Общая информация
Название Tensorflow 2.0 Deep Learning and Artificial Intelligence
Тип
Размер 6.89Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[TGx]Downloaded from torrentgalaxy.to .txt 585б
0 66б
1 260б
1. Artificial Neural Networks Section Introduction.mp4 29.82Мб
1. Artificial Neural Networks Section Introduction.srt 7.90Кб
1. Beginner's Coding Tips.mp4 75.71Мб
1. Beginner's Coding Tips.srt 19.02Кб
1. Deep Reinforcement Learning Section Introduction.mp4 38.05Мб
1. Deep Reinforcement Learning Section Introduction.srt 8.60Кб
1. Differences Between Tensorflow 1.x and Tensorflow 2.x.mp4 38.68Мб
1. Differences Between Tensorflow 1.x and Tensorflow 2.x.srt 12.20Кб
1. Embeddings.mp4 52.56Мб
1. Embeddings.srt 16.20Кб
1. GAN Theory.mp4 87.16Мб
1. GAN Theory.srt 20.71Кб
1. Gradient Descent.mp4 34.92Мб
1. Gradient Descent.srt 9.77Кб
1. How to Choose Hyperparameters.mp4 37.92Мб
1. How to Choose Hyperparameters.srt 8.71Кб
1. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4 150.59Мб
1. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt 14.69Кб
1. How to Succeed in this Course (Long Version).mp4 35.22Мб
1. How to Succeed in this Course (Long Version).srt 14.61Кб
1. Introduction.mp4 34.81Мб
1. Introduction.srt 5.70Кб
1. Intro to Google Colab, how to use a GPU or TPU for free.mp4 53.84Мб
1. Intro to Google Colab, how to use a GPU or TPU for free.srt 14.13Кб
1. Mean Squared Error.mp4 33.77Мб
1. Mean Squared Error.srt 11.21Кб
1. Recommender Systems with Deep Learning Theory.mp4 68.66Мб
1. Recommender Systems with Deep Learning Theory.srt 17.40Кб
1. Reinforcement Learning Stock Trader Introduction.mp4 26.04Мб
1. Reinforcement Learning Stock Trader Introduction.srt 6.84Кб
1. Sequence Data.mp4 90.15Мб
1. Sequence Data.srt 24.02Кб
1. Transfer Learning Theory.mp4 55.13Мб
1. Transfer Learning Theory.srt 10.66Кб
1. What is a Web Service (Tensorflow Serving pt 1).mp4 27.78Мб
1. What is a Web Service (Tensorflow Serving pt 1).srt 7.71Кб
1. What is Convolution (part 1).mp4 79.77Мб
1. What is Convolution (part 1).srt 20.16Кб
1. What is Machine Learning.mp4 65.50Мб
1. What is Machine Learning.srt 18.45Кб
1. What is the Appendix.mp4 16.38Мб
1. What is the Appendix.srt 3.75Кб
10 1023.65Кб
10. ANN for Regression.mp4 69.27Мб
10. ANN for Regression.srt 12.78Кб
10. Batch Normalization.mp4 21.11Мб
10. Batch Normalization.srt 6.53Кб
10. Epsilon-Greedy.mp4 40.11Мб
10. Epsilon-Greedy.srt 7.49Кб
10. GRU and LSTM (pt 2).mp4 50.36Мб
10. GRU and LSTM (pt 2).srt 14.28Кб
10. Help! Why is the code slower on my machine.mp4 42.46Мб
10. Help! Why is the code slower on my machine.srt 11.72Кб
10. Why Keras.mp4 26.51Мб
10. Why Keras.srt 5.77Кб
100 763.80Кб
101 119.38Кб
102 231.53Кб
103 26.77Кб
104 292.89Кб
105 305.20Кб
106 438.91Кб
107 186.10Кб
108 280.15Кб
109 312.70Кб
11 430.21Кб
11. A More Challenging Sequence.mp4 64.65Мб
11. A More Challenging Sequence.srt 9.60Кб
11. Improving CIFAR-10 Results.mp4 72.91Мб
11. Improving CIFAR-10 Results.srt 13.17Кб
11. Q-Learning.mp4 61.83Мб
11. Q-Learning.srt 17.91Кб
11. Suggestion Box.mp4 27.12Мб
11. Suggestion Box.srt 4.75Кб
110 901.13Кб
111 241.71Кб
112 683.72Кб
113 229.97Кб
114 373.09Кб
115 730.25Кб
116 899.63Кб
117 497.62Кб
118 979.29Кб
119 19.09Кб
12 474.85Кб
12. Deep Q-Learning DQN (pt 1).mp4 56.27Мб
12. Deep Q-Learning DQN (pt 1).srt 16.43Кб
12. Demo of the Long Distance Problem.mp4 124.05Мб
12. Demo of the Long Distance Problem.srt 23.06Кб
120 23.79Кб
121 985.73Кб
122 325.09Кб
123 714.83Кб
124 32.91Кб
125 750.86Кб
126 887.27Кб
127 913.42Кб
128 433.49Кб
129 587.24Кб
13 144.86Кб
13. Deep Q-Learning DQN (pt 2).mp4 49.60Мб
13. Deep Q-Learning DQN (pt 2).srt 13.21Кб
13. RNN for Image Classification (Theory).mp4 29.12Мб
13. RNN for Image Classification (Theory).srt 5.99Кб
130 416.94Кб
131 639.12Кб
14 236.64Кб
14. How to Learn Reinforcement Learning.mp4 37.70Мб
14. How to Learn Reinforcement Learning.srt 7.62Кб
14. RNN for Image Classification (Code).mp4 23.30Мб
14. RNN for Image Classification (Code).srt 4.19Кб
15 298.03Кб
15. Stock Return Predictions using LSTMs (pt 1).mp4 67.11Мб
15. Stock Return Predictions using LSTMs (pt 1).srt 15.71Кб
16 721.01Кб
16. Stock Return Predictions using LSTMs (pt 2).mp4 32.97Мб
16. Stock Return Predictions using LSTMs (pt 2).srt 6.50Кб
17 123.49Кб
17. Stock Return Predictions using LSTMs (pt 3).mp4 67.34Мб
17. Stock Return Predictions using LSTMs (pt 3).srt 14.42Кб
18 301.93Кб
18. Other Ways to Forecast.mp4 28.33Мб
18. Other Ways to Forecast.srt 7.18Кб
19 952.59Кб
2 245б
2. Anaconda Environment Setup.mp4 180.90Мб
2. Anaconda Environment Setup.srt 19.96Кб
2. Beginners Rejoice The Math in This Course is Optional.mp4 68.52Мб
2. Beginners Rejoice The Math in This Course is Optional.srt 17.02Кб
2. Binary Cross Entropy.mp4 23.68Мб
2. Binary Cross Entropy.srt 7.26Кб
2. BONUS Lecture.mp4 37.79Мб
2. BONUS Lecture.srt 7.87Кб
2. Code Preparation (Classification Theory).mp4 59.80Мб
2. Code Preparation (Classification Theory).srt 20.26Кб
2. Code Preparation (NLP).mp4 57.04Мб
2. Code Preparation (NLP).srt 16.82Кб
2. Constants and Basic Computation.mp4 40.30Мб
2. Constants and Basic Computation.srt 9.63Кб
2. Data and Environment.mp4 50.97Мб
2. Data and Environment.srt 15.69Кб
2. Elements of a Reinforcement Learning Problem.mp4 98.59Мб
2. Elements of a Reinforcement Learning Problem.srt 26.19Кб
2. Forecasting.mp4 46.75Мб
2. Forecasting.srt 13.35Кб
2. GAN Code.mp4 78.30Мб
2. GAN Code.srt 14.88Кб
2. How to Code Yourself (part 1).mp4 71.85Мб
2. How to Code Yourself (part 1).srt 22.13Кб
2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 105.61Мб
2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt 31.63Кб
2. Outline.mp4 73.67Мб
2. Outline.srt 17.10Кб
2. Recommender Systems with Deep Learning Code.mp4 58.81Мб
2. Recommender Systems with Deep Learning Code.srt 11.70Кб
2. Some Pre-trained Models (VGG, ResNet, Inception, MobileNet).mp4 31.57Мб
2. Some Pre-trained Models (VGG, ResNet, Inception, MobileNet).srt 7.29Кб
2. Stochastic Gradient Descent.mp4 22.97Мб
2. Stochastic Gradient Descent.srt 5.40Кб
2. Tensorflow 2.0 in Google Colab.mp4 40.65Мб
2. Tensorflow 2.0 in Google Colab.srt 9.48Кб
2. Tensorflow Serving pt 2.mp4 104.99Мб
2. Tensorflow Serving pt 2.srt 20.42Кб
2. What is Convolution (part 2).mp4 22.27Мб
2. What is Convolution (part 2).srt 7.25Кб
2. Where Are The Exercises.mp4 25.98Мб
2. Where Are The Exercises.srt 5.41Кб
20 335.23Кб
21 420.79Кб
22 91.99Кб
23 154.55Кб
24 309.91Кб
25 554.63Кб
26 567.77Кб
27 578.01Кб
28 742.93Кб
29 353.06Кб
3 545.40Кб
3.1 Colab Notebooks.html 157б
3.2 Github Link.html 120б
3. Autoregressive Linear Model for Time Series Prediction.mp4 71.70Мб
3. Autoregressive Linear Model for Time Series Prediction.srt 14.23Кб
3. Categorical Cross Entropy.mp4 31.70Мб
3. Categorical Cross Entropy.srt 9.62Кб
3. Classification Notebook.mp4 54.54Мб
3. Classification Notebook.srt 9.40Кб
3. Forward Propagation.mp4 46.70Мб
3. Forward Propagation.srt 12.20Кб
3. How to Code Yourself (part 2).mp4 49.14Мб
3. How to Code Yourself (part 2).srt 12.98Кб
3. Installing NVIDIA GPU-Accelerated Deep Learning Libraries on your Home Computer.mp4 167.30Мб
3. Installing NVIDIA GPU-Accelerated Deep Learning Libraries on your Home Computer.srt 32.01Кб
3. Large Datasets and Data Generators.mp4 36.56Мб
3. Large Datasets and Data Generators.srt 8.80Кб
3. Links to TF2.0 Notebooks.html 8.11Кб
3. Machine Learning and AI Prerequisite Roadmap (pt 1).mp4 79.71Мб
3. Machine Learning and AI Prerequisite Roadmap (pt 1).srt 16.11Кб
3. Momentum.mp4 34.25Мб
3. Momentum.srt 7.84Кб
3. Replay Buffer.mp4 24.04Мб
3. Replay Buffer.srt 6.94Кб
3. States, Actions, Rewards, Policies.mp4 43.33Мб
3. States, Actions, Rewards, Policies.srt 11.32Кб
3. Tensorflow Lite (TFLite).mp4 42.59Мб
3. Tensorflow Lite (TFLite).srt 11.03Кб
3. Text Preprocessing.mp4 28.76Мб
3. Text Preprocessing.srt 6.15Кб
3. Uploading your own data to Google Colab.mp4 73.59Мб
3. Uploading your own data to Google Colab.srt 11.98Кб
3. Variables and Gradient Tape.mp4 56.05Мб
3. Variables and Gradient Tape.srt 13.58Кб
3. What is Convolution (part 3).mp4 27.64Мб
3. What is Convolution (part 3).srt 8.01Кб
3. Where to get the code.mp4 62.91Мб
3. Where to get the code.srt 15.36Кб
30 492.17Кб
31 3.19Кб
32 673.47Кб
33 909.01Кб
34 488.94Кб
35 512.71Кб
36 362.37Кб
37 95.66Кб
38 172.05Кб
39 208.31Кб
4 852.44Кб
4. 2 Approaches to Transfer Learning.mp4 20.58Мб
4. 2 Approaches to Transfer Learning.srt 5.96Кб
4. Build Your Own Custom Model.mp4 58.55Мб
4. Build Your Own Custom Model.srt 13.28Кб
4. Code Preparation (Regression Theory).mp4 27.29Мб
4. Code Preparation (Regression Theory).srt 9.07Кб
4. Convolution on Color Images.mp4 69.44Мб
4. Convolution on Color Images.srt 20.56Кб
4. Machine Learning and AI Prerequisite Roadmap (pt 2).mp4 108.17Мб
4. Machine Learning and AI Prerequisite Roadmap (pt 2).srt 23.01Кб
4. Markov Decision Processes (MDPs).mp4 49.35Мб
4. Markov Decision Processes (MDPs).srt 12.65Кб
4. Program Design and Layout.mp4 25.98Мб
4. Program Design and Layout.srt 8.64Кб
4. Proof that the Linear Model Works.mp4 16.20Мб
4. Proof that the Linear Model Works.srt 4.56Кб
4. Proof that using Jupyter Notebook is the same as not using it.mp4 69.45Мб
4. Proof that using Jupyter Notebook is the same as not using it.srt 14.22Кб
4. Text Classification with LSTMs.mp4 50.68Мб
4. Text Classification with LSTMs.srt 9.80Кб
4. The Geometrical Picture.mp4 56.43Мб
4. The Geometrical Picture.srt 11.51Кб
4. Variable and Adaptive Learning Rates.mp4 34.85Мб
4. Variable and Adaptive Learning Rates.srt 15.15Кб
4. Where can I learn about Numpy, Scipy, Matplotlib, Pandas, and Scikit-Learn.mp4 38.93Мб
4. Where can I learn about Numpy, Scipy, Matplotlib, Pandas, and Scikit-Learn.srt 11.53Кб
4. Why is Google the King of Distributed Computing.mp4 44.93Мб
4. Why is Google the King of Distributed Computing.srt 11.25Кб
40 197.48Кб
41 465.07Кб
42 547.13Кб
43 982.01Кб
44 582.80Кб
45 745.81Кб
46 977.70Кб
47 895.29Кб
48 906.04Кб
49 472.70Кб
5 403.99Кб
5. Activation Functions.mp4 80.54Мб
5. Activation Functions.srt 22.64Кб
5. Adam (pt 1).mp4 55.12Мб
5. Adam (pt 1).srt 16.67Кб
5. CNN Architecture.mp4 80.58Мб
5. CNN Architecture.srt 27.89Кб
5. CNNs for Text.mp4 40.40Мб
5. CNNs for Text.srt 10.09Кб
5. Code pt 1.mp4 39.55Мб
5. Code pt 1.srt 7.21Кб
5. How to Succeed in this Course.mp4 43.75Мб
5. How to Succeed in this Course.srt 8.28Кб
5. Is Theano Dead.mp4 40.76Мб
5. Is Theano Dead.srt 12.63Кб
5. Recurrent Neural Networks.mp4 83.00Мб
5. Recurrent Neural Networks.srt 25.59Кб
5. Regression Notebook.mp4 57.47Мб
5. Regression Notebook.srt 12.13Кб
5. The Return.mp4 21.13Мб
5. The Return.srt 6.26Кб
5. Training with Distributed Strategies.mp4 43.54Мб
5. Training with Distributed Strategies.srt 8.53Кб
5. Transfer Learning Code (pt 1).mp4 66.52Мб
5. Transfer Learning Code (pt 1).srt 13.76Кб
50 165.18Кб
51 92.57Кб
52 241.16Кб
53 450.47Кб
54 498.10Кб
55 534.88Кб
56 975.51Кб
57 28.25Кб
58 82.61Кб
59 329.98Кб
6 8.50Кб
6. Adam (pt 2).mp4 52.76Мб
6. Adam (pt 2).srt 14.48Кб
6. CNN Code Preparation.mp4 76.88Мб
6. CNN Code Preparation.srt 19.65Кб
6. Code pt 2.mp4 68.00Мб
6. Code pt 2.srt 11.75Кб
6. Multiclass Classification.mp4 41.38Мб
6. Multiclass Classification.srt 10.98Кб
6. RNN Code Preparation.mp4 18.43Мб
6. RNN Code Preparation.srt 7.14Кб
6. Text Classification with CNNs.mp4 39.62Мб
6. Text Classification with CNNs.srt 6.63Кб
6. The Neuron.mp4 42.57Мб
6. The Neuron.srt 12.46Кб
6. Transfer Learning Code (pt 2).mp4 46.05Мб
6. Transfer Learning Code (pt 2).srt 10.43Кб
6. Using the TPU.mp4 45.24Мб
6. Using the TPU.srt 6.96Кб
6. Value Functions and the Bellman Equation.mp4 43.56Мб
6. Value Functions and the Bellman Equation.srt 12.51Кб
60 659.72Кб
61 407.58Кб
62 666.07Кб
63 877.25Кб
64 48.82Кб
65 292.23Кб
66 251.99Кб
67 310.46Кб
68 968.86Кб
69 781.20Кб
7 416.76Кб
7. CNN for Fashion MNIST.mp4 42.79Мб
7. CNN for Fashion MNIST.srt 7.99Кб
7. Code pt 3.mp4 52.05Мб
7. Code pt 3.srt 7.75Кб
7. How does a model learn.mp4 47.95Мб
7. How does a model learn.srt 14.00Кб
7. How to Represent Images.mp4 70.46Мб
7. How to Represent Images.srt 15.60Кб
7. RNN for Time Series Prediction.mp4 74.07Мб
7. RNN for Time Series Prediction.srt 11.21Кб
7. What does it mean to “learn”.mp4 31.71Мб
7. What does it mean to “learn”.srt 8.92Кб
70 74.80Кб
71 253.83Кб
72 451.70Кб
73 469.10Кб
74 688.29Кб
75 214.27Кб
76 262.15Кб
77 419.43Кб
78 442.69Кб
79 552.37Кб
8 873.98Кб
8. CNN for CIFAR-10.mp4 29.69Мб
8. CNN for CIFAR-10.srt 5.38Кб
8. Code Preparation (ANN).mp4 50.92Мб
8. Code Preparation (ANN).srt 16.30Кб
8. Code pt 4.mp4 52.51Мб
8. Code pt 4.srt 8.37Кб
8. Making Predictions.mp4 33.88Мб
8. Making Predictions.srt 7.99Кб
8. Paying Attention to Shapes.mp4 52.48Мб
8. Paying Attention to Shapes.srt 9.88Кб
8. Solving the Bellman Equation with Reinforcement Learning (pt 1).mp4 42.74Мб
8. Solving the Bellman Equation with Reinforcement Learning (pt 1).srt 12.41Кб
80 632.44Кб
81 247.46Кб
82 354.32Кб
83 613.22Кб
84 720.29Кб
85 914.24Кб
86 385.15Кб
87 462.87Кб
88 72.99Кб
89 322.64Кб
9 858.23Кб
9. ANN for Image Classification.mp4 47.71Мб
9. ANN for Image Classification.srt 9.93Кб
9. Data Augmentation.mp4 34.95Мб
9. Data Augmentation.srt 11.24Кб
9. GRU and LSTM (pt 1).mp4 79.86Мб
9. GRU and LSTM (pt 1).srt 22.80Кб
9. Reinforcement Learning Stock Trader Discussion.mp4 16.59Мб
9. Reinforcement Learning Stock Trader Discussion.srt 4.39Кб
9. Saving and Loading a Model.mp4 29.73Мб
9. Saving and Loading a Model.srt 4.93Кб
9. Solving the Bellman Equation with Reinforcement Learning (pt 2).mp4 52.91Мб
9. Solving the Bellman Equation with Reinforcement Learning (pt 2).srt 14.88Кб
90 969.66Кб
91 78.95Кб
92 212.72Кб
93 303.98Кб
94 446.44Кб
95 801.07Кб
96 50.05Кб
97 82.45Кб
98 153.54Кб
99 192.06Кб
TutsNode.com.txt 63б
Статистика распространения по странам
Индия (IN) 4
Россия (RU) 3
США (US) 2
Филиппины (PH) 2
Венгрия (HU) 1
Болгария (BG) 1
Украина (UA) 1
Сербия (RS) 1
Южная Корея (KR) 1
Шри-Ланка (LK) 1
Бразилия (BR) 1
Всего 18
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент