Общая информация
Название [FreeCourseLab.com] Udemy - Machine Learning & Deep Learning in Python & R
Тип
Размер 13.15Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[FreeCourseLab.com].url 126б
001 ACF and PACF.mp4 41.22Мб
001 Basics of Decision Trees.mp4 42.64Мб
001 Basic Terminologies.mp4 40.42Мб
001 Boosting.mp4 30.58Мб
001 Classification tree.mp4 28.20Мб
001 CNN Introduction.mp4 51.15Мб
001 CNN model in Python - Preprocessing.mp4 40.63Мб
001 CNN on MNIST Fashion Dataset - Model Architecture.mp4 7.35Мб
001 Content flow.mp4 8.64Мб
001 Data Loading in Python.mp4 108.86Мб
001 Ensemble technique 1 - Bagging.mp4 28.14Мб
001 Ensemble technique 2 - Random Forests.mp4 18.19Мб
001 Gathering Business Knowledge.mp4 22.28Мб
001 ILSVRC.mp4 20.92Мб
001 Importing Data into R.mp4 53.67Мб
001 Installing Keras and Tensorflow.mp4 22.78Мб
001 Installing Python and Anaconda.mp4 16.27Мб
001 Installing R and R studio.mp4 35.71Мб
001 Introduction.mp4 29.39Мб
001 Introduction.mp4 12.26Мб
001 Introduction to Machine Learning.mp4 109.17Мб
001 Introduction to Neural Networks and Course flow.mp4 29.07Мб
001 Keras and Tensorflow.mp4 14.91Мб
001 Kernel Based Support Vector Machines.mp4 40.12Мб
001 Linear Discriminant Analysis.mp4 40.95Мб
001 Logistic Regression.mp4 32.92Мб
001 Project - Data Augmentation Preprocessing.mp4 41.41Мб
001 Project in R - Data Preprocessing.mp4 87.76Мб
001 Project - Introduction.mp4 49.39Мб
001 Project - Transfer Learning - VGG16 (Implementation).mp4 101.57Мб
001 Regression and Classification Models.mp4 4.03Мб
001 SARIMA model.mp4 39.02Мб
001 Support Vector classifiers.mp4 56.16Мб
001 Test-Train Split.mp4 39.29Мб
001 Test Train Split in Python.mp4 57.41Мб
001 The Data and the Data Dictionary.mp4 79.00Мб
001 The final milestone!.mp4 11.84Мб
001 The Problem Statement.mp4 9.37Мб
001 Three Classifiers and the problem statement.mp4 20.33Мб
001 Types of Data.mp4 21.76Мб
001 Understanding the results of classification models.mp4 41.64Мб
001 White Noise.mp4 11.37Мб
002 ARIMA model - Basics.mp4 21.36Мб
002 Basic Equations and Ordinary Least Squares (OLS) method.mp4 43.37Мб
002 Basics of R and R studio.mp4 38.84Мб
002 Building a Machine Learning Model.mp4 39.48Мб
002 CNN model in Python - structure and Compile.mp4 43.25Мб
002 CNN Project in R - Structure and Compile.mp4 46.11Мб
002 Congratulations & About your certificate.html 2.49Кб
002 Course Resources.html 1.23Кб
002 Data Exploration.mp4 20.50Мб
002 Data for the project.html 1.10Кб
002 Data Import in Python.mp4 22.06Мб
002 Data Normalization and Test-Train Split.mp4 111.78Мб
002 Data Preprocessing.mp4 67.02Мб
002 Ensemble technique 1 - Bagging in Python.mp4 77.30Мб
002 Ensemble technique 2 - Random Forests in Python.mp4 46.70Мб
002 Ensemble technique 3a - Boosting in Python.mp4 39.87Мб
002 Gradient Descent.mp4 60.34Мб
002 Installing Tensorflow and Keras.mp4 20.06Мб
002 LDA in Python.mp4 11.40Мб
002 LeNET.mp4 7.00Мб
002 Limitations of Support Vector Classifiers.mp4 10.80Мб
002 Naive (Persistence) model in Python.mp4 43.37Мб
002 Perceptron.mp4 44.75Мб
002 Project - Data Augmentation Training and Results.mp4 53.04Мб
002 Project - Transfer Learning - VGG16 (Performance).mp4 64.11Мб
002 Random Walk.mp4 21.16Мб
002 SARIMA model in Python.mp4 66.23Мб
002 Stride.mp4 16.58Мб
002 Summary of the three models.mp4 22.21Мб
002 Test-Train Split.mp4 50.48Мб
002 Test-Train Split in Python.mp4 33.10Мб
002 The Concept of a Hyperplane.mp4 29.42Мб
002 The Data set for Classification problem.mp4 18.57Мб
002 The Data set for the Regression problem.mp4 37.20Мб
002 This is a milestone!.mp4 20.66Мб
002 Time Series Forecasting - Use cases.mp4 25.91Мб
002 Time Series - Visualization Basics.mp4 63.72Мб
002 Training a Simple Logistic Model in Python.mp4 47.87Мб
002 Types of Statistics.mp4 10.93Мб
002 Understanding a Regression Tree.mp4 43.72Мб
002 Why can't we use Linear Regression_.mp4 16.93Мб
003 Activation Functions.mp4 34.61Мб
003 ARIMA model in Python.mp4 74.43Мб
003 Assessing accuracy of predicted coefficients.mp4 92.11Мб
003 Auto Regression Model - Basics.mp4 16.88Мб
003 Back Propagation.mp4 122.20Мб
003 Bagging in R.mp4 58.95Мб
003 Building,Compiling and Training.mp4 130.73Мб
003 Classification tree in Python _ Preprocessing.mp4 45.38Мб
003 CNN model in Python - Training and results.mp4 55.15Мб
003 Creating Model Architecture.mp4 71.60Мб
003 Dataset for classification.mp4 56.19Мб
003 Decomposing Time Series in Python.mp4 59.84Мб
003 Describing data Graphically.mp4 65.39Мб
003 Forecasting model creation - Steps.mp4 10.11Мб
003 Gradient Boosting in R.mp4 69.09Мб
003 Importing data for regression model.mp4 25.84Мб
003 Importing the dataset into R.mp4 13.46Мб
003 Linear Discriminant Analysis in R.mp4 74.35Мб
003 Maximum Margin Classifier.mp4 22.48Мб
003 More about test-train split.html 1.43Кб
003 Opening Jupyter Notebook.mp4 65.19Мб
003 Packages in R.mp4 82.94Мб
003 Padding.mp4 31.63Мб
003 Project - Data Preprocessing in Python.mp4 71.83Мб
003 Project in R - Training.mp4 24.58Мб
003 Stationary time Series.mp4 5.58Мб
003 Test-Train Split in R.mp4 74.23Мб
003 The Dataset and the Data Dictionary.mp4 69.28Мб
003 The stopping criteria for controlling tree growth.mp4 13.97Мб
003 Time Series - Visualization in Python.mp4 165.19Мб
003 Training a Simple Logistic model in R.mp4 25.56Мб
003 Using Grid Search in Python.mp4 80.66Мб
003 VGG16NET.mp4 10.35Мб
004 ARIMA model with Walk Forward Validation in Python.mp4 32.15Мб
004 Assessing Model Accuracy_ RSE and R squared.mp4 43.59Мб
004 Auto Regression Model creation in Python.mp4 53.49Мб
004 Classification SVM model using Linear Kernel.mp4 139.16Мб
004 Classification tree in Python _ Training.mp4 82.71Мб
004 Comparison - Pooling vs Without Pooling in Python.mp4 57.97Мб
004 Compiling and training.mp4 32.20Мб
004 Differencing.mp4 32.35Мб
004 EDD in Python.mp4 77.62Мб
004 Ensemble technique 3b - AdaBoost in Python.mp4 30.53Мб
004 Evaluating and Predicting.mp4 99.28Мб
004 Filters and Feature maps.mp4 52.71Мб
004 Forecasting model creation - Steps 1 (Goal).mp4 34.50Мб
004 GoogLeNet.mp4 21.37Мб
004 Importing Data in Python.mp4 27.83Мб
004 Inputting data part 1_ Inbuilt datasets of R.mp4 40.74Мб
004 Introduction to Jupyter.mp4 40.91Мб
004 K-Nearest Neighbors classifier.mp4 75.42Мб
004 Limitations of Maximum Margin Classifier.mp4 10.60Мб
004 Measures of Centers.mp4 38.57Мб
004 Normalization and Test-Train split.mp4 44.20Мб
004 Project in R - Model Performance.mp4 23.18Мб
004 Project - Training CNN model in Python.mp4 65.98Мб
004 Python - Creating Perceptron model.mp4 86.55Мб
004 Random Forest in R.mp4 30.72Мб
004 Result of Simple Logistic Regression.mp4 26.93Мб
004 Some Important Concepts.mp4 62.18Мб
004 The Data set for this part.mp4 37.26Мб
004 Time Series - Feature Engineering Basics.mp4 59.47Мб
004 X-y Split.mp4 15.18Мб
005 AdaBoosting in R.mp4 88.67Мб
005 ANN with NeuralNets Package.mp4 84.42Мб
005 Arithmetic operators in Python_ Python Basics.mp4 12.74Мб
005 Auto Regression with Walk Forward validation in Python.mp4 49.59Мб
005 Building a classification Tree in R.mp4 85.10Мб
005 Channels.mp4 67.77Мб
005 Differencing in Python.mp4 113.00Мб
005 Different ways to create ANN using Keras.mp4 10.81Мб
005 EDD in R.mp4 66.52Мб
005 Hyperparameter.mp4 45.35Мб
005 Hyperparameter Tuning for Linear Kernel.mp4 60.50Мб
005 Importing the Data set into Python.mp4 25.84Мб
005 Importing the dataset into R.mp4 13.11Мб
005 Inputting data part 2_ Manual data entry.mp4 25.52Мб
005 K-Nearest Neighbors in Python_ Part 1.mp4 37.23Мб
005 Logistic with multiple predictors.mp4 8.53Мб
005 Measures of Dispersion.mp4 22.85Мб
005 Model Performance.mp4 68.08Мб
005 Project in Python - model results.mp4 21.02Мб
005 Project in R - Data Augmentation.mp4 56.38Мб
005 Simple Linear Regression in Python.mp4 63.43Мб
005 Test-Train Split.mp4 24.86Мб
005 Time Series - Basic Notations.mp4 62.48Мб
005 Time Series - Feature Engineering in Python.mp4 112.69Мб
005 Transfer Learning.mp4 29.99Мб
006 Advantages and Disadvantages of Decision Trees.mp4 6.86Мб
006 Building Regression Model with Functional API.mp4 131.12Мб
006 Building the Neural Network using Keras.mp4 79.11Мб
006 Comparison - Pooling vs Without Pooling in R.mp4 44.60Мб
006 Ensemble technique 3c - XGBoost in Python.mp4 75.00Мб
006 Importing the Data set into R.mp4 43.70Мб
006 Inputting data part 3_ Importing from CSV or Text files.mp4 60.10Мб
006 K-Nearest Neighbors in Python_ Part 2.mp4 42.35Мб
006 Moving Average model -Basics.mp4 24.09Мб
006 Outlier treatment in Python.mp4 47.32Мб
006 Polynomial Kernel with Hyperparameter Tuning.mp4 83.14Мб
006 PoolingLayer.mp4 46.87Мб
006 Project in R - Validation Performance.mp4 23.69Мб
006 Project - Transfer Learning - VGG16.mp4 129.09Мб
006 Simple Linear Regression in R.mp4 40.82Мб
006 Standardizing the data.mp4 38.41Мб
006 Strings in Python_ Python Basics.mp4 64.43Мб
006 Time Series - Upsampling and Downsampling.mp4 16.95Мб
006 Training multiple predictor Logistic model in Python.mp4 26.25Мб
006 Univariate analysis and EDD.mp4 24.18Мб
007 Compiling and Training the Neural Network model.mp4 81.63Мб
007 Complex Architectures using Functional API.mp4 79.57Мб
007 Creating Barplots in R.mp4 96.73Мб
007 EDD in Python.mp4 61.80Мб
007 K-Nearest Neighbors in R.mp4 64.85Мб
007 Lists, Tuples and Directories_ Python Basics.mp4 60.32Мб
007 Missing value treatment in Python.mp4 17.92Мб
007 Moving Average model in Python.mp4 56.65Мб
007 Multiple Linear Regression.mp4 34.31Мб
007 Outlier Treatment in R.mp4 25.37Мб
007 Radial Kernel with Hyperparameter Tuning.mp4 56.68Мб
007 SVM based Regression Model in Python.mp4 67.63Мб
007 Time Series - Upsampling and Downsampling in Python.mp4 100.67Мб
007 Training multiple predictor Logistic model in R.mp4 15.78Мб
007 XGBoosting in R.mp4 161.30Мб
008 Confusion Matrix.mp4 21.10Мб
008 Creating Histograms in R.mp4 42.02Мб
008 Dummy Variable creation in Python.mp4 24.94Мб
008 EDD in R.mp4 96.98Мб
008 Evaluating performance and Predicting using Keras.mp4 69.91Мб
008 Missing Value Imputation in Python.mp4 22.56Мб
008 Saving - Restoring Models and Using Callbacks.mp4 216.03Мб
008 SVM based Regression Model in R.mp4 106.12Мб
008 The Data set for the Classification problem.mp4 18.55Мб
008 The F - statistic.mp4 55.98Мб
008 Time Series - Power Transformation.mp4 14.85Мб
008 Working with Numpy Library of Python.mp4 43.87Мб
009 Building Neural Network for Regression Problem.mp4 155.90Мб
009 Classification model - Preprocessing.mp4 45.37Мб
009 Creating Confusion Matrix in Python.mp4 51.25Мб
009 Dependent- Independent Data split in Python.mp4 15.18Мб
009 Interpreting results of Categorical variables.mp4 22.50Мб
009 Missing Value imputation in R.mp4 19.05Мб
009 Moving Average.mp4 38.70Мб
009 Outlier Treatment.mp4 24.49Мб
009 Working with Pandas Library of Python.mp4 46.88Мб
010 Classification model - Standardizing the data.mp4 9.72Мб
010 Evaluating performance of model.mp4 35.16Мб
010 Exponential Smoothing.mp4 8.38Мб
010 Multiple Linear Regression in Python.mp4 69.73Мб
010 Outlier Treatment in Python.mp4 70.25Мб
010 Test-Train split in Python.mp4 24.87Мб
010 Using Functional API for complex architectures.mp4 92.10Мб
010 Variable transformation and Deletion in Python.mp4 29.25Мб
010 Working with Seaborn Library of Python.mp4 40.36Мб
011 Evaluating model performance in Python.mp4 9.01Мб
011 Multiple Linear Regression in R.mp4 62.37Мб
011 Outlier Treatment in R.mp4 30.74Мб
011 Saving - Restoring Models and Using Callbacks.mp4 151.58Мб
011 Splitting Data into Test and Train Set in R.mp4 43.97Мб
011 SVM Based classification model.mp4 64.12Мб
011 Variable transformation in R.mp4 38.02Мб
012 Creating Decision tree in Python.mp4 17.87Мб
012 Dummy variable creation in Python.mp4 26.37Мб
012 Hyperparameter Tuning.mp4 60.63Мб
012 Hyper Parameter Tuning.mp4 57.74Мб
012 Missing Value Imputation.mp4 24.99Мб
012 Predicting probabilities, assigning classes and making Confusion Matrix in R.mp4 55.69Мб
012 Test-train split.mp4 41.88Мб
013 Bias Variance trade-off.mp4 25.09Мб
013 Building a Regression Tree in R.mp4 103.33Мб
013 Dummy variable creation in R.mp4 44.35Мб
013 Missing Value Imputation in Python.mp4 23.42Мб
013 Polynomial Kernel with Hyperparameter Tuning.mp4 22.92Мб
014 Evaluating model performance in Python.mp4 16.44Мб
014 Missing Value imputation in R.mp4 26.00Мб
014 Radial Kernel with Hyperparameter Tuning.mp4 37.21Мб
014 Test train split in Python.mp4 44.88Мб
015 Plotting decision tree in Python.mp4 21.47Мб
015 Seasonality in Data.mp4 17.01Мб
015 Test-Train Split in R.mp4 75.60Мб
016 Bi-variate analysis and Variable transformation.mp4 100.39Мб
016 Pruning a tree.mp4 18.46Мб
016 Regression models other than OLS.mp4 16.54Мб
017 Pruning a tree in Python.mp4 73.50Мб
017 Subset selection techniques.mp4 79.06Мб
017 Variable transformation and deletion in Python.mp4 44.11Мб
018 Pruning a Tree in R.mp4 82.09Мб
018 Subset selection in R.mp4 63.53Мб
018 Variable transformation in R.mp4 55.42Мб
019 Non-usable variables.mp4 20.24Мб
019 Shrinkage methods_ Ridge and Lasso.mp4 33.34Мб
020 Dummy variable creation_ Handling qualitative data.mp4 36.80Мб
020 Ridge regression and Lasso in Python.mp4 128.84Мб
021 Dummy variable creation in Python.mp4 26.53Мб
021 Ridge regression and Lasso in R.mp4 103.43Мб
022 Dummy variable creation in R.mp4 43.98Мб
022 Heteroscedasticity.mp4 14.49Мб
023 Correlation Analysis.mp4 71.59Мб
024 Correlation Analysis in Python.mp4 55.30Мб
025 Correlation Matrix in R.mp4 83.13Мб
Статистика распространения по странам
Всего 0
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент