Общая информация
Название The Data Science Course Complete Data Science Bootcamp 2025 (Dec-2024)
Тип
Размер 9.17Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
01. 1.04.Real-life-example.csv 219.83Кб
01. 2.13.Practical-example.Descriptive-statistics-lesson.xlsx 146.51Кб
01. 3.17.Practical-example.Confidence-intervals-lesson.xlsx 1.74Мб
01. 365-Data-Science-Data-Science-Interview-Questions-Guide.pdf 15.56Мб
01. 4.10.Hypothesis-testing-section-practical-example.xlsx 51.90Кб
01. Absenteeism-data.csv 32.05Кб
01. Absenteeism-Exercise-Integration.ipynb 62.35Кб
01. absenteeism-module.py 6.62Кб
01. Absenteeism-new-data.csv 1.87Кб
01. Absenteeism-predictions.csv 2.10Кб
01. Absenteeism-preprocessed.csv 29.13Кб
01. Additional-Python-Tools-Exercises.ipynb 11.41Кб
01. Additional-Python-Tools-Lectures.ipynb 13.47Кб
01. Additional-Python-Tools-Solutions.ipynb 25.52Кб
01. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4 83.53Мб
01. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.vtt 9.24Кб
01. A Practical Example What You Will Learn in This Course.mp4 10.76Мб
01. A Practical Example What You Will Learn in This Course.vtt 6.82Кб
01. Are You Sure You're All Set.html 519б
01. Arithmetic-Operators-Exercise-Py3.ipynb 2.62Кб
01. Arithmetic-Operators-Lecture-Py3.ipynb 3.53Кб
01. Arithmetic-Operators-Solution-Py3.ipynb 4.24Кб
01. Audiobooks-data.csv 710.77Кб
01. Audiobooks-data.csv 710.77Кб
01. Basic NN Example (Part 1).mp4 9.34Мб
01. Basic NN Example (Part 1).vtt 4.54Кб
01. Bonus Lecture Next Steps.html 4.33Кб
01. Business Case Exploring the Dataset and Identifying Predictors.mp4 51.29Мб
01. Business Case Exploring the Dataset and Identifying Predictors.vtt 11.01Кб
01. Business Case Getting Acquainted with the Dataset.mp4 60.25Мб
01. Business Case Getting Acquainted with the Dataset.vtt 10.96Кб
01. Comparison Operators.mp4 4.16Мб
01. Comparison Operators.vtt 2.57Кб
01. Comparison-Operators-Exercise-Py3.ipynb 1.61Кб
01. Comparison-Operators-Lecture-Py3.ipynb 2.53Кб
01. Comparison-Operators-Solution-Py3.ipynb 2.41Кб
01. Course-Notes-Basic-Probability.pdf 371.05Кб
01. Course-Notes-Bayesian-Inference.pdf 386.01Кб
01. Course-Notes-Cluster-Analysis.pdf 208.65Кб
01. Course-Notes-Combinatorics.pdf 226.12Кб
01. Course-notes-descriptive-statistics.pdf 482.21Кб
01. Course-notes-descriptive-statistics.pdf 482.21Кб
01. Course-notes-hypothesis-testing.pdf 656.44Кб
01. Course-notes-inferential-statistics.pdf 382.32Кб
01. Course-Notes-Logistic-Regression.pdf 335.17Кб
01. Course-Notes-Probability-Distributions.pdf 463.95Кб
01. Course-notes-regression-analysis.pdf 312.18Кб
01. Course-notes-regression-analysis.pdf 312.18Кб
01. Course-Notes-Section-2.pdf 578.08Кб
01. Course-Notes-Section-6.pdf 936.42Кб
01. data-preprocessing-homework.pdf 134.47Кб
01. Data Science and Business Buzzwords Why are there so Many.mp4 15.59Мб
01. Data Science and Business Buzzwords Why are there so Many.vtt 7.37Кб
01. Debunking Common Misconceptions.mp4 58.86Мб
01. Debunking Common Misconceptions.vtt 5.53Кб
01. Defining a Function in Python.mp4 3.23Мб
01. Defining a Function in Python.vtt 2.62Кб
01. Defining-a-Function-in-Python-Lecture-Py3.ipynb 868б
01. df-preprocessed.csv 29.11Кб
01. EXERCISE - Age vs Probability.html 385б
01. Exploring the Problem with a Machine Learning Mindset.mp4 12.96Мб
01. Exploring the Problem with a Machine Learning Mindset.vtt 4.83Кб
01. Finding the Job - What to Expect and What to Look for.mp4 40.03Мб
01. Finding the Job - What to Expect and What to Look for.vtt 4.66Кб
01. For Loops.mp4 12.96Мб
01. For Loops.vtt 6.77Кб
01. For-Loops-Exercise-Py3.ipynb 1.28Кб
01. For-Loops-Lecture-Py3.ipynb 1.26Кб
01. For-Loops-Solution-Py3.ipynb 1.80Кб
01. Fundamentals of Combinatorics.mp4 5.94Мб
01. Fundamentals of Combinatorics.vtt 1.47Кб
01. Fundamentals of Probability Distributions.mp4 19.42Мб
01. Fundamentals of Probability Distributions.vtt 8.40Кб
01. Game Plan for this Python, SQL, and Tableau Business Exercise.mp4 19.67Мб
01. Game Plan for this Python, SQL, and Tableau Business Exercise.vtt 5.57Кб
01. Glossary.xlsx 19.97Кб
01. How to Install TensorFlow 2.0.mp4 27.34Мб
01. How to Install TensorFlow 2.0.vtt 6.57Кб
01. Introduction.mp4 3.06Мб
01. Introduction.vtt 1.67Кб
01. Introduction to Cluster Analysis.mp4 14.46Мб
01. Introduction to Cluster Analysis.vtt 4.96Кб
01. Introduction to Logistic Regression.mp4 5.87Мб
01. Introduction to Logistic Regression.vtt 1.82Кб
01. Introduction to Neural Networks.mp4 10.49Мб
01. Introduction to Neural Networks.vtt 6.22Кб
01. Introduction to pandas Series.mp4 24.96Мб
01. Introduction to pandas Series.vtt 10.85Кб
01. Introduction to Programming.mp4 14.87Мб
01. Introduction to Programming.vtt 7.29Кб
01. Introduction-to-Python-Course-Notes.pdf 2.15Мб
01. Introduction-to-Python-Course-Notes.pdf 2.15Мб
01. Introduction to Regression Analysis.mp4 3.59Мб
01. Introduction to Regression Analysis.vtt 2.33Кб
01. Introduction-to-the-If-Statement-Exercise-Py3.ipynb 1.53Кб
01. Introduction-to-the-If-Statement-Lecture-Py3.ipynb 1.14Кб
01. Introduction-to-the-If-Statement-Solution-Py3.ipynb 2.19Кб
01. Intro to the Case Study.mp4 10.42Мб
01. Intro to the Case Study.vtt 3.74Кб
01. K-Means Clustering.mp4 10.82Мб
01. K-Means Clustering.vtt 6.60Кб
01. Lending-company.csv 112.43Кб
01. Lists.mp4 23.04Мб
01. Lists.vtt 10.35Кб
01. Lists-Exercise-Py3.ipynb 2.14Кб
01. Lists-Lecture-Py3.ipynb 2.70Кб
01. Lists-Solution-Py3.ipynb 3.18Кб
01. Location.csv 13.49Кб
01. Minimal-example-Part-1.ipynb 1.19Кб
01. MNIST The Dataset.mp4 4.53Мб
01. MNIST The Dataset.vtt 3.65Кб
01. MNIST What is the MNIST Dataset.mp4 4.80Мб
01. MNIST What is the MNIST Dataset.vtt 3.60Кб
01. model 1.01Кб
01. Multiple Linear Regression.mp4 5.68Мб
01. Multiple Linear Regression.vtt 3.46Кб
01. Necessary Programming Languages and Software Used in Data Science.mp4 82.38Мб
01. Necessary Programming Languages and Software Used in Data Science.vtt 7.97Кб
01. Null vs Alternative Hypothesis.mp4 31.94Мб
01. Null vs Alternative Hypothesis.vtt 7.16Кб
01. Object Oriented Programming.mp4 8.66Мб
01. Object Oriented Programming.vtt 6.86Кб
01. pandas-Fundamentals-Exercises.ipynb 30.96Кб
01. pandas-Fundamentals-Lectures.ipynb 21.31Кб
01. pandas-Fundamentals-Solutions.ipynb 118.35Кб
01. Population and Sample.mp4 35.10Мб
01. Population and Sample.vtt 5.84Кб
01. Practical Example Descriptive Statistics.mp4 130.53Мб
01. Practical Example Descriptive Statistics.vtt 20.99Кб
01. Practical Example Hypothesis Testing.mp4 45.83Мб
01. Practical Example Hypothesis Testing.vtt 8.62Кб
01. Practical Example Inferential Statistics.mp4 69.01Мб
01. Practical Example Inferential Statistics.vtt 13.91Кб
01. Practical Example Linear Regression (Part 1).mp4 84.74Мб
01. Practical Example Linear Regression (Part 1).vtt 14.86Кб
01. Preprocessing Introduction.mp4 9.23Мб
01. Preprocessing Introduction.vtt 4.07Кб
01. Probability in Finance.mp4 40.35Мб
01. Probability in Finance.vtt 10.08Кб
01. Probability-in-Finance-Homework.pdf 110.68Кб
01. Probability-in-Finance-Solutions.pdf 184.46Кб
01. READ ME!!!!.html 564б
01. Region.csv 10.22Кб
01. Sales-products.csv 152.28Кб
01. scaler 1.86Кб
01. Sets and Events.mp4 17.67Мб
01. Sets and Events.vtt 5.45Кб
01. Shortcuts-for-Jupyter.pdf 619.17Кб
01. Shortcuts-for-Jupyter.pdf 619.17Кб
01. sklearn-Linear-Regression-Practical-Example-Part-1.ipynb 166.91Кб
01. sklearn-Linear-Regression-Practical-Example-Part-1-with-comments.ipynb 171.38Кб
01. Statistics-Glossary.xlsx 20.26Кб
01. Stochastic Gradient Descent.mp4 7.83Мб
01. Stochastic Gradient Descent.vtt 4.83Кб
01. Summary on What You've Learned.mp4 9.84Мб
01. Summary on What You've Learned.vtt 5.48Кб
01. Techniques for Working with Traditional Data.mp4 107.18Мб
01. Techniques for Working with Traditional Data.vtt 10.96Кб
01. The Basic Probability Formula.mp4 29.40Мб
01. The Basic Probability Formula.vtt 8.96Кб
01. The IF Statement.mp4 6.71Мб
01. The IF Statement.vtt 3.73Кб
01. The Linear Regression Model.mp4 13.48Мб
01. The Linear Regression Model.vtt 8.13Кб
01. The Reason Behind These Disciplines.mp4 46.77Мб
01. The Reason Behind These Disciplines.vtt 6.54Кб
01. Traditional data science methods and the role of ChatGPT.mp4 26.16Мб
01. Traditional data science methods and the role of ChatGPT.vtt 7.20Кб
01. Types of Clustering.mp4 9.01Мб
01. Types of Clustering.vtt 5.07Кб
01. Types of Data.mp4 43.19Мб
01. Types of Data.vtt 5.82Кб
01. Using Arithmetic Operators in Python.mp4 8.63Мб
01. Using Arithmetic Operators in Python.vtt 4.37Кб
01. Using the .format() Method.mp4 25.69Мб
01. Using the .format() Method.vtt 12.66Кб
01. Variables.mp4 8.94Мб
01. Variables.vtt 4.80Кб
01. Variables-Exercise-Py3.ipynb 2.23Кб
01. Variables-Lecture-Py3.ipynb 3.61Кб
01. Variables-Solution-Py3.ipynb 3.79Кб
01. What are Confidence Intervals.mp4 28.61Мб
01. What are Confidence Intervals.vtt 3.22Кб
01. What are Data, Servers, Clients, Requests, and Responses.mp4 19.51Мб
01. What are Data, Servers, Clients, Requests, and Responses.vtt 6.29Кб
01. What is a Layer.mp4 5.17Мб
01. What is a Layer.vtt 2.65Кб
01. What is a Matrix.mp4 11.94Мб
01. What is a Matrix.vtt 4.63Кб
01. What is Initialization.mp4 8.90Мб
01. What is Initialization.vtt 3.74Кб
01. What is Overfitting.mp4 10.81Мб
01. What is Overfitting.vtt 5.87Кб
01. What is sklearn and How is it Different from Other Packages.mp4 8.48Мб
01. What is sklearn and How is it Different from Other Packages.vtt 3.62Кб
01. What to Expect from the Following Sections.html 2.48Кб
01. What to Expect from this Part.mp4 11.72Мб
01. What to Expect from this Part.vtt 4.83Кб
02. 1.02.Multiple-linear-regression.csv 1.09Кб
02. 1.04.Real-life-example.csv 219.83Кб
02. 2.01.Admittance.csv 1.58Кб
02. 2.13.Practical-example.Descriptive-statistics-exercise.xlsx 120.27Кб
02. 2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx 146.38Кб
02. 3.01.Country-clusters.csv 200б
02. 3.17.Practical-example.Confidence-intervals-exercise.xlsx 1.73Мб
02. 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx 1.82Мб
02. 3.2.What-is-a-distribution-lesson.xlsx 19.46Кб
02. 3.9.Population-variance-known-z-score-lesson.xlsx 11.21Кб
02. 3.9.The-z-table.xlsx 25.58Кб
02. 4.10.Hypothesis-testing-section-practical-example-exercise.xlsx 43.69Кб
02. 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx 44.27Кб
02. Absenteeism-predictions.csv 2.10Кб
02. Add-an-Else-Statement-Exercise-Py3.ipynb 1.02Кб
02. Add-an-Else-Statement-Lecture-Py3.ipynb 1.76Кб
02. Add-an-Else-Statement-Solution-Py3.ipynb 1.40Кб
02. Adjusted R-Squared.mp4 34.20Мб
02. Adjusted R-Squared.vtt 7.51Кб
02. Admittance.ipynb 3.54Кб
02. Admittance-with-comments.ipynb 5.32Кб
02. Analyzing Age vs Probability in Tableau.mp4 38.68Мб
02. Analyzing Age vs Probability in Tableau.vtt 10.24Кб
02. A Note on Completing the Upcoming Coding Exercises.html 2.96Кб
02. A Simple Example in Python.mp4 21.88Мб
02. A Simple Example in Python.vtt 5.91Кб
02. A Simple Example of Clustering.mp4 34.18Мб
02. A Simple Example of Clustering.vtt 9.74Кб
02. Basic NN Example (Part 2).mp4 15.23Мб
02. Basic NN Example (Part 2).vtt 6.69Кб
02. Business Case Outlining the Solution.mp4 3.04Мб
02. Business Case Outlining the Solution.mp4 4.16Мб
02. Business Case Outlining the Solution.vtt 1.91Кб
02. Business Case Outlining the Solution.vtt 2.60Кб
02. Computing Expected Values.mp4 45.66Мб
02. Computing Expected Values.vtt 6.95Кб
02. Confidence Intervals; Population Variance Known; Z-score.mp4 52.16Мб
02. Confidence Intervals; Population Variance Known; Z-score.vtt 9.61Кб
02. Correlation vs Regression.mp4 3.84Мб
02. Correlation vs Regression.vtt 2.16Кб
02. Country-clusters.ipynb 3.31Кб
02. Country-clusters-with-comments.ipynb 5.80Кб
02. Course-Notes-Cluster-Analysis.pdf 208.65Кб
02. Course-notes-inferential-statistics.pdf 382.32Кб
02. Course-Notes-Logistic-Regression.pdf 335.17Кб
02. Course-Notes-Section-2.pdf 578.08Кб
02. Course-Notes-Section-6.pdf 936.42Кб
02. Creating-a-Function-with-a-Parameter-Exercise-Py3.ipynb 1.16Кб
02. Creating-a-Function-with-a-Parameter-Lecture-Py3.ipynb 1.59Кб
02. Creating-a-Function-with-a-Parameter-Solution-Py3.ipynb 1.79Кб
02. Creating the Targets for the Logistic Regression.mp4 32.44Мб
02. Creating the Targets for the Logistic Regression.vtt 8.72Кб
02. Dendrogram.mp4 18.29Мб
02. Dendrogram.vtt 7.58Кб
02. Deploying the 'absenteeism_module' - Part I.mp4 19.67Мб
02. Deploying the 'absenteeism_module' - Part I.vtt 4.98Кб
02. Further Reading on Null and Alternative Hypothesis.html 2.29Кб
02. Help-Yourself-with-Methods-Exercise-Py3.ipynb 1.91Кб
02. Help-Yourself-with-Methods-Lecture-Py3.ipynb 4.39Кб
02. Help-Yourself-with-Methods-Solution-Py3.ipynb 2.83Кб
02. How are we Going to Approach this Section.mp4 5.30Мб
02. How are we Going to Approach this Section.vtt 3.03Кб
02. How to Create a Function with a Parameter.mp4 9.99Мб
02. How to Create a Function with a Parameter.vtt 4.52Кб
02. How to install ChatGPT.mp4 5.22Мб
02. How to install ChatGPT.vtt 2.05Кб
02. How to Install TensorFlow 1.mp4 5.00Мб
02. How to Install TensorFlow 1.vtt 3.40Кб
02. Importing the Absenteeism Data in Python.mp4 19.52Мб
02. Importing the Absenteeism Data in Python.vtt 4.04Кб
02. Iterating Over Range Objects.mp4 12.61Мб
02. Iterating Over Range Objects.vtt 6.43Кб
02. Levels of Measurement.mp4 32.19Мб
02. Levels of Measurement.vtt 4.83Кб
02. Logical and Identity Operators.mp4 19.01Мб
02. Logical and Identity Operators.vtt 5.97Кб
02. Logical-and-Identity-Operators-Lecture-Py3.ipynb 5.86Кб
02. Logical-and-Identity-Operators-Solution-Py3.ipynb 3.43Кб
02. Minimal-example-Part-2.ipynb 3.65Кб
02. MNIST How to Tackle the MNIST.mp4 7.94Мб
02. MNIST How to Tackle the MNIST.mp4 8.01Мб
02. MNIST How to Tackle the MNIST.vtt 3.63Кб
02. MNIST How to Tackle the MNIST.vtt 3.84Кб
02. Modules and Packages.mp4 2.08Мб
02. Modules and Packages.vtt 1.45Кб
02. Multiple-linear-regression-and-Adjusted-R-squared.ipynb 2.15Кб
02. Multiple-linear-regression-and-Adjusted-R-squared-with-comments.ipynb 2.80Кб
02. Numbers-and-Boolean-Values-Exercise-Py3.ipynb 2.29Кб
02. Numbers and Boolean Values in Python.mp4 6.57Мб
02. Numbers and Boolean Values in Python.vtt 3.75Кб
02. Numbers-and-Boolean-Values-Lecture-Py3.ipynb 3.36Кб
02. Numbers-and-Boolean-Values-Solution-Py3.ipynb 3.23Кб
02. Permutations and How to Use Them.mp4 17.52Мб
02. Permutations and How to Use Them.vtt 4.41Кб
02. Practical Example Descriptive Statistics Exercise.html 81б
02. Practical Example Hypothesis Testing Exercise.html 81б
02. Practical Example Inferential Statistics Exercise.html 81б
02. Practical Example Linear Regression (Part 2).mp4 31.86Мб
02. Practical Example Linear Regression (Part 2).vtt 8.33Кб
02. Probability in Statistics.mp4 31.60Мб
02. Probability in Statistics.vtt 9.12Кб
02. Problems with Gradient Descent.mp4 3.65Мб
02. Problems with Gradient Descent.vtt 2.99Кб
02. Real Life Examples of Traditional Data.mp4 18.37Мб
02. Real Life Examples of Traditional Data.vtt 2.33Кб
02. Scalars and Vectors.mp4 8.54Мб
02. Scalars and Vectors.vtt 4.01Кб
02. sklearn-Linear-Regression-Practical-Example-Part-2.ipynb 328.74Кб
02. sklearn-Linear-Regression-Practical-Example-Part-2-with-comments.ipynb 335.63Кб
02. Some Examples of Clusters.mp4 35.86Мб
02. Some Examples of Clusters.vtt 6.25Кб
02. TensorFlow Outline and Comparison with Other Libraries.mp4 15.29Мб
02. TensorFlow Outline and Comparison with Other Libraries.vtt 5.49Кб
02. The Business Task.mp4 11.28Мб
02. The Business Task.vtt 4.07Кб
02. The Double Equality Sign.mp4 2.72Мб
02. The Double Equality Sign.vtt 1.90Кб
02. The-Double-Equality-Sign-Exercise-Py3.ipynb 838б
02. The-Double-Equality-Sign-Lecture-Py3.ipynb 1.45Кб
02. The-Double-Equality-Sign-Solution-Py3.ipynb 1.14Кб
02. The ELSE Statement.mp4 6.04Мб
02. The ELSE Statement.vtt 3.25Кб
02. The Naive Bayes Algorithm.mp4 42.06Мб
02. The Naive Bayes Algorithm.vtt 6.08Кб
02. Training the Model.mp4 7.72Мб
02. Training the Model.vtt 4.74Кб
02. Types of Basic Preprocessing.mp4 3.25Мб
02. Types of Basic Preprocessing.vtt 1.85Кб
02. Types of Probability Distributions.mp4 35.59Мб
02. Types of Probability Distributions.vtt 10.44Кб
02. Types of Simple Initializations.mp4 5.73Мб
02. Types of Simple Initializations.vtt 3.78Кб
02. Underfitting and Overfitting for Classification.mp4 14.01Мб
02. Underfitting and Overfitting for Classification.vtt 2.83Кб
02. Using Methods.mp4 30.36Мб
02. Using Methods.vtt 8.72Кб
02. Ways Sets Can Interact.mp4 11.33Мб
02. Ways Sets Can Interact.vtt 4.62Кб
02. What's Further out there in terms of Machine Learning.mp4 4.79Мб
02. What's Further out there in terms of Machine Learning.vtt 2.70Кб
02. What are Data Connectivity, APIs, and Endpoints.mp4 60.22Мб
02. What are Data Connectivity, APIs, and Endpoints.vtt 9.17Кб
02. What Does the Course Cover.mp4 9.56Мб
02. What Does the Course Cover.vtt 5.44Кб
02. What is a Deep Net.mp4 9.13Мб
02. What is a Deep Net.vtt 3.26Кб
02. What is a Distribution.mp4 17.20Мб
02. What is a Distribution.vtt 5.90Кб
02. What is the difference between Analysis and Analytics.mp4 11.16Мб
02. What is the difference between Analysis and Analytics.vtt 5.12Кб
02. While Loops and Incrementing.mp4 20.18Мб
02. While Loops and Incrementing.vtt 6.05Кб
02. While-Loops-and-Incrementing-Exercise-Py3.ipynb 1.12Кб
02. While-Loops-and-Incrementing-Lecture-Py3.ipynb 1.08Кб
02. While-Loops-and-Incrementing-Solution-Py3.ipynb 1.75Кб
02. Why Python.mp4 12.19Мб
02. Why Python.vtt 7.17Кб
03. 1.01.Simple-linear-regression.csv 922б
03. 12.3.TensorFlow-MNIST-with-comments-Part-1.ipynb 3.89Кб
03. 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx 30.77Кб
03. 3.9.Population-variance-known-z-score-exercise.xlsx 10.83Кб
03. 3.9.Population-variance-known-z-score-exercise-solution.xlsx 11.16Кб
03. 3.9.The-z-table.xlsx 25.58Кб
03. 365-DataScience-Diagram.pdf 323.08Кб
03. A Note on Installing Packages in Anaconda.html 2.28Кб
03. A Note on Multicollinearity.html 849б
03. Another-Way-to-Define-a-Function-Exercise-Py3.ipynb 1.24Кб
03. Another-Way-to-Define-a-Function-Lecture-Py3.ipynb 3.29Кб
03. Another-Way-to-Define-a-Function-Solution-Py3.ipynb 1.98Кб
03. A Simple Example of Clustering - Exercise.html 87б
03. A-Simple-Example-of-Clustering-Exercise.ipynb 3.62Кб
03. A-Simple-Example-of-Clustering-Solution.ipynb 4.65Кб
03. Audiobooks-data.csv 710.77Кб
03. Basic NN Example (Part 3).mp4 15.66Мб
03. Basic NN Example (Part 3).vtt 4.40Кб
03. Business Analytics, Data Analytics, and Data Science An Introduction.mp4 14.60Мб
03. Business Analytics, Data Analytics, and Data Science An Introduction.vtt 9.62Кб
03. Business Case Balancing the Dataset.mp4 22.32Мб
03. Business Case Balancing the Dataset.vtt 4.32Кб
03. Categorical Variables - Visualization Techniques.mp4 27.49Мб
03. Categorical Variables - Visualization Techniques.vtt 6.71Кб
03. Characteristics of Discrete Distributions.mp4 9.42Мб
03. Characteristics of Discrete Distributions.vtt 2.56Кб
03. Checking the Content of the Data Set.mp4 53.99Мб
03. Checking the Content of the Data Set.vtt 7.14Кб
03. Confidence Intervals; Population Variance Known; Z-score; Exercise.html 81б
03. Countries-exercise.csv 8.27Кб
03. Country-clusters-standardized.csv 244б
03. Course-notes-hypothesis-testing.pdf 656.44Кб
03. Create-Lists-with-the-range-Function-Exercise-Py3.ipynb 1.45Кб
03. Create-Lists-with-the-range-Function-Lecture-Py3.ipynb 1.34Кб
03. Create-Lists-with-the-range-Function-Solution-Py3.ipynb 2.25Кб
03. DeepMind and Deep Learning.html 1.05Кб
03. Defining a Function in Python - Part II.mp4 6.45Мб
03. Defining a Function in Python - Part II.vtt 3.07Кб
03. Deploying the 'absenteeism_module' - Part II.mp4 45.14Мб
03. Deploying the 'absenteeism_module' - Part II.vtt 8.03Кб
03. Difference between Classification and Clustering.mp4 9.67Мб
03. Difference between Classification and Clustering.vtt 3.62Кб
03. Digging into a Deep Net.mp4 23.68Мб
03. Digging into a Deep Net.vtt 6.90Кб
03. Download All Resources and Important FAQ.html 21.34Кб
03. Else-If-for-Brief-Elif-Exercise-Py3.ipynb 1.75Кб
03. Else-If-for-Brief-Elif-Lecture-Py3.ipynb 3.24Кб
03. Else-If-for-Brief-Elif-Solution-Py3.ipynb 2.40Кб
03. EXERCISE - Reasons vs Probability.html 397б
03. FAQ-The-Data-Science-Course.pdf 306.10Кб
03. Frequency.mp4 37.37Мб
03. Frequency.vtt 6.93Кб
03. Geometrical Representation of the Linear Regression Model.mp4 2.27Мб
03. Geometrical Representation of the Linear Regression Model.vtt 1.74Кб
03. Heatmaps.ipynb 1.82Кб
03. Heatmaps.mp4 18.50Мб
03. Heatmaps.vtt 6.18Кб
03. Heatmaps-with-comments.ipynb 17.66Кб
03. How ChatGPT can boost your productivity.mp4 5.38Мб
03. How ChatGPT can boost your productivity.vtt 2.44Кб
03. How to Reassign Values.mp4 1.86Мб
03. How to Reassign Values.vtt 1.32Кб
03. Intersection of Sets.mp4 11.02Мб
03. Intersection of Sets.vtt 2.59Кб
03. Introducing the Data Set.mp4 24.24Мб
03. Introducing the Data Set.vtt 4.34Кб
03. Introduction to Nested For Loops.mp4 12.17Мб
03. Introduction to Nested For Loops.vtt 8.52Кб
03. Linear Algebra and Geometry.mp4 13.73Мб
03. Linear Algebra and Geometry.vtt 4.10Кб
03. List Slicing.mp4 19.17Мб
03. List Slicing.vtt 5.53Кб
03. List-Slicing-Exercise-Py3.ipynb 2.79Кб
03. List-Slicing-Lecture-Py3.ipynb 5.02Кб
03. List-Slicing-Solution-Py3.ipynb 4.29Кб
03. Lists with the range() Function.mp4 16.07Мб
03. Lists with the range() Function.vtt 8.58Кб
03. Logistic vs Logit Function.mp4 23.74Мб
03. Logistic vs Logit Function.vtt 5.07Кб
03. Minimal-example-Part-3.ipynb 6.79Кб
03. MNIST Importing the Relevant Packages and Loading the Data.mp4 12.23Мб
03. MNIST Importing the Relevant Packages and Loading the Data.vtt 3.05Кб
03. MNIST Relevant Packages.mp4 11.25Мб
03. MNIST Relevant Packages.vtt 2.19Кб
03. Momentum.mp4 5.18Мб
03. Momentum.vtt 3.59Кб
03. Multiple Linear Regression Exercise.html 76б
03. Multiple-Linear-Regression-Exercise.ipynb 2.45Кб
03. Multiple-Linear-Regression-Exercise-Solution.ipynb 13.39Кб
03. Probability-Cheat-Sheet.pdf 320.28Кб
03. Probability in Data Science.mp4 14.24Мб
03. Probability in Data Science.vtt 7.11Кб
03. Python Strings.mp4 19.72Мб
03. Python Strings.vtt 7.65Кб
03. real-estate-price-size-year.csv 2.35Кб
03. Reassign-Values-Exercise-Py3.ipynb 1.67Кб
03. Reassign-Values-Lecture-Py3.ipynb 3.08Кб
03. Reassign-Values-Solution-Py3.ipynb 2.12Кб
03. Rejection Region and Significance Level.mp4 38.68Мб
03. Rejection Region and Significance Level.vtt 8.62Кб
03. Selecting the Inputs for the Logistic Regression.mp4 8.67Мб
03. Selecting the Inputs for the Logistic Regression.vtt 3.58Кб
03. Simple Linear Regression with sklearn.mp4 27.45Мб
03. Simple Linear Regression with sklearn.vtt 7.61Кб
03. Simple Operations with Factorials.mp4 10.51Мб
03. Simple Operations with Factorials.vtt 3.39Кб
03. sklearn-Simple-Linear-Regression.ipynb 4.92Кб
03. sklearn-Simple-Linear-Regression-with-comments.ipynb 6.06Кб
03. Standardization.mp4 12.07Мб
03. Standardization.vtt 6.14Кб
03. State-of-the-Art Method - (Xavier) Glorot Initialization.mp4 5.46Мб
03. State-of-the-Art Method - (Xavier) Glorot Initialization.vtt 3.79Кб
03. Strings-Exercise-Py3.ipynb 2.61Кб
03. Strings-Lecture-Py3.ipynb 7.56Кб
03. Strings-Solution-Py3.ipynb 5.45Кб
03. Taking a Closer Look at APIs.mp4 24.51Мб
03. Taking a Closer Look at APIs.vtt 10.90Кб
03. Techniques for Working with Big Data.mp4 62.12Мб
03. Techniques for Working with Big Data.vtt 5.84Кб
03. TensorFlow 1 vs TensorFlow 2.mp4 15.29Мб
03. TensorFlow 1 vs TensorFlow 2.vtt 4.01Кб
03. TensorFlow-MNIST-Part1-with-comments.ipynb 3.97Кб
03. The ELIF Statement.mp4 14.23Мб
03. The ELIF Statement.vtt 6.81Кб
03. The Importance of Working with a Balanced Dataset.mp4 27.25Мб
03. The Importance of Working with a Balanced Dataset.vtt 4.38Кб
03. The Normal Distribution.mp4 13.07Мб
03. The Normal Distribution.vtt 5.20Кб
03. Tokenization and Vectorization.mp4 15.81Мб
03. Tokenization and Vectorization.vtt 7.92Кб
03. Types of Machine Learning.mp4 13.05Мб
03. Types of Machine Learning.vtt 5.48Кб
03. What is the Standard Library.mp4 5.05Мб
03. What is the Standard Library.vtt 3.86Кб
03. What is Validation.mp4 8.38Мб
03. What is Validation.vtt 4.99Кб
03. Why Jupyter.mp4 8.00Мб
03. Why Jupyter.vtt 4.21Кб
03. Working with Methods in Python - Part I.mp4 13.21Мб
03. Working with Methods in Python - Part I.vtt 7.21Кб
04. 0.6.4-Using-a-Function-in-another-Function-Exercise-Py3.ipynb 1.04Кб
04. 0.6.4-Using-a-Function-in-another-Function-Lecture-Py3.ipynb 1015б
04. 0.6.4-Using-a-Function-in-another-Function-Solution-Py3.ipynb 1.60Кб
04. 1.01.Simple-linear-regression.csv 922б
04. 12.4.TensorFlow-MNIST-with-comments-Part-2.ipynb 6.10Кб
04. 2.3.Categorical-variables.Visualization-techniques-exercise.xlsx 15.24Кб
04. 2.3.Categorical-variables.Visualization-techniques-exercise-solution.xlsx 41.11Кб
04. 3.4.Standard-normal-distribution-lesson.xlsx 10.38Кб
04. 365-DataScience.png 6.92Мб
04. 365-DataScience-Diagram.pdf 323.08Кб
04. Absenteeism-Exercise-Deploying-the-absenteeism-module.ipynb 973б
04. Add Comments.mp4 2.41Мб
04. Add Comments.vtt 1.93Кб
04. Add-Comments-Lecture-Py3.ipynb 1.03Кб
04. Admittance-regression.ipynb 2.09Кб
04. Admittance-regression-summary-error.ipynb 2.48Кб
04. Admittance-regression-tables-fixed-error.ipynb 4.11Кб
04. Analyzing Reasons vs Probability in Tableau.mp4 40.25Мб
04. Analyzing Reasons vs Probability in Tableau.vtt 9.67Кб
04. A Note on Boolean Values.mp4 4.24Мб
04. A Note on Boolean Values.vtt 3.10Кб
04. A-Note-on-Boolean-Values-Lecture-Py3.ipynb 791б
04. A Note on TensorFlow 2 Syntax.mp4 4.64Мб
04. A Note on TensorFlow 2 Syntax.vtt 1.43Кб
04. An overview of CNNs.mp4 13.39Мб
04. An overview of CNNs.vtt 6.37Кб
04. Arrays in Python - A Convenient Way To Represent Matrices.mp4 18.98Мб
04. Arrays in Python - A Convenient Way To Represent Matrices.vtt 6.20Кб
04. Audiobooks-data.csv 710.77Кб
04. Basic NN Example (Part 4).mp4 39.97Мб
04. Basic NN Example (Part 4).vtt 10.96Кб
04. Building a Logistic Regression.mp4 8.59Мб
04. Building a Logistic Regression.vtt 3.51Кб
04. Business Case Preprocessing.mp4 74.41Мб
04. Business Case Preprocessing.vtt 13.55Кб
04. Business Case Preprocessing the Data.mp4 73.85Мб
04. Business Case Preprocessing the Data.vtt 13.62Кб
04. Categorical-data.ipynb 3.35Кб
04. Categorical-data-with-comments.ipynb 5.62Кб
04. Categorical Variables Exercise.html 81б
04. Clustering Categorical Data.mp4 10.35Мб
04. Clustering Categorical Data.vtt 3.32Кб
04. Communication between Software Products through Text Files.mp4 17.54Мб
04. Communication between Software Products through Text Files.vtt 5.83Кб
04. Conditional Statements and Loops.mp4 17.31Мб
04. Conditional Statements and Loops.vtt 8.02Кб
04. Confidence Interval Clarifications.mp4 18.93Мб
04. Confidence Interval Clarifications.vtt 5.61Кб
04. Continuing with BI, ML, and AI.mp4 47.55Мб
04. Continuing with BI, ML, and AI.vtt 13.13Кб
04. Data-Preprocessing-Medical-Data.ipynb 7.49Кб
04. Data Preprocessing with ChatGPT.mp4 28.73Мб
04. Data Preprocessing with ChatGPT.vtt 6.41Кб
04. Discrete Distributions The Uniform Distribution.mp4 10.30Мб
04. Discrete Distributions The Uniform Distribution.vtt 2.90Кб
04. Events and Their Complements.mp4 25.84Мб
04. Events and Their Complements.vtt 7.13Кб
04. Exporting the Obtained Data Set as a .csv.html 998б
04. How to Use a Function within a Function.mp4 3.24Мб
04. How to Use a Function within a Function.vtt 2.10Кб
04. Imbalanced Data Sets.mp4 6.55Мб
04. Imbalanced Data Sets.vtt 3.27Кб
04. Importing Modules in Python.mp4 9.87Мб
04. Importing Modules in Python.vtt 4.86Кб
04. Installing Python and Jupyter.mp4 18.81Мб
04. Installing Python and Jupyter.vtt 4.87Кб
04. Introduction to Terms with Multiple Meanings.mp4 17.98Мб
04. Introduction to Terms with Multiple Meanings.vtt 4.33Кб
04. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4 17.52Мб
04. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.vtt 6.33Кб
04. Math Prerequisites.mp4 5.27Мб
04. Math Prerequisites.vtt 4.37Кб
04. Minimal-example-Part-4-Complete.ipynb 11.41Кб
04. MNIST Model Outline.mp4 34.70Мб
04. MNIST Model Outline.vtt 9.17Кб
04. MNIST Preprocess the Data - Create a Validation Set and Scale It.mp4 22.90Мб
04. MNIST Preprocess the Data - Create a Validation Set and Scale It.vtt 6.49Кб
04. Non-Linearities and their Purpose.mp4 22.51Мб
04. Non-Linearities and their Purpose.vtt 4.25Кб
04. patients.csv 2.93Кб
04. Practical Example Linear Regression (Part 3).mp4 16.67Мб
04. Practical Example Linear Regression (Part 3).vtt 4.48Кб
04. Preprocessing Categorical Data.mp4 5.44Мб
04. Preprocessing Categorical Data.vtt 2.85Кб
04. Python Packages Installation.mp4 23.67Мб
04. Python Packages Installation.vtt 5.56Кб
04. Real Life Examples of Big Data.mp4 13.05Мб
04. Real Life Examples of Big Data.vtt 1.89Кб
04. Scalars-Vectors-and-Matrices.ipynb 4.55Кб
04. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4 22.29Мб
04. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.vtt 6.78Кб
04. sklearn-Linear-Regression-Practical-Example-Part-3.ipynb 343.58Кб
04. sklearn-Linear-Regression-Practical-Example-Part-3-with-comments.ipynb 351.47Кб
04. sklearn-Simple-Linear-Regression.ipynb 26.07Кб
04. sklearn-Simple-Linear-Regression-with-comments.ipynb 28.35Кб
04. Solving Variations with Repetition.mp4 13.95Мб
04. Solving Variations with Repetition.vtt 3.75Кб
04. Standardizing the Data.mp4 15.15Мб
04. Standardizing the Data.vtt 4.29Кб
04. Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf 289.12Кб
04. TensorFlow-Audiobooks-Preprocessing.ipynb 5.58Кб
04. TensorFlow-Audiobooks-Preprocessing.ipynb 5.58Кб
04. TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.19Кб
04. TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.19Кб
04. TensorFlow Intro.mp4 16.90Мб
04. TensorFlow Intro.vtt 5.32Кб
04. Test for Significance of the Model (F-Test).mp4 7.18Мб
04. Test for Significance of the Model (F-Test).vtt 2.46Кб
04. The Linear Model (Linear Algebraic Version).mp4 7.98Мб
04. The Linear Model (Linear Algebraic Version).vtt 3.69Кб
04. The Standard Normal Distribution.mp4 8.60Мб
04. The Standard Normal Distribution.vtt 4.03Кб
04. Training, Validation, and Test Datasets.mp4 9.40Мб
04. Training, Validation, and Test Datasets.vtt 3.44Кб
04. Triple Nested For Loops.mp4 33.00Мб
04. Triple Nested For Loops.vtt 8.49Кб
04. Tuples.mp4 18.21Мб
04. Tuples.vtt 7.49Кб
04. Tuples-Exercise-Py3.ipynb 2.07Кб
04. Tuples-Lecture-Py3.ipynb 2.91Кб
04. Tuples-Solution-Py3.ipynb 4.61Кб
04. Type I Error and Type II Error.mp4 15.29Мб
04. Type I Error and Type II Error.vtt 5.51Кб
04. Union of Sets.mp4 24.18Мб
04. Union of Sets.vtt 6.25Кб
04. Use-Conditional-Statements-and-Loops-Together-Exercise-Py3.ipynb 2.10Кб
04. Use-Conditional-Statements-and-Loops-Together-Lecture-Py3.ipynb 1.95Кб
04. Use-Conditional-Statements-and-Loops-Together-Solution-Py3.ipynb 2.96Кб
04. Working with Methods in Python - Part II.mp4 9.01Мб
04. Working with Methods in Python - Part II.vtt 3.93Кб
05. 1.01.Simple-linear-regression.csv 922б
05. 1.04.Real-life-example.csv 219.83Кб
05. 12.5.TensorFlow-MNIST-with-comments-Part-3.ipynb 7.31Кб
05. 2.4.Numerical-variables.Frequency-distribution-table-lesson.xlsx 11.44Кб
05. 3.4.Standard-normal-distribution-exercise.xlsx 11.99Кб
05. 3.4.Standard-normal-distribution-exercise-solution.xlsx 24.04Кб
05. 4.4.Test-for-the-mean.Population-variance-known-lesson.xlsx 10.96Кб
05. Activation Functions.mp4 8.85Мб
05. Activation Functions.vtt 5.26Кб
05. Actual Introduction to TensorFlow.mp4 9.05Мб
05. Actual Introduction to TensorFlow.vtt 2.33Кб
05. All-In-Exercise-Py3.ipynb 1.30Кб
05. All-In-Lecture-Py3.ipynb 1.62Кб
05. All-In-Solution-Py3.ipynb 1.90Кб
05. A Note on Normalization.html 733б
05. An Overview of RNNs.mp4 6.96Мб
05. An Overview of RNNs.vtt 3.96Кб
05. Audiobooks-data.csv 710.77Кб
05. Basic NN Example Exercises.html 1.66Кб
05. Binary and One-Hot Encoding.mp4 8.55Мб
05. Binary and One-Hot Encoding.vtt 5.31Кб
05. Building a Logistic Regression - Exercise.html 87б
05. Building-a-Logistic-Regression-Exercise.ipynb 2.92Кб
05. Building-a-Logistic-Regression-Solution.ipynb 4.44Кб
05. Business Case Preprocessing Exercise.html 389б
05. Business Case Preprocessing the Data - Exercise.html 370б
05. Business Intelligence (BI) Techniques.mp4 52.91Мб
05. Business Intelligence (BI) Techniques.vtt 8.82Кб
05. Categorical.csv 10.34Кб
05. Clustering Categorical Data - Exercise.html 87б
05. Clustering-Categorical-Data-Exercise.ipynb 3.78Кб
05. Clustering-Categorical-Data-Solution.ipynb 4.90Кб
05. Combining-Conditional-Statements-and-Functions-Exercise-Py3.ipynb 1.06Кб
05. Combining-Conditional-Statements-and-Functions-Lecture-Py3.ipynb 1.29Кб
05. Combining-Conditional-Statements-and-Functions-Solution-Py3.ipynb 1.65Кб
05. Conditional Statements, Functions, and Loops.mp4 4.27Мб
05. Conditional Statements, Functions, and Loops.vtt 2.47Кб
05. Conditional Statements and Functions.mp4 6.05Мб
05. Conditional Statements and Functions.vtt 3.59Кб
05. diagnosis-mapping.csv 90б
05. Dictionaries.mp4 32.44Мб
05. Dictionaries.vtt 8.87Кб
05. Dictionaries-Exercise-Py3.ipynb 2.92Кб
05. Dictionaries-Lecture-Py3.ipynb 4.35Кб
05. Dictionaries-Solution-Py3.ipynb 6.16Кб
05. Discrete Distributions The Bernoulli Distribution.mp4 15.12Мб
05. Discrete Distributions The Bernoulli Distribution.vtt 5.22Кб
05. Dummies and Variance Inflation Factor - Exercise.html 76б
05. Example-bank-data.csv 6.21Кб
05. EXERCISE - Transportation Expense vs Probability.html 553б
05. First attempt at machine learning with ChatGPT.mp4 36.72Мб
05. First attempt at machine learning with ChatGPT.vtt 6.39Кб
05. First Regression in Python.mp4 29.60Мб
05. First Regression in Python.vtt 8.25Кб
05. Learning Rate Schedules Visualized.mp4 3.17Мб
05. Learning Rate Schedules Visualized.vtt 2.25Кб
05. Line-Continuation-Exercise-Py3.ipynb 1.14Кб
05. Line-Continuation-Lecture-Py3.ipynb 779б
05. Line-Continuation-Solution-Py3.ipynb 1.50Кб
05. List Comprehensions.mp4 43.21Мб
05. List Comprehensions.vtt 12.83Кб
05. Medical-Data-ML-Attempt.ipynb 4.36Кб
05. Minimal-example-All-Exercises.ipynb 12.89Кб
05. Minimal-example-Exercise-1-Solution.ipynb 69.00Кб
05. Minimal-example-Exercise-2-Solution.ipynb 61.41Кб
05. Minimal-example-Exercise-3.a.Solution.ipynb 67.89Кб
05. Minimal-example-Exercise-3.b.Solution.ipynb 67.72Кб
05. Minimal-example-Exercise-3.c.Solution.ipynb 70.13Кб
05. Minimal-example-Exercise-3.d.Solution.ipynb 84.13Кб
05. Minimal-example-Exercise-4-Solution.ipynb 66.52Кб
05. Minimal-example-Exercise-5-Solution.ipynb 68.88Кб
05. Minimal-example-Exercise-6.ipynb 61.76Кб
05. Minimal-example-Exercise-6-Solution.ipynb 61.76Кб
05. MNIST Loss and Optimization Algorithm.mp4 15.79Мб
05. MNIST Loss and Optimization Algorithm.vtt 3.57Кб
05. MNIST Preprocess the Data - Scale the Test Data - Exercise.html 79б
05. Mutually Exclusive Sets.mp4 10.58Мб
05. Mutually Exclusive Sets.vtt 2.76Кб
05. N-Fold Cross Validation.mp4 6.24Мб
05. N-Fold Cross Validation.vtt 4.37Кб
05. Numerical Variables - Frequency Distribution Table.mp4 17.70Мб
05. Numerical Variables - Frequency Distribution Table.vtt 4.45Кб
05. OLS Assumptions.mp4 5.26Мб
05. OLS Assumptions.vtt 3.06Кб
05. Overcome Imbalanced Data in Machine Learning.mp4 14.59Мб
05. Overcome Imbalanced Data in Machine Learning.vtt 5.04Кб
05. Parameters and Arguments in pandas.mp4 21.13Мб
05. Parameters and Arguments in pandas.vtt 5.79Кб
05. patients-preprocessed.csv 3.29Кб
05. Shortcuts-for-Jupyter.pdf 619.17Кб
05. Simple-linear-regression.ipynb 3.79Кб
05. Simple-linear-regression-with-comments.ipynb 4.06Кб
05. sklearn-Dummies-and-VIF-Exercise.ipynb 344.62Кб
05. sklearn-Dummies-and-VIF-Exercise-Solution.ipynb 370.22Кб
05. Software Integration - Explained.mp4 16.00Мб
05. Software Integration - Explained.vtt 7.00Кб
05. Solving Variations without Repetition.mp4 18.25Мб
05. Solving Variations without Repetition.vtt 4.94Кб
05. Splitting the Data for Training and Testing.mp4 36.06Мб
05. Splitting the Data for Training and Testing.vtt 8.49Кб
05. Student's T Distribution.mp4 13.68Мб
05. Student's T Distribution.vtt 4.56Кб
05. TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb 8.60Кб
05. TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb 8.60Кб
05. TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb 10.04Кб
05. TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb 10.03Кб
05. TensorFlow-Minimal-example-Part1.ipynb 1.66Кб
05. TensorFlow-MNIST-Part2-with-comments.ipynb 6.39Кб
05. Tensors.ipynb 2.08Кб
05. Test for the Mean. Population Variance Known.mp4 36.94Мб
05. Test for the Mean. Population Variance Known.vtt 8.07Кб
05. The Linear Model with Multiple Inputs.mp4 7.91Мб
05. The Linear Model with Multiple Inputs.vtt 2.81Кб
05. The Standard Normal Distribution Exercise.html 81б
05. Traditional AI vs. Generative AI.mp4 24.51Мб
05. Traditional AI vs. Generative AI.vtt 6.92Кб
05. Types of File Formats Supporting TensorFlow.mp4 8.86Мб
05. Types of File Formats Supporting TensorFlow.vtt 3.45Кб
05. Understanding Jupyter's Interface - the Notebook Dashboard.mp4 6.07Мб
05. Understanding Jupyter's Interface - the Notebook Dashboard.vtt 3.73Кб
05. Understanding Line Continuation.mp4 1.20Мб
05. Understanding Line Continuation.vtt 1.15Кб
05. What's Regression Analysis - a Quick Refresher.html 2.84Кб
05. What is a Tensor.mp4 15.54Мб
05. What is a Tensor.vtt 3.81Кб
06. 1.04.Real-life-example.csv 219.83Кб
06. 12.6.TensorFlow-MNIST-with-comments-Part-4.ipynb 7.90Кб
06. 2.4.Numerical-variables.Frequency-distribution-table-exercise-solution.xlsx 13.15Кб
06. 3.11.Population-variance-unknown-t-score-lesson.xlsx 10.78Кб
06. 3.11.The-t-table.xlsx 15.85Кб
06. 4.4.Test-for-the-mean.Population-variance-known-exercise.xlsx 11.03Кб
06. 4.4.Test-for-the-mean.Population-variance-known-exercise-solution.xlsx 11.22Кб
06. 5.3.TensorFlow-Minimal-example-Part-1.ipynb 3.36Кб
06. A1 Linearity.mp4 3.57Мб
06. A1 Linearity.vtt 2.49Кб
06. Activation Functions Softmax Activation.mp4 8.74Мб
06. Activation Functions Softmax Activation.vtt 4.48Кб
06. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp4 8.53Мб
06. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).vtt 5.57Кб
06. Adding-and-subtracting-matrices.ipynb 3.22Кб
06. Additional-Python-Tools-Exercises.ipynb 11.41Кб
06. Additional-Python-Tools-Lectures.ipynb 13.47Кб
06. Additional-Python-Tools-Solutions.ipynb 25.52Кб
06. Addition and Subtraction of Matrices.mp4 22.10Мб
06. Addition and Subtraction of Matrices.vtt 4.24Кб
06. Analyzing a client database with ChatGPT in Python.mp4 21.62Мб
06. Analyzing a client database with ChatGPT in Python.vtt 5.17Кб
06. Analyzing Transportation Expense vs Probability in Tableau.mp4 16.48Мб
06. Analyzing Transportation Expense vs Probability in Tableau.vtt 7.65Кб
06. An Invaluable Coding Tip.mp4 18.78Мб
06. An Invaluable Coding Tip.vtt 3.15Кб
06. Anonymous (Lambda) Functions.mp4 22.78Мб
06. Anonymous (Lambda) Functions.vtt 10.46Кб
06. An Overview of non-NN Approaches.mp4 16.08Мб
06. An Overview of non-NN Approaches.vtt 5.74Кб
06. Business Case Load the Preprocessed Data.mp4 13.81Мб
06. Business Case Load the Preprocessed Data.vtt 4.67Кб
06. Calculating the Accuracy of the Model.mp4 24.45Мб
06. Calculating the Accuracy of the Model.vtt 5.30Кб
06. Central Limit Theorem.mp4 23.22Мб
06. Central Limit Theorem.vtt 5.61Кб
06. Combinations-With-Repetition.pdf 207.41Кб
06. Confidence Intervals; Population Variance Unknown; T-score.mp4 13.69Мб
06. Confidence Intervals; Population Variance Unknown; T-score.vtt 5.40Кб
06. Creating a Data Provider.mp4 56.30Мб
06. Creating a Data Provider.vtt 8.25Кб
06. Creating-Functions-Containing-a-Few-Arguments-Lecture-Py3.ipynb 1.72Кб
06. customers.csv 1.56Кб
06. Dependence and Independence of Sets.mp4 14.92Мб
06. Dependence and Independence of Sets.vtt 3.47Кб
06. Discrete Distributions The Binomial Distribution.mp4 30.60Мб
06. Discrete Distributions The Binomial Distribution.vtt 8.82Кб
06. Early Stopping or When to Stop Training.mp4 10.29Мб
06. Early Stopping or When to Stop Training.vtt 6.97Кб
06. First Regression in Python Exercise.html 1.33Кб
06. Fitting the Model and Assessing its Accuracy.mp4 15.22Мб
06. Fitting the Model and Assessing its Accuracy.vtt 7.29Кб
06. Functions Containing a Few Arguments.mp4 2.81Мб
06. Functions Containing a Few Arguments.vtt 1.44Кб
06. How to Choose the Number of Clusters.mp4 26.87Мб
06. How to Choose the Number of Clusters.vtt 7.57Кб
06. How to Iterate over Dictionaries.mp4 18.38Мб
06. How to Iterate over Dictionaries.vtt 7.82Кб
06. Indexing Elements.mp4 2.36Мб
06. Indexing Elements.vtt 1.67Кб
06. Indexing-Elements-Exercise-Py3.ipynb 1.35Кб
06. Indexing-Elements-Lecture-Py3.ipynb 1.32Кб
06. Indexing-Elements-Solution-Py3.ipynb 2.17Кб
06. Iterating-over-Dictionaries-Exercise-Py3.ipynb 2.19Кб
06. Iterating-over-Dictionaries-Lecture-Py3.ipynb 1.08Кб
06. Iterating-over-Dictionaries-Solution-Py3.ipynb 2.87Кб
06. Loading the Dataset and Preprocessing.mp4 14.81Мб
06. Loading the Dataset and Preprocessing.vtt 3.70Кб
06. MNIST Preprocess the Data - Shuffle and Batch.mp4 32.69Мб
06. MNIST Preprocess the Data - Shuffle and Batch.vtt 9.57Кб
06. More Examples of Generative AI.mp4 30.54Мб
06. More Examples of Generative AI.vtt 6.87Кб
06. Numerical Variables Exercise.html 81б
06. orders.csv 37.73Кб
06. Outlining the Model with TensorFlow 2.mp4 26.96Мб
06. Outlining the Model with TensorFlow 2.vtt 8.40Кб
06. Practical Example Linear Regression (Part 4).mp4 39.39Мб
06. Practical Example Linear Regression (Part 4).vtt 11.86Кб
06. Prerequisites for Coding in the Jupyter Notebooks.mp4 18.96Мб
06. Prerequisites for Coding in the Jupyter Notebooks.vtt 7.89Кб
06. products.csv 1.78Кб
06. ratings.csv 3.44Кб
06. real-estate-price-size.csv 1.86Кб
06. real-estate-price-size.csv 1.86Кб
06. Real Life Examples of Business Intelligence (BI).mp4 24.62Мб
06. Real Life Examples of Business Intelligence (BI).vtt 2.26Кб
06. Selecting-the-number-of-clusters.ipynb 4.53Кб
06. Selecting-the-number-of-clusters-with-comments.ipynb 7.48Кб
06. Simple-Linear-Regression-Exercise.ipynb 2.78Кб
06. Simple-Linear-Regression-Exercise-Solution.ipynb 3.57Кб
06. Simple Linear Regression with sklearn - Exercise.html 76б
06. Simple-Linear-Regression-with-sklearn-Exercise.ipynb 4.08Кб
06. Simple-Linear-Regression-with-sklearn-Exercise-Solution.ipynb 26.61Кб
06. sklearn-Linear-Regression-Practical-Example-Part-4.ipynb 397.23Кб
06. sklearn-Linear-Regression-Practical-Example-Part-4-with-comments.ipynb 407.59Кб
06. Solving Combinations.mp4 23.64Мб
06. Solving Combinations.vtt 6.03Кб
06. TensorFlow-Minimal-example-Part2.ipynb 9.06Кб
06. Test for the Mean. Population Variance Known Exercise.html 81б
06. The Linear model with Multiple Inputs and Multiple Outputs.mp4 16.64Мб
06. The Linear model with Multiple Inputs and Multiple Outputs.vtt 4.84Кб
06. Types of File Formats, supporting Tensors.mp4 8.90Мб
06. Types of File Formats, supporting Tensors.vtt 3.44Кб
06. Using .unique() and .nunique().mp4 24.31Мб
06. Using .unique() and .nunique().vtt 5.85Кб
06. Using a Statistical Approach towards the Solution to the Exercise.mp4 9.90Мб
06. Using a Statistical Approach towards the Solution to the Exercise.vtt 2.99Кб
07. 1.02.Multiple-linear-regression.csv 1.07Кб
07. 12.7.TensorFlow-MNIST-with-comments-Part-5.ipynb 8.53Кб
07. 2.5.The-Histogram-lesson.xlsx 18.63Кб
07. 3.11.Population-variance-unknown-t-score-exercise.xlsx 10.62Кб
07. 3.11.Population-variance-unknown-t-score-exercise-solution.xlsx 11.10Кб
07. 3.11.The-t-table.xlsx 15.85Кб
07. 365-DataScience.png 6.92Мб
07. 5.4.TensorFlow-Minimal-example-Part-2.ipynb 6.17Кб
07. A2 No Endogeneity.mp4 9.24Мб
07. A2 No Endogeneity.vtt 5.59Кб
07. A Breakdown of our Data Science Infographic.mp4 45.37Мб
07. A Breakdown of our Data Science Infographic.vtt 5.09Кб
07. Adam (Adaptive Moment Estimation).mp4 7.14Мб
07. Adam (Adaptive Moment Estimation).vtt 3.43Кб
07. Analyzing a client database with ChatGPT in Python – analyzing top products.mp4 15.17Мб
07. Analyzing a client database with ChatGPT in Python – analyzing top products.vtt 5.15Кб
07. Backpropagation.mp4 20.34Мб
07. Backpropagation.vtt 4.59Кб
07. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp4 17.69Мб
07. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.vtt 7.97Кб
07. Built-in Functions in Python.mp4 10.19Мб
07. Built-in Functions in Python.vtt 4.28Кб
07. Business Case Load the Preprocessed Data - Exercise.html 79б
07. Business Case Model Outline.mp4 42.51Мб
07. Business Case Model Outline.vtt 7.16Кб
07. Confidence Intervals; Population Variance Unknown; T-score; Exercise.html 81б
07. Countries-exercise.csv 8.27Кб
07. Creating a Summary Table with the Coefficients and Intercept.mp4 26.95Мб
07. Creating a Summary Table with the Coefficients and Intercept.vtt 6.36Кб
07. Discrete Distributions The Poisson Distribution.mp4 23.92Мб
07. Discrete Distributions The Poisson Distribution.vtt 7.18Кб
07. Dropping a Column from a DataFrame in Python.mp4 41.24Мб
07. Dropping a Column from a DataFrame in Python.vtt 8.22Кб
07. Dummy Variables - Exercise.html 713б
07. Errors when Adding Matrices.mp4 5.77Мб
07. Errors when Adding Matrices.vtt 2.70Кб
07. Errors-when-adding-scalars-vectors-and-matrices-in-Python.ipynb 3.17Кб
07. Graphical Representation of Simple Neural Networks.mp4 7.78Мб
07. Graphical Representation of Simple Neural Networks.vtt 2.69Кб
07. How to Choose the Number of Clusters - Exercise.html 87б
07. How-to-Choose-the-Number-of-Clusters-Exercise.ipynb 5.55Кб
07. How-to-Choose-the-Number-of-Clusters-Solution.ipynb 8.49Кб
07. Interpreting the Result and Extracting the Weights and Bias.mp4 25.91Мб
07. Interpreting the Result and Extracting the Weights and Bias.vtt 6.74Кб
07. MNIST Batching and Early Stopping.mp4 9.48Мб
07. MNIST Batching and Early Stopping.vtt 2.83Кб
07. MNIST Preprocess the Data - Shuffle and Batch - Exercise.html 79б
07. Multiple Linear Regression with sklearn.mp4 8.30Мб
07. Multiple Linear Regression with sklearn.vtt 4.25Кб
07. Notable-Built-In-Functions-in-Python-Exercise-Py3.ipynb 3.66Кб
07. Notable-Built-In-Functions-in-Python-Lecture-Py3.ipynb 4.51Кб
07. Notable-Built-In-Functions-in-Python-Solution-Py3.ipynb 5.52Кб
07. Online-p-value-calculator.pdf 1.15Мб
07. Optimizing User Reviews Data Preprocessing & EDA.mp4 18.67Мб
07. Optimizing User Reviews Data Preprocessing & EDA.vtt 5.97Кб
07. Poisson-Expected-Value-and-Variance.pdf 145.99Кб
07. p-value.mp4 33.75Мб
07. p-value.vtt 5.28Кб
07. sklearn-Multiple-Linear-Regression.ipynb 7.79Кб
07. sklearn-Multiple-Linear-Regression-with-comments.ipynb 8.65Кб
07. Standard error.mp4 13.51Мб
07. Standard error.vtt 2.08Кб
07. Structure-Your-Code-with-Indentation-Exercise-Py3.ipynb 956б
07. Structure-Your-Code-with-Indentation-Lecture-Py3.ipynb 958б
07. Structure-Your-Code-with-Indentation-Solution-Py3.ipynb 1.50Кб
07. Structuring with Indentation.mp4 2.79Мб
07. Structuring with Indentation.vtt 2.30Кб
07. Symmetry-Explained.pdf 85.04Кб
07. Symmetry of Combinations.mp4 13.74Мб
07. Symmetry of Combinations.vtt 4.49Кб
07. Techniques for Working with Traditional Methods.mp4 76.01Мб
07. Techniques for Working with Traditional Methods.vtt 11.49Кб
07. TensorFlow-Audiobooks-Machine-Learning-Part1-with-comments.ipynb 4.61Кб
07. TensorFlow-Audiobooks-Outlining-the-model.ipynb 9.36Кб
07. TensorFlow-Audiobooks-Outlining-the-model-with-comments.ipynb 10.34Кб
07. TensorFlow-Minimal-example-Part3.ipynb 76.52Кб
07. TensorFlow-MNIST-Part3-with-comments.ipynb 8.61Кб
07. The Conditional Probability Formula.mp4 20.07Мб
07. The Conditional Probability Formula.vtt 5.90Кб
07. The Histogram.mp4 9.58Мб
07. The Histogram.vtt 3.37Кб
07. Understanding Logistic Regression Tables.mp4 14.59Мб
07. Understanding Logistic Regression Tables.vtt 5.59Кб
07. Using .sort_values().mp4 15.23Мб
07. Using .sort_values().vtt 5.58Кб
07. Using Seaborn for Graphs.mp4 7.38Мб
07. Using Seaborn for Graphs.vtt 1.56Кб
08. 1.02.Multiple-linear-regression.csv 1.07Кб
08. 1.04.Real-life-example.csv 219.83Кб
08. 12.8.TensorFlow-MNIST-with-comments-Part-6.ipynb 11.50Кб
08. 2.5.The-Histogram-exercise.xlsx 15.50Кб
08. 2.5.The-Histogram-exercise-solution.xlsx 17.10Кб
08. 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx 14.54Кб
08. 5.5.TensorFlow-Minimal-example-Part-3.ipynb 8.65Кб
08. A3 Normality and Homoscedasticity.mp4 27.36Мб
08. A3 Normality and Homoscedasticity.vtt 7.05Кб
08. Analyzing a client database with ChatGPT in Python – analyzing top clients, RFM.mp4 27.19Мб
08. Analyzing a client database with ChatGPT in Python – analyzing top clients, RFM.vtt 5.84Кб
08. Backpropagation Picture.mp4 8.06Мб
08. Backpropagation Picture.vtt 3.80Кб
08. Bank-data.csv 19.55Кб
08. Basic NN Example with TF Loss Function and Gradient Descent.mp4 13.61Мб
08. Basic NN Example with TF Loss Function and Gradient Descent.vtt 4.85Кб
08. Business Case Learning and Interpreting the Result.mp4 29.40Мб
08. Business Case Learning and Interpreting the Result.vtt 6.34Кб
08. Business Case Optimization.mp4 26.94Мб
08. Business Case Optimization.vtt 6.92Кб
08. Calculating the Adjusted R-Squared in sklearn.mp4 16.90Мб
08. Calculating the Adjusted R-Squared in sklearn.vtt 6.65Кб
08. Characteristics of Continuous Distributions.mp4 21.25Мб
08. Characteristics of Continuous Distributions.vtt 9.18Кб
08. Customizing a TensorFlow 2 Model.mp4 16.76Мб
08. Customizing a TensorFlow 2 Model.vtt 4.29Кб
08. Estimators and Estimates.mp4 27.69Мб
08. Estimators and Estimates.vtt 3.99Кб
08. EXERCISE - Dropping a Column from a DataFrame in Python.html 870б
08. Furniture-store-data-analysis.ipynb 52.39Кб
08. Histogram Exercise.html 81б
08. How to Interpret the Regression Table.mp4 28.73Мб
08. How to Interpret the Regression Table.vtt 6.34Кб
08. Interpreting the Coefficients for Our Problem.mp4 41.14Мб
08. Interpreting the Coefficients for Our Problem.vtt 8.53Кб
08. Introduction to pandas DataFrames - Part I.mp4 12.46Мб
08. Introduction to pandas DataFrames - Part I.vtt 7.34Кб
08. Margin of Error.mp4 23.10Мб
08. Margin of Error.vtt 6.44Кб
08. MNIST Learning.mp4 31.83Мб
08. MNIST Learning.vtt 10.47Кб
08. MNIST Outline the Model.mp4 22.07Мб
08. MNIST Outline the Model.vtt 7.15Кб
08. Practical Example Linear Regression (Part 5).mp4 50.42Мб
08. Practical Example Linear Regression (Part 5).vtt 11.07Кб
08. Pros and Cons of K-Means Clustering.mp4 11.12Мб
08. Pros and Cons of K-Means Clustering.vtt 4.59Кб
08. Real Life Examples of Traditional Methods.mp4 36.74Мб
08. Real Life Examples of Traditional Methods.vtt 5.37Кб
08. Reg Ex for Analyzing Text Review Data.mp4 16.18Мб
08. Reg Ex for Analyzing Text Review Data.vtt 5.09Кб
08. sklearn-Linear-Regression-Practical-Example-Part-5.ipynb 698.36Кб
08. sklearn-Linear-Regression-Practical-Example-Part-5-with-comments.ipynb 711.05Кб
08. sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared.ipynb 9.11Кб
08. sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-with-comments.ipynb 10.41Кб
08. Solving Combinations with Separate Sample Spaces.mp4 20.30Мб
08. Solving Combinations with Separate Sample Spaces.vtt 4.07Кб
08. Solving-Integrals.pdf 343.85Кб
08. Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf 289.12Кб
08. TensorFlow-Audiobooks-Machine-Learning-Part2-with-comments.ipynb 19.69Кб
08. TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb 10.64Кб
08. TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb 12.73Кб
08. TensorFlow-Minimal-example-complete.ipynb 76.85Кб
08. TensorFlow-Minimal-example-complete-with-comments.ipynb 82.29Кб
08. TensorFlow-MNIST-Part4-with-comments.ipynb 10.49Кб
08. Test for the Mean. Population Variance Unknown.mp4 19.70Мб
08. Test for the Mean. Population Variance Unknown.vtt 5.96Кб
08. The Law of Total Probability.mp4 14.21Мб
08. The Law of Total Probability.vtt 3.91Кб
08. Tranpose-of-a-matrix.ipynb 2.89Кб
08. Transpose of a Matrix.mp4 14.21Мб
08. Transpose of a Matrix.vtt 5.55Кб
08. Understanding Logistic Regression Tables - Exercise.html 87б
08. Understanding-Logistic-Regression-Tables-Exercise.ipynb 3.16Кб
08. Understanding-Logistic-Regression-Tables-Solution.ipynb 4.79Кб
08. What is the Objective Function.mp4 6.18Мб
08. What is the Objective Function.vtt 2.26Кб
09. 1.02.Multiple-linear-regression.csv 1.07Кб
09. 12.9.TensorFlow-MNIST-with-comments.ipynb 13.03Кб
09. 2.6.Cross-table-and-scatter-plot.xlsx 26.12Кб
09. 3.13.Confidence-intervals.Two-means.Dependent-samples-lesson.xlsx 10.47Кб
09. 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx 11.34Кб
09. 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx 12.63Кб
09. 5.6.TensorFlow-Minimal-example-complete.ipynb 12.15Кб
09. A4 No Autocorrelation.mp4 7.90Мб
09. A4 No Autocorrelation.vtt 5.00Кб
09. Backpropagation - A Peek into the Mathematics of Optimization.html 543б
09. Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf 182.38Кб
09. Basic NN Example with TF Model Output.mp4 17.07Мб
09. Basic NN Example with TF Model Output.vtt 7.85Кб
09. Basic NN with TensorFlow Exercises.html 1.29Кб
09. Business Case Interpretation.mp4 18.63Мб
09. Business Case Interpretation.vtt 3.09Кб
09. Business Case Setting an Early Stopping Mechanism.mp4 43.82Мб
09. Business Case Setting an Early Stopping Mechanism.vtt 8.12Кб
09. Calculating the Adjusted R-Squared in sklearn - Exercise.html 76б
09. Combinatorics in Real-Life The Lottery.mp4 16.38Мб
09. Combinatorics in Real-Life The Lottery.vtt 4.22Кб
09. Common Objective Functions L2-norm Loss.mp4 5.47Мб
09. Common Objective Functions L2-norm Loss.vtt 2.94Кб
09. Confidence intervals. Two means. Dependent samples.mp4 44.98Мб
09. Confidence intervals. Two means. Dependent samples.vtt 8.46Кб
09. Continuous Distributions The Normal Distribution.mp4 20.01Мб
09. Continuous Distributions The Normal Distribution.vtt 5.09Кб
09. Cross Tables and Scatter Plots.mp4 19.70Мб
09. Cross Tables and Scatter Plots.vtt 6.92Кб
09. Decomposition of Variability.mp4 8.79Мб
09. Decomposition of Variability.vtt 4.47Кб
09. Dot-product.ipynb 2.13Кб
09. Dot Product.mp4 12.84Мб
09. Dot Product.vtt 4.34Кб
09. Exploratory data analysis (EDA) with ChatGPT - histogram and scatter plot.mp4 21.59Мб
09. Exploratory data analysis (EDA) with ChatGPT - histogram and scatter plot.vtt 7.43Кб
09. Introduction to pandas DataFrames - Part II.mp4 17.83Мб
09. Introduction to pandas DataFrames - Part II.vtt 8.00Кб
09. Linear Regression - Exercise.html 503б
09. Machine Learning (ML) Techniques.mp4 49.42Мб
09. Machine Learning (ML) Techniques.vtt 9.31Кб
09. MNIST Results and Testing.mp4 38.11Мб
09. MNIST Results and Testing.vtt 8.21Кб
09. MNIST Select the Loss and the Optimizer.mp4 10.65Мб
09. MNIST Select the Loss and the Optimizer.vtt 3.03Кб
09. Normal-Distribution-Exp-and-Var.pdf 144.08Кб
09. sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise.ipynb 9.83Кб
09. sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise-Solution.ipynb 10.31Кб
09. SOLUTION - Dropping a Column from a DataFrame in Python.html 114б
09. Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4 16.86Мб
09. Standardizing only the Numerical Variables (Creating a Custom Scaler).vtt 5.24Кб
09. TensorFlow-Audiobooks-Machine-Learning-Part3-with-comments.ipynb 10.06Кб
09. TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb 10.64Кб
09. TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb 12.73Кб
09. TensorFlow-Minimal-example-All-exercises.ipynb 83.62Кб
09. TensorFlow-Minimal-example-Exercise-1-Solution.ipynb 27.96Кб
09. TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb 83.68Кб
09. TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb 77.52Кб
09. TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb 84.44Кб
09. TensorFlow-MNIST-Part5-with-comments.ipynb 10.99Кб
09. Test for the Mean. Population Variance Unknown Exercise.html 81б
09. The Additive Rule.mp4 11.09Мб
09. The Additive Rule.vtt 2.66Кб
09. To Standardize or not to Standardize.mp4 10.92Мб
09. To Standardize or not to Standardize.vtt 6.26Кб
09. Understanding Differences between Multinomial and Bernouilli Naive Bayes.mp4 13.86Мб
09. Understanding Differences between Multinomial and Bernouilli Naive Bayes.vtt 5.38Кб
09. What do the Odds Actually Mean.mp4 11.39Мб
09. What do the Odds Actually Mean.vtt 4.41Кб
10. 1.02.Multiple-linear-regression.csv 1.07Кб
10. 2.02.Binary-predictors.csv 2.56Кб
10. 2.6.Cross-table-and-scatter-plot-exercise.xlsx 16.28Кб
10. 2.6.Cross-table-and-scatter-plot-exercise-solution.xlsx 40.44Кб
10. 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise.xlsx 13.74Кб
10. 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise-solution.xlsx 14.24Кб
10. 4.7.Test-for-the-mean.Dependent-samples-lesson.xlsx 9.79Кб
10. A5 No Multicollinearity.mp4 7.60Мб
10. A5 No Multicollinearity.vtt 4.62Кб
10. Analyzing the Reasons for Absence.mp4 27.63Мб
10. Analyzing the Reasons for Absence.vtt 6.02Кб
10. A Recap of Combinatorics.mp4 12.10Мб
10. A Recap of Combinatorics.vtt 3.79Кб
10. Basic NN Example with TF Exercises.html 1.60Кб
10. Binary-predictors.ipynb 2.41Кб
10. Binary Predictors in a Logistic Regression.mp4 24.86Мб
10. Binary Predictors in a Logistic Regression.vtt 5.27Кб
10. Business Case Testing the Model.mp4 4.40Мб
10. Business Case Testing the Model.vtt 2.70Кб
10. Common Objective Functions Cross-Entropy Loss.mp4 9.84Мб
10. Common Objective Functions Cross-Entropy Loss.vtt 5.38Кб
10. Confidence intervals. Two means. Dependent samples Exercise.html 81б
10. Continuous Distributions The Standard Normal Distribution.mp4 21.11Мб
10. Continuous Distributions The Standard Normal Distribution.vtt 5.73Кб
10. Cross Tables and Scatter Plots Exercise.html 81б
10. Dot Product of Matrices.mp4 34.31Мб
10. Dot Product of Matrices.vtt 9.09Кб
10. Dot-product-Part-2.ipynb 3.60Кб
10. Exploratory data analysis (EDA) with ChatGPT - correlation matrix, outlier detec.mp4 33.71Мб
10. Exploratory data analysis (EDA) with ChatGPT - correlation matrix, outlier detec.vtt 7.57Кб
10. Feature Selection (F-regression).mp4 20.51Мб
10. Feature Selection (F-regression).vtt 6.93Кб
10. Interpreting the Coefficients of the Logistic Regression.mp4 15.21Мб
10. Interpreting the Coefficients of the Logistic Regression.vtt 7.49Кб
10. Machine Learning with Naïve Bayes (First Attempt).mp4 28.11Мб
10. Machine Learning with Naïve Bayes (First Attempt).vtt 8.42Кб
10. MNIST Exercises.html 2.16Кб
10. MNIST Learning.mp4 30.99Мб
10. MNIST Learning.vtt 7.95Кб
10. pandas DataFrames - Common Attributes.mp4 25.65Мб
10. pandas DataFrames - Common Attributes.vtt 6.56Кб
10. properties.csv 2.66Кб
10. Properties-analysis.ipynb 286.54Кб
10. Relationship between Clustering and Regression.mp4 3.51Мб
10. Relationship between Clustering and Regression.vtt 2.29Кб
10. Setting an Early Stopping Mechanism - Exercise.html 192б
10. sklearn-Feature-Selection-with-F-regression.ipynb 10.44Кб
10. sklearn-Feature-Selection-with-F-regression-with-comments.ipynb 12.99Кб
10. TensorFlow-Minimal-Example-All-Exercises.ipynb 13.97Кб
10. TensorFlow-Minimal-Example-Exercise-1-Solution.ipynb 23.63Кб
10. TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb 25.54Кб
10. TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb 25.51Кб
10. TensorFlow-Minimal-Example-Exercise-2-3-Solution.ipynb 49.96Кб
10. TensorFlow-Minimal-Example-Exercise-2-4-Solution.ipynb 21.75Кб
10. TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb 26.71Кб
10. TensorFlow-Minimal-Example-Exercise-4-Solution.ipynb 26.98Кб
10. TensorFlow-MNIST-Exercises-All.ipynb 15.47Кб
10. TensorFlow-MNIST-Part6-with-comments.ipynb 12.54Кб
10. Test for the Mean. Dependent Samples.mp4 32.76Мб
10. Test for the Mean. Dependent Samples.vtt 6.78Кб
10. The Multiplication Law.mp4 20.19Мб
10. The Multiplication Law.vtt 4.71Кб
10. Types of Machine Learning.mp4 69.45Мб
10. Types of Machine Learning.vtt 10.95Кб
10. What is the OLS.mp4 22.46Мб
10. What is the OLS.vtt 3.82Кб
11. 0.TensorFlow-MNIST-take-note-of-time-Solution.ipynb 14.00Кб
11. 1.02.Multiple-linear-regression.csv 1.07Кб
11. 1.03.Dummies.csv 1.19Кб
11. 1.TensorFlow-MNIST-Width-Solution.ipynb 14.84Кб
11. 1.TensorFlow-MNIST-Width-Solution.ipynb 14.01Кб
11. 2.7.Mean-median-and-mode-lesson.xlsx 10.49Кб
11. 2.TensorFlow-MNIST-Depth-Solution.ipynb 15.31Кб
11. 2.TensorFlow-MNIST-Depth-Solution.ipynb 14.87Кб
11. 3.12.Example.csv 283б
11. 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-lesson.xlsx 9.83Кб
11. 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb 15.30Кб
11. 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb 16.81Кб
11. 4.7.Test-for-the-mean.Dependent-samples-exercise.xlsx 12.80Кб
11. 4.7.Test-for-the-mean.Dependent-samples-exercise-solution.xlsx 14.40Кб
11. 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb 15.11Кб
11. 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb 14.35Кб
11. 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb 14.74Кб
11. 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb 13.93Кб
11. 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb 15.12Кб
11. 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb 14.26Кб
11. 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb 15.18Кб
11. 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb 14.16Кб
11. 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb 20.58Кб
11. 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb 14.07Кб
11. 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb 15.80Кб
11. 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb 15.21Кб
11. Additional-Exercises-Combinatorics.pdf 106.58Кб
11. Additional-Exercises-Combinatorics-Solutions.pdf 245.67Кб
11. A Note on Calculation of P-values with sklearn.html 372б
11. A Practical Example of Combinatorics.mp4 80.69Мб
11. A Practical Example of Combinatorics.vtt 15.17Кб
11. Assignment 1.html 1.62Кб
11. Audiobooks-data.csv 710.77Кб
11. Backward Elimination or How to Simplify Your Model.mp4 31.82Мб
11. Backward Elimination or How to Simplify Your Model.vtt 5.37Кб
11. Bank-data.csv 19.55Кб
11. Bayes' Law.mp4 21.35Мб
11. Bayes' Law.vtt 7.70Кб
11. Binary Predictors in a Logistic Regression - Exercise.html 87б
11. Binary-Predictors-in-a-Logistic-Regression-Exercise.ipynb 2.54Кб
11. Binary-Predictors-in-a-Logistic-Regression-Solution.ipynb 4.51Кб
11. Business Case A Comment on the Homework.mp4 20.58Мб
11. Business Case A Comment on the Homework.vtt 5.38Кб
11. Business Case Testing the Model.mp4 8.19Мб
11. Business Case Testing the Model.vtt 2.14Кб
11. Confidence intervals. Two means. Independent Samples (Part 1).mp4 11.99Мб
11. Confidence intervals. Two means. Independent Samples (Part 1).vtt 6.28Кб
11. Continuous Distributions The Students' T Distribution.mp4 9.24Мб
11. Continuous Distributions The Students' T Distribution.vtt 3.22Кб
11. Data Selection in pandas DataFrames.mp4 37.28Мб
11. Data Selection in pandas DataFrames.vtt 10.51Кб
11. Dealing with Categorical Data - Dummy Variables.mp4 22.65Мб
11. Dealing with Categorical Data - Dummy Variables.vtt 9.55Кб
11. Dummy-Variables.ipynb 4.62Кб
11. Dummy-variables-with-comments.ipynb 7.09Кб
11. Evolution and Latest Trends of Machine Learning (ML).mp4 27.32Мб
11. Evolution and Latest Trends of Machine Learning (ML).vtt 7.76Кб
11. GD-function-example.xlsx 42.33Кб
11. Machine Learning with Naïve Bayes – converting the problem to a binary one.mp4 18.89Мб
11. Machine Learning with Naïve Bayes – converting the problem to a binary one.vtt 6.71Кб
11. Market-segmentation-example.ipynb 3.80Кб
11. Market-segmentation-example-with-comments.ipynb 5.90Кб
11. Market Segmentation with Cluster Analysis (Part 1).mp4 28.04Мб
11. Market Segmentation with Cluster Analysis (Part 1).vtt 7.53Кб
11. Mean, median and mode.mp4 24.50Мб
11. Mean, median and mode.vtt 5.98Кб
11. MNIST - Exercises.html 1.98Кб
11. MNIST Solutions.html 2.22Кб
11. Obtaining Dummies from a Single Feature.mp4 69.75Мб
11. Obtaining Dummies from a Single Feature.vtt 10.58Кб
11. Optimization Algorithm 1-Parameter Gradient Descent.mp4 23.57Мб
11. Optimization Algorithm 1-Parameter Gradient Descent.vtt 8.80Кб
11. R-Squared.mp4 11.20Мб
11. R-Squared.vtt 6.80Кб
11. sklearn-How-to-properly-include-p-values.ipynb 12.71Кб
11. TensorFlow-Audiobooks-Machine-learning-Homework.ipynb 14.40Кб
11. TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb 11.95Кб
11. TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.19Кб
11. TensorFlow-MNIST-All-Exercises.ipynb 16.65Кб
11. TensorFlow-MNIST-around-98-percent-accuracy.ipynb 15.02Кб
11. TensorFlow-MNIST-around-98-percent-accuracy.ipynb 17.66Кб
11. Test for the Mean. Dependent Samples Exercise.html 81б
11. Why is Linear Algebra Useful.mp4 88.47Мб
11. Why is Linear Algebra Useful.vtt 11.53Кб
12. 1.02.Multiple-linear-regression.csv 1.07Кб
12. 2.7.Mean-median-and-mode-exercise.xlsx 10.87Кб
12. 2.7.Mean-median-and-mode-exercise-solution.xlsx 11.35Кб
12. 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise.xlsx 9.83Кб
12. 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise-solution.xlsx 10.12Кб
12. 365-User-Reviews-Naive-Bayes-Sentiment-Analysis.ipynb 1.71Мб
12. 4.8.Test-for-the-mean.Independent-samples-Part-1-lesson.xlsx 9.63Кб
12. Accuracy.ipynb 3.63Кб
12. Accuracy-with-comments.ipynb 11.67Кб
12. A Practical Example of Bayesian Inference.mp4 139.24Мб
12. A Practical Example of Bayesian Inference.vtt 20.11Кб
12. Audiobooks-data.csv 710.77Кб
12. Bayesian-Homework.pdf 27.26Кб
12. Bayesian-Homework-Solutions.pdf 30.35Кб
12. Business Case Final Exercise.html 433б
12. Business Case Final Exercise.html 443б
12. Calculating the Accuracy of the Model.mp4 20.26Мб
12. Calculating the Accuracy of the Model.vtt 4.29Кб
12. CDS-2017-2018-Hamilton.pdf 845.31Кб
12. Confidence intervals. Two means. Independent Samples (Part 1). Exercise.html 81б
12. Continuous Distributions The Chi-Squared Distribution.mp4 11.16Мб
12. Continuous Distributions The Chi-Squared Distribution.vtt 2.98Кб
12. Creating a Summary Table with P-values.mp4 6.45Мб
12. Creating a Summary Table with P-values.vtt 3.05Кб
12. Dealing with Categorical Data - Dummy Variables.html 76б
12. EXERCISE - Obtaining Dummies from a Single Feature.html 129б
12. Hypothesis testing with ChatGPT.mp4 14.37Мб
12. Hypothesis testing with ChatGPT.vtt 5.65Кб
12. Market-segmentation-example-Part2.ipynb 4.68Кб
12. Market-segmentation-example-Part2-with-comments.ipynb 6.81Кб
12. Market Segmentation with Cluster Analysis (Part 2).mp4 34.08Мб
12. Market Segmentation with Cluster Analysis (Part 2).vtt 9.13Кб
12. Mean, Median and Mode Exercise.html 81б
12. MNIST Testing the Model.mp4 22.61Мб
12. MNIST Testing the Model.vtt 5.96Кб
12. Multiple-Linear-Regression-with-Dummies-Exercise.ipynb 3.01Кб
12. Multiple-Linear-Regression-with-Dummies-Exercise-Solution.ipynb 18.00Кб
12. Optimization Algorithm n-Parameter Gradient Descent.mp4 16.83Мб
12. Optimization Algorithm n-Parameter Gradient Descent.vtt 7.79Кб
12. pandas DataFrames - Indexing with .iloc[].mp4 32.21Мб
12. pandas DataFrames - Indexing with .iloc[].vtt 8.34Кб
12. real-estate-price-size-year-view.csv 3.39Кб
12. Real Life Examples of Machine Learning (ML).mp4 27.74Мб
12. Real Life Examples of Machine Learning (ML).vtt 3.03Кб
12. sklearn-Multiple-Linear-Regression-Summary-Table.ipynb 13.71Кб
12. sklearn-Multiple-Linear-Regression-Summary-Table-with-comments.ipynb 16.63Кб
12. students.csv 2.08Кб
12. Students-Hypothesis-Testing.ipynb 5.60Кб
12. TensorFlow-Audiobooks-Machine-learning-Homework.ipynb 14.40Кб
12. TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb 11.95Кб
12. TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.19Кб
12. TensorFlow-MNIST-complete.ipynb 6.78Кб
12. TensorFlow-MNIST-complete-with-comments.ipynb 14.51Кб
12. Test for the mean. Independent Samples (Part 1).mp4 15.42Мб
12. Test for the mean. Independent Samples (Part 1).vtt 5.47Кб
12. Testing the Model on New Data.mp4 20.83Мб
12. Testing the Model on New Data.vtt 6.93Кб
12. Testing the Model We Created.mp4 31.60Мб
12. Testing the Model We Created.vtt 6.53Кб
12. user-courses-review-test-set.csv 19.63Кб
13. 2.8.Skewness-lesson.xlsx 34.63Кб
13. 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-lesson.xlsx 9.52Кб
13. 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx 10.77Кб
13. 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise-solution.xlsx 11.25Кб
13. Bank-data.csv 19.55Кб
13. Calculating the Accuracy of the Model.html 87б
13. Calculating-the-Accuracy-of-the-Model-Exercise.ipynb 5.39Кб
13. Calculating-the-Accuracy-of-the-Model-Solution.ipynb 81.21Кб
13. Confidence intervals. Two means. Independent Samples (Part 2).mp4 14.62Мб
13. Confidence intervals. Two means. Independent Samples (Part 2).vtt 4.69Кб
13. Continuous Distributions The Exponential Distribution.mp4 15.99Мб
13. Continuous Distributions The Exponential Distribution.vtt 4.47Кб
13. How is Clustering Useful.mp4 37.43Мб
13. How is Clustering Useful.vtt 6.78Кб
13. Lending-company.csv 112.43Кб
13. Location.csv 13.49Кб
13. Making-predictions.ipynb 5.77Кб
13. Making-predictions-with-comments.ipynb 9.41Кб
13. Making Predictions with the Linear Regression.mp4 16.34Мб
13. Making Predictions with the Linear Regression.vtt 4.44Кб
13. Marvels comic book database Intro to Regular Expressions (RegEx).mp4 14.98Мб
13. Marvels comic book database Intro to Regular Expressions (RegEx).vtt 2.72Кб
13. Multiple Linear Regression - Exercise.html 76б
13. pandas DataFrames - Indexing with .loc[].mp4 20.69Мб
13. pandas DataFrames - Indexing with .loc[].vtt 5.56Кб
13. pandas-Fundamentals-Exercises.ipynb 30.96Кб
13. pandas-Fundamentals-Lectures.ipynb 21.31Кб
13. pandas-Fundamentals-Solutions.ipynb 118.35Кб
13. real-estate-price-size-year.csv 2.35Кб
13. Region.csv 10.22Кб
13. Sales-products.csv 152.28Кб
13. Saving the Model and Preparing it for Deployment.mp4 25.52Мб
13. Saving the Model and Preparing it for Deployment.vtt 5.76Кб
13. Skewness.mp4 13.32Мб
13. Skewness.vtt 3.73Кб
13. sklearn-Multiple-Linear-Regression-Exercise.ipynb 5.67Кб
13. sklearn-Multiple-Linear-Regression-Exercise-Solution.ipynb 15.44Кб
13. SOLUTION - Obtaining Dummies from a Single Feature.html 117б
13. Test for the mean. Independent Samples (Part 1). Exercise.html 81б
14. 1.02.Multiple-linear-regression.csv 1.07Кб
14. 2.8.Skewness-exercise.xlsx 9.49Кб
14. 2.8.Skewness-exercise-solution.xlsx 19.78Кб
14. 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise.xlsx 9.17Кб
14. 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise-solution.xlsx 9.79Кб
14. 4.9.Test-for-the-mean.Independent-samples-Part-2-lesson.xlsx 9.31Кб
14. ARTICLE - A Note on 'pickling'.html 2.14Кб
14. Confidence intervals. Two means. Independent Samples (Part 2). Exercise.html 81б
14. Continuous Distributions The Logistic Distribution.mp4 16.18Мб
14. Continuous Distributions The Logistic Distribution.vtt 5.41Кб
14. Decoding comic book data Python Regular Expressions and ChatGPT.mp4 33.05Мб
14. Decoding comic book data Python Regular Expressions and ChatGPT.vtt 6.45Кб
14. Dropping a Dummy Variable from the Data Set.html 2.34Кб
14. EXERCISE Species Segmentation with Cluster Analysis (Part 1).html 87б
14. Feature Scaling (Standardization).mp4 20.37Мб
14. Feature Scaling (Standardization).vtt 8.78Кб
14. iris-dataset.csv 2.40Кб
14. Marvel-Comics-Reg-Ex.ipynb 29.49Кб
14. Skewness Exercise.html 81б
14. SKLEAR-1.IPY 12.87Кб
14. sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-1.ipynb 11.73Кб
14. Species-Segmentation-with-Cluster-Analysis-Part-1-Exercise.ipynb 4.46Кб
14. Species-Segmentation-with-Cluster-Analysis-Part-1-Solution.ipynb 7.35Кб
14. Test for the mean. Independent Samples (Part 2).mp4 24.45Мб
14. Test for the mean. Independent Samples (Part 2).vtt 5.39Кб
14. Underfitting and Overfitting.mp4 7.49Мб
14. Underfitting and Overfitting.vtt 5.16Кб
15. 1.02.Multiple-linear-regression.csv 1.07Кб
15. 2.03.Test-dataset.csv 322б
15. 2.9.Variance-lesson.xlsx 10.08Кб
15. 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx 10.54Кб
15. 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2-solution.xlsx 11.39Кб
15. A Practical Example of Probability Distributions.mp4 138.31Мб
15. A Practical Example of Probability Distributions.vtt 21.13Кб
15. Assignment 2.html 1.56Кб
15. Confidence intervals. Two means. Independent Samples (Part 3).mp4 6.88Мб
15. Confidence intervals. Two means. Independent Samples (Part 3).vtt 2.03Кб
15. Customers-Membership.xlsx 9.69Кб
15. Customers-Membership-post.xlsx 15.62Кб
15. Daily-Views.xlsx 9.53Кб
15. Daily-Views-post.xlsx 20.21Кб
15. EXERCISE - Saving the Model (and Scaler).html 284б
15. EXERCISE Species Segmentation with Cluster Analysis (Part 2).html 87б
15. Feature Selection through Standardization of Weights.mp4 24.46Мб
15. Feature Selection through Standardization of Weights.vtt 7.62Кб
15. FIFA19.csv 8.64Мб
15. FIFA19-post.csv 8.64Мб
15. iris-dataset.csv 2.40Кб
15. iris-with-answers.csv 3.63Кб
15. More on Dummy Variables A Statistical Perspective.mp4 5.82Мб
15. More on Dummy Variables A Statistical Perspective.vtt 1.71Кб
15. SKLEAR-1.IPY 16.79Кб
15. sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-2.ipynb 14.89Кб
15. Species-Segmentation-with-Cluster-Analysis-Part-2-Exercise.ipynb 10.74Кб
15. Species-Segmentation-with-Cluster-Analysis-Part-2-Solution.ipynb 15.30Кб
15. Test for the mean. Independent Samples (Part 2). Exercise.html 81б
15. Testing-the-model.ipynb 5.77Кб
15. Testing the Model.mp4 21.59Мб
15. Testing the Model.vtt 6.54Кб
15. Testing-the-model-with-comments.ipynb 7.56Кб
15. Variance.mp4 23.55Мб
15. Variance.vtt 8.19Кб
16. 1.02.Multiple-linear-regression.csv 1.07Кб
16. 2.9.Variance-exercise.xlsx 10.83Кб
16. 2.9.Variance-exercise-solution.xlsx 11.05Кб
16. Algorithm recommendation Movie Database Analysis with ChatGPT.mp4 17.25Мб
16. Algorithm recommendation Movie Database Analysis with ChatGPT.vtt 4.36Кб
16. Bank-data.csv 19.55Кб
16. Bank-data-testing.csv 8.30Кб
16. Classifying the Various Reasons for Absence.mp4 51.32Мб
16. Classifying the Various Reasons for Absence.vtt 10.52Кб
16. Predicting with the Standardized Coefficients.mp4 20.44Мб
16. Predicting with the Standardized Coefficients.vtt 5.55Кб
16. Preparing the Deployment of the Model through a Module.mp4 28.56Мб
16. Preparing the Deployment of the Model through a Module.vtt 5.90Кб
16. ratings-small.csv 2.33Мб
16. sklearn-Making-Predictions-with-the-Standardized-Coefficients.ipynb 29.75Кб
16. sklearn-Making-Predictions-with-the-Standardized-Coefficients-with-comments.ipynb 22.03Кб
16. Testing the Model - Exercise.html 87б
16. Testing-the-Model-Exercise.ipynb 6.79Кб
16. Testing-the-Model-Solution.ipynb 111.10Кб
16. Variance Exercise.html 522б
17. 2.10.Standard-deviation-and-coefficient-of-variation-lesson.xlsx 10.97Кб
17. Algorithm recommendation recommendation engine for movies with ChatGPT.mp4 17.85Мб
17. Algorithm recommendation recommendation engine for movies with ChatGPT.vtt 6.36Кб
17. Feature Scaling (Standardization) - Exercise.html 76б
17. Movies-Data-Base-Recommendation-Engine.ipynb 20.39Кб
17. real-estate-price-size-year.csv 2.35Кб
17. sklearn-Feature-Scaling-Exercise.ipynb 6.07Кб
17. sklearn-Feature-Scaling-Exercise-Solution.ipynb 16.28Кб
17. Standard Deviation and Coefficient of Variation.mp4 20.12Мб
17. Standard Deviation and Coefficient of Variation.vtt 6.35Кб
17. Using .concat() in Python.mp4 27.34Мб
17. Using .concat() in Python.vtt 5.17Кб
18. 2.10.Standard-deviation-and-coefficient-of-variation-exercise.xlsx 11.61Кб
18. 2.10.Standard-deviation-and-coefficient-of-variation-exercise-solution.xlsx 12.60Кб
18. Ethical principles in data and AI utilization.mp4 14.73Мб
18. Ethical principles in data and AI utilization.vtt 4.36Кб
18. EXERCISE - Using .concat() in Python.html 189б
18. Standard Deviation and Coefficient of Variation Exercise.html 81б
18. Underfitting and Overfitting.mp4 5.83Мб
18. Underfitting and Overfitting.vtt 3.75Кб
19. 2.11.Covariance-lesson.xlsx 24.92Кб
19. Covariance.mp4 18.37Мб
19. Covariance.vtt 5.11Кб
19. friendships.csv 6.00Кб
19. interactions.csv 73.25Кб
19. posts.csv 30.79Кб
19. sklearn-Train-Test-Split.ipynb 7.23Кб
19. sklearn-Train-Test-Split-with-comments.ipynb 9.05Кб
19. SOLUTION - Using .concat() in Python.html 143б
19. Train - Test Split Explained.mp4 35.57Мб
19. Train - Test Split Explained.vtt 9.71Кб
19. users.csv 3.49Кб
19. Using ChatGPT for ethical considerations.mp4 33.53Мб
19. Using ChatGPT for ethical considerations.vtt 7.47Кб
20. 2.11.Covariance-exercise.xlsx 20.23Кб
20. 2.11.Covariance-exercise-solution.xlsx 29.51Кб
20. Covariance Exercise.html 81б
20. Reordering Columns in a Pandas DataFrame in Python.mp4 10.00Мб
20. Reordering Columns in a Pandas DataFrame in Python.vtt 1.87Кб
21. Correlation Coefficient.mp4 19.32Мб
21. Correlation Coefficient.vtt 4.96Кб
21. EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html 167б
22. 2.12.Correlation-exercise.xlsx 29.30Кб
22. 2.12.Correlation-exercise-solution.xlsx 29.48Кб
22. Correlation Coefficient Exercise.html 81б
22. SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html 478б
23. Absenteeism-Exercise-Preprocessing-df-reason-mod.ipynb 4.82Кб
23. Creating Checkpoints while Coding in Jupyter.mp4 17.33Мб
23. Creating Checkpoints while Coding in Jupyter.vtt 3.67Кб
24. EXERCISE - Creating Checkpoints while Coding in Jupyter.html 137б
25. SOLUTION - Creating Checkpoints while Coding in Jupyter.html 118б
26. Analyzing the Dates from the Initial Data Set.mp4 40.12Мб
26. Analyzing the Dates from the Initial Data Set.vtt 8.87Кб
27. Extracting the Month Value from the Date Column.mp4 33.90Мб
27. Extracting the Month Value from the Date Column.vtt 7.99Кб
28. Extracting the Day of the Week from the Date Column.mp4 19.14Мб
28. Extracting the Day of the Week from the Date Column.vtt 4.78Кб
29. Absenteeism-Exercise-Preprocessing-ChP-df-date-reason-mod.ipynb 7.33Кб
29. Absenteeism-Exercise-Preprocessing-LECTURES.ipynb 7.60Мб
29. Absenteeism-Exercise-Removing-the-Date-Column-SOLUTION.ipynb 8.33Кб
29. EXERCISE - Removing the Date Column.html 1.21Кб
30. Analyzing Several Straightforward Columns for this Exercise.mp4 14.32Мб
30. Analyzing Several Straightforward Columns for this Exercise.vtt 4.59Кб
31. Working on Education, Children, and Pets.mp4 27.03Мб
31. Working on Education, Children, and Pets.vtt 5.96Кб
32. Absenteeism-Exercise-EXERCISES-and-SOLUTIONS.ipynb 4.13Кб
32. Absenteeism-Exercise-Preprocessing-df-preprocessed.ipynb 8.51Кб
32. Final Remarks of this Section.mp4 13.54Мб
32. Final Remarks of this Section.vtt 2.68Кб
33. A Note on Exporting Your Data as a .csv File.html 883б
Marvel_Comics.csv 12.99Мб
movies_metadata.csv 32.85Мб
Статистика распространения по странам
Индия (IN) 5
США (US) 3
ЮАР (ZA) 3
Танзания (TZ) 2
Румыния (RO) 2
Непал (NP) 1
Бангладеш (BD) 1
Нидерланды (NL) 1
Албания (AL) 1
Индонезия (ID) 1
Ирландия (IE) 1
Бразилия (BR) 1
Чешская Республика (CZ) 1
Пакистан (PK) 1
Алжир (DZ) 1
Гана (GH) 1
Канада (CA) 1
Всего 27
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент