic tac toe with Q learning implementation VI.mp4 99.45Мб
006 Time series analysis example VI_en.srt 5.78Кб
006 Time series analysis example VI.mp4 12.37Мб
006 Type casting_en.srt 5.31Кб
006 Type casting.mp4 8.18Мб
006 Using bias nodes in the neural network_en.srt 2.28Кб
006 Using bias nodes in the neural network.mp4 4.32Мб
006 Using cross-validation_en.srt 3.61Кб
006 Using cross-validation.mp4 21.97Мб
006 What is inheritance in OOP_en.srt 4.69Кб
006 What is inheritance in OOP.mp4 8.13Мб
006 Yield operator_en.srt 6.38Кб
006 Yield operator.mp4 9.15Мб
006 YOLO algorithm implementation VI_en.srt 2.57Кб
006 YOLO algorithm implementation VI.mp4 7.30Мб
006 YOLO algorithm - non-max suppression_en.srt 4.09Кб
006 YOLO algorithm - non-max suppression.mp4 9.12Мб
007 Boosting vs. bagging_en.srt 4.06Кб
007 Boosting vs. bagging.mp4 6.87Мб
007 Convolutional neural networks - illustration_en.srt 3.56Кб
007 Convolutional neural networks - illustration.mp4 31.87Мб
007 Decision trees implementation II - parameter tuning_en.srt 5.88Кб
007 Decision trees implementation II - parameter tuning.mp4 14.09Мб
007 Hierarchical clustering example_en.srt 10.55Кб
007 Hierarchical clustering example.mp4 20.36Мб
007 Hough transformation illustration.html 191б
007 How to measure the error of the network_en.srt 6.53Кб
007 How to measure the error of the network.mp4 12.03Мб
007 Image processing - sharpen operation_en.srt 4.57Кб
007 Image processing - sharpen operation.mp4 9.03Мб
007 K-nearest neighbor implementation III_en.srt 5.40Кб
007 K-nearest neighbor implementation III.mp4 10.53Мб
007 Lists in Python - list comprehension_en.srt 7.02Кб
007 Lists in Python - list comprehension.mp4 11.39Мб
007 Local and global variables_en.srt 2.61Кб
007 Local and global variables.mp4 4.25Мб
007 Mathematical formulation of naive Bayes classifier.html 246б
007 Mathematical formulation of random forest classifiers.html 263б
007 Operators_en.srt 6.63Кб
007 Operators.mp4 10.69Мб
007 Original academic research article.html 241б
007 Stacking and merging arrays_en.srt 8.43Кб
007 Stacking and merging arrays.mp4 21.95Мб
007 Support vector machines example III - parameter tuning_en.srt 9.53Кб
007 Support vector machines example III - parameter tuning.mp4 17.83Мб
007 The super keyword_en.srt 5.59Кб
007 The super keyword.mp4 9.13Мб
007 Tic tac toe with Q learning implementation VII_en.srt 8.12Кб
007 Tic tac toe with Q learning implementation VII.mp4 49.80Мб
007 What is value iteration_en.srt 8.26Кб
007 What is value iteration.mp4 24.23Мб
007 Why to use the so-called anchor boxes_en.srt 8.79Кб
007 Why to use the so-called anchor boxes.mp4 19.94Мб
007 YOLO algorithm implementation VII_en.srt 4.57Кб
007 YOLO algorithm implementation VII.mp4 27.94Мб
008 (!!!) Python lists and arrays.html 628б
008 Conditional statements_en.srt 5.36Кб
008 Conditional statements.mp4 8.57Мб
008 Decision tree implementation III - identifying cancer_en.srt 6.66Кб
008 Decision tree implementation III - identifying cancer.mp4 32.45Мб
008 Drawing lines on video frames_en.srt 11.80Кб
008 Drawing lines on video frames.mp4 32.69Мб
008 Filter_en.srt 4.65Кб
008 Filter.mp4 7.65Мб
008 Function (method) override_en.srt 3.16Кб
008 Function (method) override.mp4 6.46Мб
008 Hierarchical clustering - market segmentation_en.srt 12.46Кб
008 Hierarchical clustering - market segmentation.mp4 29.00Мб
008 Mathematical formulation of boosting.html 290б
008 Mathematical formulation of convolution neural networks.html 290б
008 Mathematical formulation of k-nearest neighbor classifier.html 276б
008 Optimization with gradient descent_en.srt 11.36Кб
008 Optimization with gradient descent.mp4 39.92Мб
008 Original academic research article.html 266б
008 Support vector machine example IV - digit recognition_en.srt 12.40Кб
008 Support vector machine example IV - digit recognition.mp4 22.10Мб
008 Tic tac toe with Q learning implementation VIII_en.srt 8.82Кб
008 Tic tac toe with Q learning implementation VIII.mp4 49.82Мб
008 What are the most relevant built-in functions_en.srt 5.51Кб
008 What are the most relevant built-in functions.mp4 7.63Мб
008 What is policy iteration_en.srt 5.12Кб
008 What is policy iteration.mp4 6.98Мб
009 Gradient descent with backpropagation_en.srt 8.39Кб
009 Gradient descent with backpropagation.mp4 24.20Мб
009 How to use multiple conditions_en.srt 10.08Кб
009 How to use multiple conditions.mp4 15.96Мб
009 Mathematical formulation of clustering.html 629б
009 Mathematical formulation of decision trees.html 356б
009 Mathematical formulation of reinforcement learning.html 255б
009 Running time comparison arrays and lists.html 1.34Кб
009 Support vector machine example V - digit recognition_en.srt 7.14Кб
009 Support vector machine example V - digit recognition.mp4 14.49Мб
009 Testing lane detection algorithm_en.srt 3.28Кб
009 Testing lane detection algorithm.mp4 16.08Мб
009 What are tuples_en.srt 4.99Кб
009 What are tuples.mp4 7.52Мб
009 What is polymorphism_en.srt 5.86Кб
009 What is polymorphism.mp4 16.18Мб
009 What is recursion_en.srt 11.56Кб
009 What is recursion.mp4 17.38Мб
010 Advantages and disadvantages_en.srt 3.72Кб
010 Advantages and disadvantages.mp4 6.00Мб
010 Backpropagation explained_en.srt 16.09Кб
010 Backpropagation explained.mp4 46.26Мб
010 Local vs global variables_en.srt 5.33Кб
010 Local vs global variables.mp4 7.83Мб
010 Logical operators_en.srt 4.46Кб
010 Logical operators.mp4 8.05Мб
010 Mutability and immutability_en.srt 6.03Кб
010 Mutability and immutability.mp4 8.70Мб
010 Polymorphism and abstraction example_en.srt 6.63Кб
010 Polymorphism and abstraction example.mp4 13.72Мб
011 Loops - for loop_en.srt 7.75Кб
011 Loops - for loop.mp4 9.56Мб
011 Mathematical formulation of feed-forward neural networks.html 261б
011 Mathematical formulation of Support Vector Machines (SVMs).html 419б
011 Modules_en.srt 7.52Кб
011 Modules.mp4 11.04Мб
011 The __main__ function_en.srt 4.56Кб
011 The __main__ function.mp4 7.33Мб
011 What are linked list data structures_en.srt 11.72Кб
011 What are linked list data structures.mp4 20.75Мб
012 Doubly linked list implementation in Python_en.srt 6.85Кб
012 Doubly linked list implementation in Python.mp4 11.44Мб
012 Loops - while loop_en.srt 5.54Кб
012 Loops - while loop.mp4 7.55Мб
012 The __str__ function_en.srt 4.02Кб
012 The __str__ function.mp4 7.67Мб
013 Comparing objects - overriding functions_en.srt 10.12Кб
013 Comparing objects - overriding functions.mp4 17.11Мб
013 Hashing and O(1) running time complexity_en.srt 11.15Кб
013 Hashing and O(1) running time complexity.mp4 23.11Мб
013 What are nested loops_en.srt 3.51Кб
013 What are nested loops.mp4 5.95Мб
014 Dictionaries in Python_en.srt 12.04Кб
014 Dictionaries in Python.mp4 19.44Мб
014 Enumerate_en.srt 4.93Кб
014 Enumerate.mp4 7.69Мб
015 Break and continue_en.srt 7.01Кб
015 Break and continue.mp4 9.92Мб
015 Sets in Python_en.srt 10.93Кб
015 Sets in Python.mp4 26.05Мб
016 Calculating Fibonacci-numbers_en.srt 3.24Кб
016 Calculating Fibonacci-numbers.mp4 4.02Мб
016 Sorting_en.srt 12.93Кб
016 Sorting.mp4 23.77Мб
Статистика распространения по странам
Китай (CN) 1
Россия (RU) 1
Мексика (MX) 1
Всего 3
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент