Общая информация
Название [FreeCourseSite.com] Udemy - Complete 2022 Data Science & Machine Learning Bootcamp
Тип
Размер 17.17Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[CourseClub.ME].url 122б
[FCS Forum].url 133б
[FreeCourseSite.com].url 127б
[GigaCourse.Com].url 49б
01.1 Course Resources.html 122б
01.1 Course Resources.html 122б
01.1 Course Resources.html 122б
01.1 Course Resources.html 122б
01.1 Course Resources.html 122б
01.1 Course Resources.html 122б
01.1 Course Resources.html 122б
01.1 Course Resources.html 122б
01.1 Course Resources.html 122б
01.1 SpamData.zip 22.83Мб
01.2 Course Resources.html 122б
01.2 SpamData.zip 22.32Мб
01. Defining the Problem.mp4 39.91Мб
01. Defining the Problem.srt 6.46Кб
01. How to Translate a Business Problem into a Machine Learning Problem.mp4 42.26Мб
01. How to Translate a Business Problem into a Machine Learning Problem.srt 9.69Кб
01. Introduction to Linear Regression & Specifying the Problem.mp4 30.32Мб
01. Introduction to Linear Regression & Specifying the Problem.srt 8.74Кб
01. Setting up the Notebook and Understanding Delimiters in a Dataset.mp4 72.50Мб
01. Setting up the Notebook and Understanding Delimiters in a Dataset.srt 11.17Кб
01. Set up the Testing Notebook.mp4 26.45Мб
01. Set up the Testing Notebook.srt 3.82Кб
01. Solving a Business Problem with Image Classification.mp4 30.53Мб
01. Solving a Business Problem with Image Classification.srt 4.97Кб
01. The Human Brain and the Inspiration for Artificial Neural Networks.mp4 51.81Мб
01. The Human Brain and the Inspiration for Artificial Neural Networks.srt 10.88Кб
01. What's coming up.mp4 7.10Мб
01. What's Coming Up.mp4 20.92Мб
01. What's coming up.srt 2.49Кб
01. What's Coming Up.srt 3.83Кб
01. What is Machine Learning.mp4 45.29Мб
01. What is Machine Learning.srt 6.91Кб
01. What you'll make.mp4 38.44Мб
01. What you'll make.srt 9.76Кб
01. Where next.html 3.93Кб
01. Windows Users - Install Anaconda.mp4 49.60Мб
01. Windows Users - Install Anaconda.srt 8.78Кб
02.1 11 Neural Networks - TF Handwriting Recognition.ipynb.zip 6.39Кб
02.1 Course Resources.html 122б
02.1 MNIST.zip 14.77Мб
02.1 SpamData.zip 21.29Мб
02.1 The-Numbers Movie Budgets.html 102б
02.2 cost_revenue_dirty.csv 374.68Кб
02. Create a Full Matrix.mp4 132.24Мб
02. Create a Full Matrix.srt 21.72Кб
02. Gather & Clean the Data.mp4 97.02Мб
02. Gather & Clean the Data.srt 13.93Кб
02. Gathering Email Data and Working with Archives & Text Editors.mp4 112.05Мб
02. Gathering Email Data and Working with Archives & Text Editors.srt 14.13Кб
02. Gathering the Boston House Price Data.mp4 56.24Мб
02. Gathering the Boston House Price Data.srt 8.66Кб
02. Getting the Data and Loading it into Numpy Arrays.mp4 52.82Мб
02. Getting the Data and Loading it into Numpy Arrays.srt 9.01Кб
02. How a Machine Learns.mp4 22.78Мб
02. How a Machine Learns.srt 7.22Кб
02. Installing Tensorflow and Keras for Jupyter.mp4 42.10Мб
02. Installing Tensorflow and Keras for Jupyter.srt 6.42Кб
02. Joint Conditional Probability (Part 1) Dot Product.mp4 66.40Мб
02. Joint Conditional Probability (Part 1) Dot Product.srt 12.72Кб
02. Layers, Feature Generation and Learning.mp4 146.70Мб
02. Layers, Feature Generation and Learning.srt 27.79Кб
02. Mac Users - Install Anaconda.mp4 52.41Мб
02. Mac Users - Install Anaconda.srt 8.05Кб
02. Saving Tensorflow Models.mp4 109.98Мб
02. Saving Tensorflow Models.srt 21.26Кб
02. What is Data Science.mp4 42.86Мб
02. What is Data Science.srt 5.72Кб
02. What Modules Do You Want to See.html 431б
03.1 ML Data Science Syllabus.pdf 103.97Кб
03.1 MNIST_Model_Load_Files.zip 2.84Мб
03.1 Try Jupyter in your Browser.html 85б
03.2 12 TF SavedModel Export Completed.ipynb.zip 6.13Кб
03.2 cost_revenue_clean.csv 90.82Кб
03. Clean and Explore the Data (Part 1) Understand the Nature of the Dataset.mp4 87.14Мб
03. Clean and Explore the Data (Part 1) Understand the Nature of the Dataset.srt 15.59Кб
03. Costs and Disadvantages of Neural Networks.mp4 91.98Мб
03. Costs and Disadvantages of Neural Networks.srt 19.24Кб
03. Count the Tokens to Train the Naive Bayes Model.mp4 96.18Мб
03. Count the Tokens to Train the Naive Bayes Model.srt 18.35Кб
03. Data Exploration and Understanding the Structure of the Input Data.mp4 32.41Мб
03. Data Exploration and Understanding the Structure of the Input Data.srt 6.49Кб
03. Does LSD Make You Better at Maths.mp4 42.25Мб
03. Does LSD Make You Better at Maths.srt 7.35Кб
03. Download the Syllabus.html 1.03Кб
03. Explore & Visualise the Data with Python.mp4 148.15Мб
03. Explore & Visualise the Data with Python.srt 31.02Кб
03. Gathering the CIFAR 10 Dataset.mp4 31.37Мб
03. Gathering the CIFAR 10 Dataset.srt 6.10Кб
03. How to Add the Lesson Resources to the Project.mp4 28.90Мб
03. How to Add the Lesson Resources to the Project.srt 4.96Кб
03. Introduction to Cost Functions.mp4 66.21Мб
03. Introduction to Cost Functions.srt 9.49Кб
03. Joint Conditional Probablity (Part 2) Priors.mp4 63.98Мб
03. Joint Conditional Probablity (Part 2) Priors.srt 10.54Кб
03. Loading a SavedModel.mp4 103.93Мб
03. Loading a SavedModel.srt 26.16Кб
03. Stay in Touch!.html 1.05Кб
04.1 01 Linear Regression (checkpoint).ipynb.zip 37.64Кб
04.1 12 Rules to Learn to Code.pdf 2.25Мб
04.1 App Brewery Cornell Notes Template.html 141б
04.1 TF_Keras_Classification_Images.zip 501.10Кб
04.1 TFJS.zip 1.54Мб
04. Clean and Explore the Data (Part 2) Find Missing Values.mp4 135.02Мб
04. Clean and Explore the Data (Part 2) Find Missing Values.srt 18.59Кб
04. Converting a Model to Tensorflow.js.mp4 132.49Мб
04. Converting a Model to Tensorflow.js.srt 21.13Кб
04. Data Preprocessing One-Hot Encoding and Creating the Validation Dataset.mp4 70.19Мб
04. Data Preprocessing One-Hot Encoding and Creating the Validation Dataset.srt 12.67Кб
04. Download the 12 Rules to Learn to Code.html 1.13Кб
04. Exploring the CIFAR Data.mp4 110.31Мб
04. Exploring the CIFAR Data.srt 18.23Кб
04. LaTeX Markdown and Generating Data with Numpy.mp4 90.52Мб
04. LaTeX Markdown and Generating Data with Numpy.srt 17.28Кб
04. Making Predictions Comparing Joint Probabilities.mp4 52.34Мб
04. Making Predictions Comparing Joint Probabilities.srt 9.67Кб
04. Preprocessing Image Data and How RGB Works.mp4 93.60Мб
04. Preprocessing Image Data and How RGB Works.srt 16.15Кб
04. Sum the Tokens across the Spam and Ham Subsets.mp4 46.71Мб
04. Sum the Tokens across the Spam and Ham Subsets.srt 7.76Кб
04. The Intuition behind the Linear Regression Model.mp4 29.63Мб
04. The Intuition behind the Linear Regression Model.srt 10.84Кб
04. The Naive Bayes Algorithm and the Decision Boundary for a Classifier.mp4 33.39Мб
04. The Naive Bayes Algorithm and the Decision Boundary for a Classifier.srt 6.08Кб
04. Top Tips for Succeeding on this Course.html 2.09Кб
05. [Python] - Variables and Types.mp4 71.36Мб
05. [Python] - Variables and Types.srt 16.55Кб
05.1 math_garden_stub.zip 44.03Кб
05. Analyse and Evaluate the Results.mp4 105.16Мб
05. Analyse and Evaluate the Results.srt 22.41Кб
05. Basic Probability.mp4 28.55Мб
05. Basic Probability.srt 5.26Кб
05. Calculate the Token Probabilities and Save the Trained Model.mp4 53.45Мб
05. Calculate the Token Probabilities and Save the Trained Model.srt 9.44Кб
05. Course Resources List.html 1.13Кб
05. Importing Keras Models and the Tensorflow Graph.mp4 65.47Мб
05. Importing Keras Models and the Tensorflow Graph.srt 11.44Кб
05. Introducing the Website Project and Tooling.mp4 78.04Мб
05. Introducing the Website Project and Tooling.srt 17.19Кб
05. Pre-processing Scaling Inputs and Creating a Validation Dataset.mp4 93.16Мб
05. Pre-processing Scaling Inputs and Creating a Validation Dataset.srt 19.92Кб
05. The Accuracy Metric.mp4 40.54Мб
05. The Accuracy Metric.srt 7.65Кб
05. Understanding the Power Rule & Creating Charts with Subplots.mp4 90.17Мб
05. Understanding the Power Rule & Creating Charts with Subplots.srt 18.10Кб
05. Visualising Data (Part 1) Historams, Distributions & Outliers.mp4 64.55Мб
05. Visualising Data (Part 1) Historams, Distributions & Outliers.srt 14.24Кб
05. What is a Tensor.mp4 45.39Мб
05. What is a Tensor.srt 8.99Кб
06. [Python] - Loops and the Gradient Descent Algorithm.mp4 287.46Мб
06. [Python] - Loops and the Gradient Descent Algorithm.srt 44.03Кб
06.1 01 Linear Regression (complete).ipynb.zip 75.28Кб
06. Coding Challenge Prepare the Test Data.mp4 35.60Мб
06. Coding Challenge Prepare the Test Data.srt 5.14Кб
06. Compiling a Keras Model and Understanding the Cross Entropy Loss Function.mp4 103.60Мб
06. Compiling a Keras Model and Understanding the Cross Entropy Loss Function.srt 18.63Кб
06. Creating Tensors and Setting up the Neural Network Architecture.mp4 150.86Мб
06. Creating Tensors and Setting up the Neural Network Architecture.srt 29.05Кб
06. Download the Complete Notebook Here.html 242б
06. HTML and CSS Styling.mp4 150.23Мб
06. HTML and CSS Styling.srt 37.89Кб
06. Joint & Conditional Probability.mp4 141.82Мб
06. Joint & Conditional Probability.srt 19.86Кб
06. Making Predictions using InceptionResNet.mp4 134.58Мб
06. Making Predictions using InceptionResNet.srt 18.90Кб
06. Python Variable Coding Exercise.html 156б
06. Visualising Data (Part 2) Seaborn and Probability Density Functions.mp4 57.32Мб
06. Visualising Data (Part 2) Seaborn and Probability Density Functions.srt 8.98Кб
06. Visualising the Decision Boundary.mp4 205.31Мб
06. Visualising the Decision Boundary.srt 33.44Кб
07. [Python] - Lists and Arrays.mp4 53.47Мб
07. [Python] - Lists and Arrays.srt 12.15Кб
07.1 07 Bayes Classifier - Training.ipynb.zip 5.82Кб
07.1 x_test2_ylabel1.txt 4.59Кб
07.2 x_test0_ylabel7.txt 4.59Кб
07.3 x_test1_ylabel2.txt 4.59Кб
07. Bayes Theorem.mp4 83.60Мб
07. Bayes Theorem.srt 15.16Кб
07. Coding Challenge Solution Using other Keras Models.mp4 103.53Мб
07. Coding Challenge Solution Using other Keras Models.srt 12.94Кб
07. Defining the Cross Entropy Loss Function, the Optimizer and the Metrics.mp4 75.11Мб
07. Defining the Cross Entropy Loss Function, the Optimizer and the Metrics.srt 14.15Кб
07. Download the Complete Notebook Here.html 242б
07. False Positive vs False Negatives.mp4 63.25Мб
07. False Positive vs False Negatives.srt 12.81Кб
07. Interacting with the Operating System and the Python Try-Catch Block.mp4 133.41Мб
07. Interacting with the Operating System and the Python Try-Catch Block.srt 23.69Кб
07. Join the Student Community.html 730б
07. Loading a Tensorflow.js Model and Starting your own Server.mp4 188.04Мб
07. Loading a Tensorflow.js Model and Starting your own Server.srt 37.18Кб
07. Python Loops Coding Exercise.html 156б
07. Working with Index Data, Pandas Series, and Dummy Variables.mp4 140.76Мб
07. Working with Index Data, Pandas Series, and Dummy Variables.srt 20.72Кб
08. [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).mp4 291.33Мб
08. [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).srt 42.99Кб
08.1 09 Neural Nets Pretrained Image Classification.ipynb.zip 571.83Кб
08. Adding a Favicon.mp4 41.51Мб
08. Adding a Favicon.srt 7.39Кб
08. Any Feedback on this Section.html 512б
08. Any Feedback on this Section.html 527б
08. Download the Complete Notebook Here.html 264б
08. Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems.mp4 100.42Мб
08. Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems.srt 14.10Кб
08. Python Lists Coding Exercise.html 156б
08. Reading Files (Part 1) Absolute Paths and Relative Paths.mp4 60.90Мб
08. Reading Files (Part 1) Absolute Paths and Relative Paths.srt 11.71Кб
08. TensorFlow Sessions and Batching Data.mp4 100.32Мб
08. TensorFlow Sessions and Batching Data.srt 20.50Кб
08. The Recall Metric.mp4 28.15Мб
08. The Recall Metric.srt 6.54Кб
08. Understanding Descriptive Statistics the Mean vs the Median.mp4 62.18Мб
08. Understanding Descriptive Statistics the Mean vs the Median.srt 12.14Кб
09. [Python] - Tuples and the Pitfalls of Optimisation (Part 2).mp4 219.01Мб
09. [Python] - Tuples and the Pitfalls of Optimisation (Part 2).srt 33.54Кб
09. [Python & Pandas] - Dataframes and Series.mp4 153.20Мб
09. [Python & Pandas] - Dataframes and Series.srt 28.09Кб
09.1 lsd_math_score_data.csv 155б
09. Any Feedback on this Section.html 526б
09. Introduction to Correlation Understanding Strength & Direction.mp4 33.09Мб
09. Introduction to Correlation Understanding Strength & Direction.srt 8.40Кб
09. Reading Files (Part 2) Stream Objects and Email Structure.mp4 104.32Мб
09. Reading Files (Part 2) Stream Objects and Email Structure.srt 14.57Кб
09. Styling an HTML Canvas.mp4 187.37Мб
09. Styling an HTML Canvas.srt 39.42Кб
09. Tensorboard Summaries and the Filewriter.mp4 128.29Мб
09. Tensorboard Summaries and the Filewriter.srt 23.21Кб
09. The Precision Metric.mp4 53.33Мб
09. The Precision Metric.srt 9.50Кб
09. Use Regularisation to Prevent Overfitting Early Stopping & Dropout Techniques.mp4 191.54Мб
09. Use Regularisation to Prevent Overfitting Early Stopping & Dropout Techniques.srt 28.28Кб
10. [Python] - Module Imports.mp4 232.07Мб
10. [Python] - Module Imports.srt 36.12Кб
10. Calculating Correlations and the Problem posed by Multicollinearity.mp4 111.43Мб
10. Calculating Correlations and the Problem posed by Multicollinearity.srt 17.83Кб
10. Drawing on an HTML Canvas.mp4 171.97Мб
10. Drawing on an HTML Canvas.srt 37.83Кб
10. Extracting the Text in the Email Body.mp4 47.43Мб
10. Extracting the Text in the Email Body.srt 6.00Кб
10. The F-score or F1 Metric.mp4 24.71Мб
10. The F-score or F1 Metric.srt 4.48Кб
10. Understanding the Learning Rate.mp4 236.60Мб
10. Understanding the Learning Rate.srt 37.72Кб
10. Understanding the Tensorflow Graph Nodes and Edges.mp4 115.75Мб
10. Understanding the Tensorflow Graph Nodes and Edges.srt 21.25Кб
10. Use the Model to Make Predictions.mp4 218.25Мб
10. Use the Model to Make Predictions.srt 32.97Кб
11. [Python] - Functions - Part 1 Defining and Calling Functions.mp4 41.61Мб
11. [Python] - Functions - Part 1 Defining and Calling Functions.srt 10.49Кб
11. [Python] - Generator Functions & the yield Keyword.mp4 133.16Мб
11. [Python] - Generator Functions & the yield Keyword.srt 22.32Кб
11. A Naive Bayes Implementation using SciKit Learn.mp4 195.10Мб
11. A Naive Bayes Implementation using SciKit Learn.srt 33.68Кб
11. Data Pre-Processing for Tensorflow.js.mp4 61.89Мб
11. Data Pre-Processing for Tensorflow.js.srt 11.92Кб
11. How to Create 3-Dimensional Charts.mp4 193.48Мб
11. How to Create 3-Dimensional Charts.srt 26.10Кб
11. Model Evaluation and the Confusion Matrix.mp4 62.76Мб
11. Model Evaluation and the Confusion Matrix.srt 10.80Кб
11. Name Scoping and Image Visualisation in Tensorboard.mp4 155.37Мб
11. Name Scoping and Image Visualisation in Tensorboard.srt 26.26Кб
11. Visualising Correlations with a Heatmap.mp4 168.65Мб
11. Visualising Correlations with a Heatmap.srt 24.37Кб
12.1 08 Naive Bayes with scikit-learn.ipynb.zip 13.26Кб
12.1 math_garden_stub 12.12 checkpoint.zip 4.09Мб
12.2 07 Bayes Classifier - Testing, Inference & Evaluation.ipynb.zip 243.05Кб
12. Create a Pandas DataFrame of Email Bodies.mp4 48.66Мб
12. Create a Pandas DataFrame of Email Bodies.srt 7.23Кб
12. Different Model Architectures Experimenting with Dropout.mp4 213.67Мб
12. Different Model Architectures Experimenting with Dropout.srt 30.11Кб
12. Download the Complete Notebook Here.html 242б
12. Introduction to OpenCV.mp4 235.33Мб
12. Introduction to OpenCV.srt 38.37Кб
12. Model Evaluation and the Confusion Matrix.mp4 251.83Мб
12. Model Evaluation and the Confusion Matrix.srt 40.50Кб
12. Python Functions Coding Exercise - Part 1.html 156б
12. Techniques to Style Scatter Plots.mp4 128.53Мб
12. Techniques to Style Scatter Plots.srt 20.56Кб
12. Understanding Partial Derivatives and How to use SymPy.mp4 132.81Мб
12. Understanding Partial Derivatives and How to use SymPy.srt 20.23Кб
13. [Python] - Functions - Part 2 Arguments & Parameters.mp4 128.20Мб
13. [Python] - Functions - Part 2 Arguments & Parameters.srt 20.76Кб
13.1 10 Neural Nets - Keras CIFAR10 Classification.ipynb.zip 120.11Кб
13. A Note for the Next Lesson.html 476б
13. Any Feedback on this Section.html 509б
13. Cleaning Data (Part 1) Check for Empty Emails & Null Entries.mp4 121.94Мб
13. Cleaning Data (Part 1) Check for Empty Emails & Null Entries.srt 17.96Кб
13. Download the Complete Notebook Here.html 242б
13. Implementing Batch Gradient Descent with SymPy.mp4 86.82Мб
13. Implementing Batch Gradient Descent with SymPy.srt 12.93Кб
13. Prediction and Model Evaluation.mp4 110.72Мб
13. Prediction and Model Evaluation.srt 18.90Кб
13. Resizing and Adding Padding to Images.mp4 157.50Мб
13. Resizing and Adding Padding to Images.srt 26.86Кб
14. [Python] - Loops and Performance Considerations.mp4 131.07Мб
14. [Python] - Loops and Performance Considerations.srt 18.07Кб
14.1 11 Neural Networks - TF Handwriting Recognition.ipynb.zip 6.60Кб
14. Any Feedback on this Section.html 521б
14. Calculating the Centre of Mass and Shifting the Image.mp4 223.26Мб
14. Calculating the Centre of Mass and Shifting the Image.srt 35.49Кб
14. Cleaning Data (Part 2) Working with a DataFrame Index.mp4 61.83Мб
14. Cleaning Data (Part 2) Working with a DataFrame Index.srt 9.23Кб
14. Download the Complete Notebook Here.html 242б
14. Python Functions Coding Exercise - Part 2.html 156б
14. Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.mp4 214.40Мб
14. Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.srt 28.70Кб
15. [Python] - Functions - Part 3 Results & Return Values.mp4 82.63Мб
15. [Python] - Functions - Part 3 Results & Return Values.srt 16.55Кб
15. Any Feedback on this Section.html 499б
15. Making a Prediction from a Digit drawn on the HTML Canvas.mp4 104.41Мб
15. Making a Prediction from a Digit drawn on the HTML Canvas.srt 17.04Кб
15. Reshaping and Slicing N-Dimensional Arrays.mp4 140.81Мб
15. Reshaping and Slicing N-Dimensional Arrays.srt 22.96Кб
15. Saving a JSON File with Pandas.mp4 56.35Мб
15. Saving a JSON File with Pandas.srt 6.92Кб
15. Understanding Multivariable Regression.mp4 48.80Мб
15. Understanding Multivariable Regression.srt 7.52Кб
16.1 math_garden_stub complete.zip 4.09Мб
16. Adding the Game Logic.mp4 172.83Мб
16. Adding the Game Logic.srt 38.09Кб
16. Concatenating Numpy Arrays.mp4 71.33Мб
16. Concatenating Numpy Arrays.srt 8.91Кб
16. Data Visualisation (Part 1) Pie Charts.mp4 90.68Мб
16. Data Visualisation (Part 1) Pie Charts.srt 16.19Кб
16. How to Shuffle and Split Training & Testing Data.mp4 64.34Мб
16. How to Shuffle and Split Training & Testing Data.srt 11.55Кб
16. Python Functions Coding Exercise - Part 3.html 156б
17. [Python] - Objects - Understanding Attributes and Methods.mp4 156.77Мб
17. [Python] - Objects - Understanding Attributes and Methods.srt 29.86Кб
17. Data Visualisation (Part 2) Donut Charts.mp4 61.78Мб
17. Data Visualisation (Part 2) Donut Charts.srt 9.56Кб
17. Introduction to the Mean Squared Error (MSE).mp4 64.56Мб
17. Introduction to the Mean Squared Error (MSE).srt 12.61Кб
17. Publish and Share your Website!.mp4 38.75Мб
17. Publish and Share your Website!.srt 9.51Кб
17. Running a Multivariable Regression.mp4 55.56Мб
17. Running a Multivariable Regression.srt 9.77Кб
18. Any Feedback on this Section.html 500б
18. How to Calculate the Model Fit with R-Squared.mp4 32.40Мб
18. How to Calculate the Model Fit with R-Squared.srt 4.42Кб
18. How to Make Sense of Python Documentation for Data Visualisation.mp4 171.46Мб
18. How to Make Sense of Python Documentation for Data Visualisation.srt 26.51Кб
18. Introduction to Natural Language Processing (NLP).mp4 50.81Мб
18. Introduction to Natural Language Processing (NLP).srt 8.19Кб
18. Transposing and Reshaping Arrays.mp4 86.90Мб
18. Transposing and Reshaping Arrays.srt 13.52Кб
19. Implementing a MSE Cost Function.mp4 81.11Мб
19. Implementing a MSE Cost Function.srt 13.56Кб
19. Introduction to Model Evaluation.mp4 15.99Мб
19. Introduction to Model Evaluation.srt 3.81Кб
19. Tokenizing, Removing Stop Words and the Python Set Data Structure.mp4 117.75Мб
19. Tokenizing, Removing Stop Words and the Python Set Data Structure.srt 19.07Кб
19. Working with Python Objects to Analyse Data.mp4 169.98Мб
19. Working with Python Objects to Analyse Data.srt 27.29Кб
20. [Python] - Tips, Code Style and Naming Conventions.mp4 81.53Мб
20. [Python] - Tips, Code Style and Naming Conventions.srt 16.72Кб
20. Improving the Model by Transforming the Data.mp4 126.87Мб
20. Improving the Model by Transforming the Data.srt 21.61Кб
20. Understanding Nested Loops and Plotting the MSE Function (Part 1).mp4 73.16Мб
20. Understanding Nested Loops and Plotting the MSE Function (Part 1).srt 13.94Кб
20. Word Stemming & Removing Punctuation.mp4 71.44Мб
20. Word Stemming & Removing Punctuation.srt 10.56Кб
21.1 02 Python Intro.ipynb.zip 36.44Кб
21. Download the Complete Notebook Here.html 242б
21. How to Interpret Coefficients using p-Values and Statistical Significance.mp4 65.41Мб
21. How to Interpret Coefficients using p-Values and Statistical Significance.srt 10.78Кб
21. Plotting the Mean Squared Error (MSE) on a Surface (Part 2).mp4 124.88Мб
21. Plotting the Mean Squared Error (MSE) on a Surface (Part 2).srt 17.45Кб
21. Removing HTML tags with BeautifulSoup.mp4 95.82Мб
21. Removing HTML tags with BeautifulSoup.srt 11.01Кб
22. Any Feedback on this Section.html 513б
22. Creating a Function for Text Processing.mp4 53.91Мб
22. Creating a Function for Text Processing.srt 8.41Кб
22. Running Gradient Descent with a MSE Cost Function.mp4 111.22Мб
22. Running Gradient Descent with a MSE Cost Function.srt 22.32Кб
22. Understanding VIF & Testing for Multicollinearity.mp4 143.82Мб
22. Understanding VIF & Testing for Multicollinearity.srt 25.62Кб
23. A Note for the Next Lesson.html 476б
23. Model Simplification & Baysian Information Criterion.mp4 150.15Мб
23. Model Simplification & Baysian Information Criterion.srt 23.14Кб
23. Visualising the Optimisation on a 3D Surface.mp4 74.81Мб
23. Visualising the Optimisation on a 3D Surface.srt 10.73Кб
24.1 03 Gradient Descent.ipynb.zip 1.14Мб
24. Advanced Subsetting on DataFrames the apply() Function.mp4 83.39Мб
24. Advanced Subsetting on DataFrames the apply() Function.srt 13.53Кб
24. Download the Complete Notebook Here.html 242б
24. How to Analyse and Plot Regression Residuals.mp4 64.18Мб
24. How to Analyse and Plot Regression Residuals.srt 14.76Кб
25. [Python] - Logical Operators to Create Subsets and Indices.mp4 86.41Мб
25. [Python] - Logical Operators to Create Subsets and Indices.srt 15.50Кб
25. Any Feedback on this Section.html 520б
25. Residual Analysis (Part 1) Predicted vs Actual Values.mp4 124.42Мб
25. Residual Analysis (Part 1) Predicted vs Actual Values.srt 18.24Кб
26. Residual Analysis (Part 2) Graphing and Comparing Regression Residuals.mp4 153.01Мб
26. Residual Analysis (Part 2) Graphing and Comparing Regression Residuals.srt 22.76Кб
26. Word Clouds & How to install Additional Python Packages.mp4 79.48Мб
26. Word Clouds & How to install Additional Python Packages.srt 11.97Кб
27. Creating your First Word Cloud.mp4 98.44Мб
27. Creating your First Word Cloud.srt 13.67Кб
27. Making Predictions (Part 1) MSE & R-Squared.mp4 152.68Мб
27. Making Predictions (Part 1) MSE & R-Squared.srt 23.72Кб
28. Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals.mp4 84.85Мб
28. Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals.srt 14.76Кб
28. Styling the Word Cloud with a Mask.mp4 131.37Мб
28. Styling the Word Cloud with a Mask.srt 16.72Кб
29. Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays.mp4 131.31Мб
29. Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays.srt 20.82Кб
29. Solving the Hamlet Challenge.mp4 57.10Мб
29. Solving the Hamlet Challenge.srt 5.99Кб
30. [Python] - Conditional Statements - Build a Valuation Tool (Part 2).mp4 134.38Мб
30. [Python] - Conditional Statements - Build a Valuation Tool (Part 2).srt 21.40Кб
30. Styling Word Clouds with Custom Fonts.mp4 127.29Мб
30. Styling Word Clouds with Custom Fonts.srt 14.79Кб
31. Create the Vocabulary for the Spam Classifier.mp4 106.96Мб
31. Create the Vocabulary for the Spam Classifier.srt 17.79Кб
31. Python Conditional Statement Coding Exercise.html 156б
32. Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module.mp4 244.17Мб
32. Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module.srt 28.42Кб
32. Coding Challenge Check for Membership in a Collection.mp4 32.34Мб
32. Coding Challenge Check for Membership in a Collection.srt 6.08Кб
33.1 04 Multivariable Regression.ipynb.zip 3.54Мб
33.2 04 Valuation Tool.ipynb.zip 2.93Кб
33.3 boston_valuation.py 3.05Кб
33. Coding Challenge Find the Longest Email.mp4 54.47Мб
33. Coding Challenge Find the Longest Email.srt 7.54Кб
33. Download the Complete Notebook Here.html 242б
34. Any Feedback on this Section.html 512б
34. Sparse Matrix (Part 1) Split the Training and Testing Data.mp4 87.62Мб
34. Sparse Matrix (Part 1) Split the Training and Testing Data.srt 15.26Кб
35. Sparse Matrix (Part 2) Data Munging with Nested Loops.mp4 137.23Мб
35. Sparse Matrix (Part 2) Data Munging with Nested Loops.srt 22.34Кб
36. Sparse Matrix (Part 3) Using groupby() and Saving .txt Files.mp4 80.50Мб
36. Sparse Matrix (Part 3) Using groupby() and Saving .txt Files.srt 12.18Кб
37. Coding Challenge Solution Preparing the Test Data.mp4 28.92Мб
37. Coding Challenge Solution Preparing the Test Data.srt 4.50Кб
38. Checkpoint Understanding the Data.mp4 96.37Мб
38. Checkpoint Understanding the Data.srt 13.65Кб
39.1 06 Bayes Classifier - Pre-Processing.ipynb.zip 978.02Кб
39. Download the Complete Notebook Here.html 242б
40. Any Feedback on this Section.html 519б
Статистика распространения по странам
Россия (RU) 2
Всего 2
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент