|
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
| [CourseClub.Me].url |
122б |
| [CourseClub.Me].url |
122б |
| [CourseClub.Me].url |
122б |
| [CourseClub.Me].url |
122б |
| [CourseClub.Me].url |
122б |
| [FreeCourseSite.com].url |
127б |
| [FreeCourseSite.com].url |
127б |
| [FreeCourseSite.com].url |
127б |
| [FreeCourseSite.com].url |
127б |
| [FreeCourseSite.com].url |
127б |
| [GigaCourse.Com].url |
49б |
| [GigaCourse.Com].url |
49б |
| [GigaCourse.Com].url |
49б |
| [GigaCourse.Com].url |
49б |
| [GigaCourse.Com].url |
49б |
| 1.1 Project - I - Questions.txt |
823б |
| 1.2 Titanic.csv |
57.36Кб |
| 1. AI, Machine Learning and Deep Learning.mp4 |
16.24Мб |
| 1. AI, Machine Learning and Deep Learning.srt |
5.46Кб |
| 1. Analyse Data With Different Data Sets Titanic Project.mp4 |
10.05Мб |
| 1. Analyse Data With Different Data Sets Titanic Project.srt |
4.32Кб |
| 1. Arrays in r programming.mp4 |
28.03Мб |
| 1. Arrays in r programming.srt |
4.51Кб |
| 1. Be Smart and Use Data But How Answer is Data Science with Python.mp4 |
13.75Мб |
| 1. Be Smart and Use Data But How Answer is Data Science with Python.srt |
5.51Кб |
| 1. Complete Python Data Science, Deep Learning, R Programming.html |
266б |
| 1. Data Frame Attributes and Methods.mp4 |
79.77Мб |
| 1. Data Frame Attributes and Methods.srt |
15.42Кб |
| 1. Data Types in Python.mp4 |
41.08Мб |
| 1. Data Types in Python.srt |
13.52Кб |
| 1. Downloading and Installing R & R Studio.mp4 |
25.03Мб |
| 1. Downloading and Installing R & R Studio.srt |
4.44Кб |
| 1. Getting Data into R.mp4 |
36.82Мб |
| 1. Getting Data into R.srt |
7.15Кб |
| 1. Installing Anaconda for Windows.mp4 |
40.14Мб |
| 1. Installing Anaconda for Windows.srt |
5.98Кб |
| 1. Introduction to Data Frames.mp4 |
70.98Мб |
| 1. Introduction to Data Frames.srt |
6.71Кб |
| 1. Introduction to Data Transformation.mp4 |
76.22Мб |
| 1. Introduction to Data Transformation.srt |
8.49Кб |
| 1. Introduction to Factors in R.mp4 |
34.58Мб |
| 1. Introduction to Factors in R.srt |
4.58Кб |
| 1. Lists in R.mp4 |
43.29Мб |
| 1. Lists in R.srt |
5.72Кб |
| 1. Logic of Object Oriented Programming.mp4 |
16.38Мб |
| 1. Logic of Object Oriented Programming.srt |
5.06Кб |
| 1. Matrices in R programming.mp4 |
50.01Мб |
| 1. Matrices in R programming.srt |
6.58Кб |
| 1. Project - 1.mp4 |
101.59Мб |
| 1. Project - 1.srt |
20.04Кб |
| 1. Understanding RNN and LSTM Networks.mp4 |
50.85Мб |
| 1. Understanding RNN and LSTM Networks.srt |
14.60Кб |
| 1. Vector Basics in R.mp4 |
41.96Мб |
| 1. Vector Basics in R.srt |
5.43Кб |
| 1. What is Artificial Neural Network (ANN).mp4 |
23.02Мб |
| 1. What is Artificial Neural Network (ANN).srt |
8.08Кб |
| 1. What is CNN.mp4 |
72.37Мб |
| 1. What is CNN.srt |
17.22Кб |
| 1. What Is Data Science.mp4 |
20.23Мб |
| 1. What Is Data Science.srt |
6.52Кб |
| 1. What is Geoplotlib.mp4 |
32.19Мб |
| 1. What is Geoplotlib.srt |
10.18Кб |
| 1. What is Matplotlib.mp4 |
17.88Мб |
| 1. What is Matplotlib.srt |
3.52Кб |
| 1. What is Numpy.mp4 |
26.73Мб |
| 1. What is Numpy.srt |
7.33Кб |
| 1. What is Pandas.mp4 |
20.15Мб |
| 1. What is Pandas.srt |
6.33Кб |
| 1. What is Seaborn.mp4 |
12.89Мб |
| 1. What is Seaborn.srt |
5.01Кб |
| 1. What is Transfer Learning.mp4 |
85.34Мб |
| 1. What is Transfer Learning.srt |
18.71Кб |
| 10. Combining Data Frames Part – II.mp4 |
84.21Мб |
| 10. Combining Data Frames Part – II.srt |
17.19Кб |
| 10. Exercise Solution in Python.mp4 |
47.69Мб |
| 10. Exercise Solution in Python.srt |
6.31Кб |
| 10. Quiz.html |
166б |
| 10. Supervised Machine Learning Methods - 3.mp4 |
56.08Мб |
| 10. Supervised Machine Learning Methods - 3.srt |
15.78Кб |
| 11. Quiz.html |
166б |
| 11. Supervised Machine Learning Methods - 4.mp4 |
70.30Мб |
| 11. Supervised Machine Learning Methods - 4.srt |
18.75Кб |
| 11. Work with Dataset Files in Pandas.mp4 |
70.77Мб |
| 11. Work with Dataset Files in Pandas.srt |
11.56Кб |
| 12. Quiz.html |
166б |
| 12. Unsupervised Machine Learning Methods.mp4 |
87.95Мб |
| 12. Unsupervised Machine Learning Methods.srt |
26.61Кб |
| 13. Gathering data in Deep learning.mp4 |
17.61Мб |
| 13. Gathering data in Deep learning.srt |
5.64Кб |
| 14. Data pre-processing in Deep learning.mp4 |
25.96Мб |
| 14. Data pre-processing in Deep learning.srt |
6.27Кб |
| 15. Choosing the right algorithm and model in deep learning.mp4 |
148.91Мб |
| 15. Choosing the right algorithm and model in deep learning.srt |
8.88Кб |
| 16. Training and testing the model.mp4 |
84.00Мб |
| 16. Training and testing the model.srt |
6.24Кб |
| 17. Evaluation in deep learning.mp4 |
24.38Мб |
| 17. Evaluation in deep learning.srt |
7.40Кб |
| 18. Quiz Python, Data Science, Machine learning, Deep learning.html |
166б |
| 19. Quiz.html |
166б |
| 2.1 poaching_points_cleaned.csv |
24.18Кб |
| 2. Anatomy of Neural Network in Artificial intelligence.mp4 |
42.29Мб |
| 2. Anatomy of Neural Network in Artificial intelligence.srt |
10.36Кб |
| 2. Array and Features in Numpy Python.mp4 |
47.91Мб |
| 2. Array and Features in Numpy Python.srt |
11.39Кб |
| 2. Atomic Vector Types in R.mp4 |
24.08Мб |
| 2. Atomic Vector Types in R.srt |
3.44Кб |
| 2. Constructor in Object Oriented Programming.mp4 |
33.89Мб |
| 2. Constructor in Object Oriented Programming.srt |
6.84Кб |
| 2. Controlling Figure Aesthetics in Seaborn.mp4 |
39.19Мб |
| 2. Controlling Figure Aesthetics in Seaborn.srt |
10.79Кб |
| 2. Data Frame Attributes and Methods Part – II.mp4 |
56.96Мб |
| 2. Data Frame Attributes and Methods Part – II.srt |
11.23Кб |
| 2. Data Literacy.mp4 |
9.76Мб |
| 2. Data Literacy.srt |
3.34Кб |
| 2. Data Manipulation in R.mp4 |
54.92Мб |
| 2. Data Manipulation in R.srt |
9.13Кб |
| 2. Example - 1.mp4 |
36.37Мб |
| 2. Example - 1.srt |
9.56Кб |
| 2. History of Machine Learning.mp4 |
23.85Мб |
| 2. History of Machine Learning.srt |
7.73Кб |
| 2. Installing Anaconda for Mac, Python Data Science.mp4 |
53.04Мб |
| 2. Installing Anaconda for Mac, Python Data Science.srt |
6.23Кб |
| 2. Manipulating Categorical Data with Forcats in R.mp4 |
132.73Мб |
| 2. Manipulating Categorical Data with Forcats in R.srt |
11.93Кб |
| 2. Naming Matrix Row and Columns in R programming.mp4 |
48.07Мб |
| 2. Naming Matrix Row and Columns in R programming.srt |
5.22Кб |
| 2. Naming Variables and Observations in DF.mp4 |
27.52Мб |
| 2. Naming Variables and Observations in DF.srt |
2.10Кб |
| 2. Operators in Python.mp4 |
29.62Мб |
| 2. Operators in Python.srt |
10.61Кб |
| 2. Project - 2.mp4 |
169.31Мб |
| 2. Project - 2.srt |
20.77Кб |
| 2. Project Files and Course Documents Data Science, Python data science.html |
457б |
| 2. Quiz.html |
166б |
| 2. Quiz.html |
166б |
| 2. Quiz Machine Learnig, Deep Learning.html |
166б |
| 2. R Console Versus R Studio.mp4 |
21.96Мб |
| 2. R Console Versus R Studio.srt |
5.20Кб |
| 2. Select Columns with Select Function in R programming.mp4 |
60.58Мб |
| 2. Select Columns with Select Function in R programming.srt |
6.89Кб |
| 2. Series and Features.mp4 |
74.30Мб |
| 2. Series and Features.srt |
18.74Кб |
| 2. Subsections of an Array in r programming.mp4 |
68.43Мб |
| 2. Subsections of an Array in r programming.srt |
8.26Кб |
| 2. Titanic Project Answers in python projects.mp4 |
89.00Мб |
| 2. Titanic Project Answers in python projects.srt |
21.36Кб |
| 2. Using Matplotlib.mp4 |
26.53Мб |
| 2. Using Matplotlib.srt |
7.46Кб |
| 3.1 Bike_Share_London.csv |
368.48Кб |
| 3.1 scores.csv |
1.42Кб |
| 3.1 world_cities_pop.csv |
156.71Мб |
| 3.2 Project - II - Questions.txt |
906б |
| 3. Array Operators in Numpy.mp4 |
17.58Мб |
| 3. Array Operators in Numpy.srt |
4.16Кб |
| 3. Calculating With Matrices in Python Data science.mp4 |
59.10Мб |
| 3. Calculating With Matrices in Python Data science.srt |
6.10Кб |
| 3. Conditionals in Python.mp4 |
34.65Мб |
| 3. Conditionals in Python.srt |
9.63Кб |
| 3. Converting Data Types of Atomic Vectors in R.mp4 |
32.16Мб |
| 3. Converting Data Types of Atomic Vectors in R.srt |
3.48Кб |
| 3. Creating a Simple ANN in Artificial intelligence.mp4 |
79.51Мб |
| 3. Creating a Simple ANN in Artificial intelligence.srt |
14.47Кб |
| 3. Data Frame Attributes and Methods Part – III.mp4 |
48.03Мб |
| 3. Data Frame Attributes and Methods Part – III.srt |
9.29Кб |
| 3. Example - 2.mp4 |
76.26Мб |
| 3. Example - 2.srt |
18.52Кб |
| 3. Example in Seaborn.mp4 |
51.35Мб |
| 3. Example in Seaborn.srt |
9.63Кб |
| 3. FAQ about Complete data science with R, deep learning, machine learning.html |
20.02Кб |
| 3. Filtering Rows with Filter Function in R programming.mp4 |
169.67Мб |
| 3. Filtering Rows with Filter Function in R programming.srt |
15.14Кб |
| 3. Graphs and Charts in Python data science.mp4 |
139.85Мб |
| 3. Graphs and Charts in Python data science.srt |
19.16Кб |
| 3. Let's Meet Jupyter Notebook for Windows.mp4 |
25.38Мб |
| 3. Let's Meet Jupyter Notebook for Windows.srt |
5.70Кб |
| 3. Manipulating Values in DF.mp4 |
145.27Мб |
| 3. Manipulating Values in DF.srt |
13.82Кб |
| 3. Methods in Object Oriented Programming.mp4 |
23.64Мб |
| 3. Methods in Object Oriented Programming.srt |
4.08Кб |
| 3. Project - 3.mp4 |
82.38Мб |
| 3. Project - 3.srt |
14.92Кб |
| 3. Project II Bike Sharing.mp4 |
13.70Мб |
| 3. Project II Bike Sharing.srt |
4.94Кб |
| 3. Pyplot – Pylab - Matplotlib.mp4 |
26.61Мб |
| 3. Pyplot – Pylab - Matplotlib.srt |
7.21Кб |
| 3. Quiz Data Science, Python Data Science.html |
166б |
| 3. Turing Machine and Turing Test.mp4 |
40.91Мб |
| 3. Turing Machine and Turing Test.srt |
13.27Кб |
| 4.1 flight_details.csv |
2.30Кб |
| 4. Adding and Removing Variables in R Programming.mp4 |
41.49Мб |
| 4. Adding and Removing Variables in R Programming.srt |
3.78Кб |
| 4. Arranging Rows with Arrange Function in R.mp4 |
129.36Мб |
| 4. Arranging Rows with Arrange Function in R.srt |
12.13Кб |
| 4. Basics of Jupyter Notebook for Mac.mp4 |
14.78Мб |
| 4. Basics of Jupyter Notebook for Mac.srt |
2.58Кб |
| 4. Bike Sharing Project Answers.mp4 |
147.29Мб |
| 4. Bike Sharing Project Answers.srt |
29.97Кб |
| 4. Color Palettes in Seaborn.mp4 |
45.44Мб |
| 4. Color Palettes in Seaborn.srt |
14.54Кб |
| 4. Example - 3.mp4 |
47.79Мб |
| 4. Example - 3.srt |
11.36Кб |
| 4. Figure, Subplot and Axes in Matplotlib.mp4 |
65.66Мб |
| 4. Figure, Subplot and Axes in Matplotlib.srt |
17.33Кб |
| 4. Indexing and Slicing in Numpy Python.mp4 |
40.38Мб |
| 4. Indexing and Slicing in Numpy Python.srt |
8.57Кб |
| 4. Inheritance in Object Oriented Programming.mp4 |
32.63Мб |
| 4. Inheritance in Object Oriented Programming.srt |
6.67Кб |
| 4. Loops in Python.mp4 |
49.11Мб |
| 4. Loops in Python.srt |
11.91Кб |
| 4. Multi Index in Pandas.mp4 |
50.79Мб |
| 4. Multi Index in Pandas.srt |
11.85Кб |
| 4. Project - 4.mp4 |
72.27Мб |
| 4. Project - 4.srt |
14.58Кб |
| 4. quiz.html |
166б |
| 4. Tensor Operations in Artificial intelligence.mp4 |
62.11Мб |
| 4. Tensor Operations in Artificial intelligence.srt |
10.93Кб |
| 4. Test Functions in R.mp4 |
12.99Мб |
| 4. Test Functions in R.srt |
1.31Кб |
| 4. What is Deep Learning.mp4 |
20.53Мб |
| 4. What is Deep Learning.srt |
7.11Кб |
| 5.1 basic_details.csv |
145б |
| 5.1 House Sales.csv |
1.15Мб |
| 5.2 movie_scores.csv |
165б |
| 5.2 Project - III - Questions.txt |
737б |
| 5.3 salary.csv |
3.27Мб |
| 5.4 scores.csv |
1.42Кб |
| 5.5 youtube.csv |
714б |
| 5. Adding New Variables with Mutate Function in R.mp4 |
63.14Мб |
| 5. Adding New Variables with Mutate Function in R.srt |
6.82Кб |
| 5. Basic Plots in Seaborn.mp4 |
92.77Мб |
| 5. Basic Plots in Seaborn.srt |
22.30Кб |
| 5. Figure Customization in Matplotlib.mp4 |
59.06Мб |
| 5. Figure Customization in Matplotlib.srt |
13.86Кб |
| 5. Groupby Operations in Pandas.mp4 |
52.60Мб |
| 5. Groupby Operations in Pandas.srt |
12.17Кб |
| 5. Learning representations from data.mp4 |
34.90Мб |
| 5. Learning representations from data.srt |
13.42Кб |
| 5. Lists, Tuples, Dictionaries and Sets in Python.mp4 |
66.34Мб |
| 5. Lists, Tuples, Dictionaries and Sets in Python.srt |
17.44Кб |
| 5. Numpy Exercises.mp4 |
74.17Мб |
| 5. Numpy Exercises.srt |
14.67Кб |
| 5. Overriding and Overloading in OOP.mp4 |
58.87Мб |
| 5. Overriding and Overloading in OOP.srt |
9.28Кб |
| 5. Project III Housing and Property Sales.mp4 |
10.26Мб |
| 5. Project III Housing and Property Sales.srt |
3.58Кб |
| 5. Quiz.html |
166б |
| 5. Tensor Operations 2.mp4 |
29.78Мб |
| 5. Tensor Operations 2.srt |
7.95Кб |
| 5. Tibbles in R.mp4 |
83.73Мб |
| 5. Tibbles in R.srt |
8.61Кб |
| 5. Vector Recycling and Iterations in R.mp4 |
34.51Мб |
| 5. Vector Recycling and Iterations in R.srt |
4.56Кб |
| 6. Answer for Housing and Property Sales Project.mp4 |
155.04Мб |
| 6. Answer for Housing and Property Sales Project.srt |
28.45Кб |
| 6. Data Type Operators and Methods in Python.mp4 |
40.47Мб |
| 6. Data Type Operators and Methods in Python.srt |
8.89Кб |
| 6. Grouped Summaries with Summarize Function in R.mp4 |
148.62Мб |
| 6. Grouped Summaries with Summarize Function in R.srt |
17.60Кб |
| 6. Keras API in Artificial intelligence.mp4 |
23.31Мб |
| 6. Keras API in Artificial intelligence.srt |
7.97Кб |
| 6. Missing Data and Data Munging in Pandas.mp4 |
79.34Мб |
| 6. Missing Data and Data Munging in Pandas.srt |
21.89Кб |
| 6. Multi-Plots in Seaborn.mp4 |
40.94Мб |
| 6. Multi-Plots in Seaborn.srt |
10.66Кб |
| 6. Naming Vectors in R.mp4 |
34.20Мб |
| 6. Naming Vectors in R.srt |
4.26Кб |
| 6. Plot Customization in matplotlib.mp4 |
25.75Мб |
| 6. Plot Customization in matplotlib.srt |
6.58Кб |
| 6. Quiz.html |
166б |
| 6. Quiz Python data science, R programming.html |
166б |
| 6. Workflow of Machine Learning.mp4 |
31.67Мб |
| 6. Workflow of Machine Learning.srt |
10.73Кб |
| 7.1 2006-2018 EPL stats.csv |
53.87Кб |
| 7.1 age_data.csv |
661.47Кб |
| 7.2 Project - IV - Questions.txt |
1.05Кб |
| 7.2 water_usage.csv |
94б |
| 7. Grid, Spines, Ticks in python.mp4 |
22.40Мб |
| 7. Grid, Spines, Ticks in python.srt |
8.13Кб |
| 7. Machine Learning Methods.mp4 |
45.55Мб |
| 7. Machine Learning Methods.srt |
16.06Кб |
| 7. Missing Data and Data Munging Part II.mp4 |
40.80Мб |
| 7. Missing Data and Data Munging Part II.srt |
10.70Кб |
| 7. Modules in Python.mp4 |
21.06Мб |
| 7. Modules in Python.srt |
5.30Кб |
| 7. Optimizers in Artificial intelligence.mp4 |
42.33Мб |
| 7. Optimizers in Artificial intelligence.srt |
11.95Кб |
| 7. Project IV English Premier League.mp4 |
13.49Мб |
| 7. Project IV English Premier League.srt |
4.83Кб |
| 7. Regression Plots and Squarify in Seaborn.mp4 |
56.50Мб |
| 7. Regression Plots and Squarify in Seaborn.srt |
15.50Кб |
| 7. Subsetting Vectors in R.mp4 |
46.20Мб |
| 7. Subsetting Vectors in R.srt |
5.53Кб |
| 8.1 age_data.csv |
661.47Кб |
| 8.2 scatter_ex.xlsx |
11.34Кб |
| 8. Answers for English Premier League Project.mp4 |
153.55Мб |
| 8. Answers for English Premier League Project.srt |
28.12Кб |
| 8. Basic Plots in Matplotlib I.mp4 |
104.39Мб |
| 8. Basic Plots in Matplotlib I.srt |
30.32Кб |
| 8. Functions in Python.mp4 |
26.06Мб |
| 8. Functions in Python.srt |
8.87Кб |
| 8. How We Deal with Missing Data.mp4 |
69.23Мб |
| 8. How We Deal with Missing Data.srt |
15.48Кб |
| 8. Quiz.html |
166б |
| 8. Supervised Machine Learning Methods - 1.mp4 |
30.94Мб |
| 8. Supervised Machine Learning Methods - 1.srt |
10.37Кб |
| 8. What is TensorFlow.mp4 |
62.61Мб |
| 8. What is TensorFlow.srt |
20.05Кб |
| 9.1 winequality.csv |
82.23Кб |
| 9. Basic Plots in Matplotlib II.mp4 |
51.53Мб |
| 9. Basic Plots in Matplotlib II.srt |
15.63Кб |
| 9. Combining Data Frames in Pandas.mp4 |
103.61Мб |
| 9. Combining Data Frames in Pandas.srt |
17.08Кб |
| 9. Exercise Analyse in Python.mp4 |
5.70Мб |
| 9. Exercise Analyse in Python.srt |
2.17Кб |
| 9. Quiz.html |
166б |
| 9. Supervised Machine Learning Methods - 2.mp4 |
55.37Мб |
| 9. Supervised Machine Learning Methods - 2.srt |
15.24Кб |