Общая информация
Название Autonomous Cars The Complete Computer Vision Course 2021
Тип
Размер 6.37Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[TGx]Downloaded from torrentgalaxy.to .txt 585б
0 100б
1 221б
1. Course structure.mp4 19.26Мб
1. Course structure.srt 3.77Кб
1. Introduction.mp4 24.35Мб
1. Introduction.mp4 10.73Мб
1. Introduction.srt 2.58Кб
1. Introduction.srt 3.54Кб
1. Introduction to convolution neural network.mp4 44.18Мб
1. Introduction to convolution neural network.srt 7.74Кб
1. Introduction to semantic segmentation.mp4 12.78Мб
1. Introduction to semantic segmentation.srt 2.71Кб
1. Introduction to the project.mp4 28.62Мб
1. Introduction to the project.mp4 7.65Мб
1. Introduction to the project.srt 4.30Кб
1. Introduction to the project.srt 1.85Кб
1. Introduction to tracking objects.mp4 7.10Мб
1. Introduction to tracking objects.srt 1.42Кб
1. Thank you.mp4 23.30Мб
1. Thank you.srt 1.62Кб
1. What is activation function.mp4 7.61Мб
1. What is activation function.srt 1.45Кб
10 20.21Кб
10. Benefit of Self-Driving Cars.mp4 24.70Мб
10. Benefit of Self-Driving Cars.srt 5.34Кб
10. Implementing pedestrians detection Part 3.mp4 105.93Мб
10. Implementing pedestrians detection Part 3.srt 10.08Кб
10. Introduction to RGB space.mp4 4.16Мб
10. Introduction to RGB space.srt 635б
10. Saving and loading models.mp4 11.93Мб
10. Saving and loading models.srt 1.97Кб
10. Semantic segmentation Implementation Part 1.mp4 83.92Мб
10. Semantic segmentation Implementation Part 1.srt 10.90Кб
10. Summary of the project.mp4 4.24Мб
10. Summary of the project.srt 1.06Кб
100 227.63Кб
101 76.10Кб
102 421.36Кб
103 241.89Кб
104 280.71Кб
105 452.59Кб
106 842.93Кб
107 843.20Кб
108 43.08Кб
109 120.35Кб
11 617.11Кб
11.1 Udemy_Auto_mpg.ipynb 280.43Кб
11.1 Udemy_Detecting_pedestrian (2).ipynb 47.67Мб
11. Building the safe systems.mp4 27.17Мб
11. Building the safe systems.srt 5.87Кб
11. Implementing pedestrians detection Part 4.mp4 98.83Мб
11. Implementing pedestrians detection Part 4.srt 9.23Кб
11. Introduction to HSV space.mp4 15.79Мб
11. Introduction to HSV space.srt 2.54Кб
11. Semantic segmentation Implementation Part 2.mp4 92.23Мб
11. Semantic segmentation Implementation Part 2.srt 8.64Кб
11. Summary of the project.mp4 34.53Мб
11. Summary of the project.srt 4.19Кб
110 174.88Кб
111 299.85Кб
112 639.36Кб
113 816.10Кб
114 7.37Кб
115 8.03Кб
116 355.51Кб
117 403.95Кб
118 763.55Кб
119 801.78Кб
12 349.35Кб
12.1 Udemy_Semantic_Segmentation.ipynb 588.52Кб
12. Deep learning and computer vision approaches for Self-Driving Cars.mp4 28.49Мб
12. Deep learning and computer vision approaches for Self-Driving Cars.srt 5.00Кб
12. Introduction to Color space manipulation.mp4 5.92Мб
12. Introduction to Color space manipulation.srt 1.11Кб
12. Semantic segmentation Implementation Part 3.mp4 39.98Мб
12. Semantic segmentation Implementation Part 3.srt 3.69Кб
12. Summary of the section.mp4 7.99Мб
12. Summary of the section.srt 1.61Кб
120 829.55Кб
121 920.38Кб
122 554.80Кб
123 582.09Кб
124 932.64Кб
125 85.13Кб
126 742.75Кб
127 960.89Кб
128 313.02Кб
129 705.20Кб
13 72.88Кб
13.1 enet-cityscapes.zip 2.65Мб
13. Implementing Color space manipulation Part 1.mp4 54.01Мб
13. Implementing Color space manipulation Part 1.srt 5.92Кб
13. LIDAR and computer vision for Self-Driving Cars vision.mp4 15.94Мб
13. LIDAR and computer vision for Self-Driving Cars vision.srt 3.10Кб
13. Semantic segmentation Implementation Part 4.mp4 199.87Мб
13. Semantic segmentation Implementation Part 4.srt 17.23Кб
130 778.50Кб
131 860.26Кб
132 260.07Кб
133 763.46Кб
134 272.70Кб
135 356.26Кб
136 431.05Кб
137 602.26Кб
138 615.06Кб
139 621.68Кб
14 202.45Кб
14.1 Udemy_Semantic_Segmentation.ipynb 198.14Мб
14. Implementing Color space manipulation Part 2.mp4 121.66Мб
14. Implementing Color space manipulation Part 2.srt 8.74Кб
14. Semantic segmentation Implementation Part 5.mp4 54.46Мб
14. Semantic segmentation Implementation Part 5.srt 5.46Кб
140 768.25Кб
141 96.84Кб
142 145.97Кб
15 414.64Кб
15.1 Udemy_Converting_images_from_RGB_to_grayscale.ipynb 15.73Мб
15. Implementing Color space manipulation Part 3.mp4 49.90Мб
15. Implementing Color space manipulation Part 3.srt 3.42Кб
15. Summary of the section.mp4 7.19Мб
15. Summary of the section.srt 1.67Кб
16 76.55Кб
16. Introduction to convolution.mp4 26.14Мб
16. Introduction to convolution.srt 4.46Кб
17 80.84Кб
17. Introduction to Sharpening and blurring.mp4 16.51Мб
17. Introduction to Sharpening and blurring.srt 3.22Кб
18 615.71Кб
18.1 Udemy_Converting_images_from_RGB_to_grayscale (1).ipynb 22.73Мб
18. Sharpening and blurring Implementation.mp4 109.60Мб
18. Sharpening and blurring Implementation.srt 7.90Кб
19 179.05Кб
19. Introduction to Edge detection and gradient calculation.mp4 13.25Мб
19. Introduction to Edge detection and gradient calculation.srt 2.51Кб
2 414б
2. Background subtraction.mp4 25.52Мб
2. Background subtraction.srt 5.31Кб
2. Computer vision Introduction.mp4 14.35Мб
2. Computer vision Introduction.srt 2.54Кб
2. Convolution Layers.mp4 16.16Мб
2. Convolution Layers.srt 4.12Кб
2. How To Make The Most Out Of This Course.mp4 8.20Мб
2. How To Make The Most Out Of This Course.srt 2.45Кб
2. Importing Data and Libraries.mp4 78.47Мб
2. Importing Data and Libraries.srt 8.24Кб
2. Loading the image using OpenCV and Converting the image into grayscale.mp4 50.99Мб
2. Loading the image using OpenCV and Converting the image into grayscale.srt 5.58Кб
2. Semantic Segmentation Achitecture.mp4 15.97Мб
2. Semantic Segmentation Achitecture.srt 2.71Кб
2. What is Rectified Linear Unit function.mp4 4.31Мб
2. What is Rectified Linear Unit function.srt 1.71Кб
2. What makes YOLO different.mp4 15.83Мб
2. What makes YOLO different.srt 2.17Кб
20 785.73Кб
20. Introduction to Sobel.mp4 11.59Мб
20. Introduction to Sobel.srt 2.26Кб
21 465.52Кб
21. Introduction to Laplacian edge detector.mp4 8.88Мб
21. Introduction to Laplacian edge detector.srt 1.45Кб
22 377.27Кб
22.1 Chapter_4_Code_Notebook.ipynb 30.00Мб
22. Canny edge detection.mp4 80.71Мб
22. Canny edge detection.srt 5.25Кб
23 285.21Кб
23. Application of image transformation.mp4 6.09Мб
23. Application of image transformation.srt 1.50Кб
24 79.73Кб
24. Introduction to Affine and Projective transformation.mp4 14.30Мб
24. Introduction to Affine and Projective transformation.srt 2.41Кб
25 293.80Кб
25. Image rotation Implementation.mp4 39.07Мб
25. Image rotation Implementation.srt 3.71Кб
26 547.46Кб
26.1 Udemy_Converting_images_from_RGB_to_grayscale.ipynb 25.53Мб
26. Image translation Implementation.mp4 36.70Мб
26. Image translation Implementation.srt 3.85Кб
27 712.33Кб
27.1 Udemy_Converting_images_from_RGB_to_grayscale.ipynb 25.65Мб
27. Image resizing Implementation.mp4 23.55Мб
27. Image resizing Implementation.srt 2.87Кб
28 113.52Кб
28. Introduction to Perspective transformation.mp4 8.38Мб
28. Introduction to Perspective transformation.srt 1.49Кб
29 428.14Кб
29.1 Udemy_Converting_images_from_RGB_to_grayscale (1).ipynb 26.50Мб
29. Perspective transformation Implementation.mp4 65.89Мб
29. Perspective transformation Implementation.srt 6.71Кб
3
3.1 Udemy_MOG_background_subtractor.ipynb 86.72Мб
3.1 Udemy_road_markings.ipynb 1.21Мб
3.2 hallway.mpg 2.73Мб
3. Challenges in Computer Vision.mp4 24.91Мб
3. Challenges in Computer Vision.srt 3.88Кб
3. Different Semantic Segmentation Architectures.mp4 4.69Мб
3. Different Semantic Segmentation Architectures.srt 1.05Кб
3. MOG background subtractor.mp4 133.98Мб
3. MOG background subtractor.srt 14.13Кб
3. Pooling Layers.mp4 20.86Мб
3. Pooling Layers.srt 4.00Кб
3. Smoothing the image and Implementing Canny Edge detection.mp4 29.88Мб
3. Smoothing the image and Implementing Canny Edge detection.srt 3.96Кб
3. Splitting the dataset into training test and test set.mp4 23.85Мб
3. Splitting the dataset into training test and test set.srt 2.70Кб
3. The YOLO loss function.mp4 10.18Мб
3. The YOLO loss function.srt 1.63Кб
3. What is ANN.mp4 18.25Мб
3. What is ANN.srt 4.23Кб
3. What is Leaky ReLU function.mp4 2.25Мб
3. What is Leaky ReLU function.srt 844б
30 439.46Кб
30.1 Udemy_Converting_images_from_RGB_to_grayscale (2).ipynb 27.16Мб
30. Cropping, dilating, and eroding an image Implementation.mp4 50.17Мб
30. Cropping, dilating, and eroding an image Implementation.srt 5.45Кб
31 316.88Кб
31.1 Udemy_Converting_images_from_RGB_to_grayscale (3).ipynb 10.56Мб
31. Masking regions of interest.mp4 91.55Мб
31. Masking regions of interest.srt 9.21Кб
32 91.66Кб
32. Introduction to The Hough transform.mp4 33.15Мб
32. Introduction to The Hough transform.srt 4.88Кб
33 1022.82Кб
33.1 The_Hough_transform.ipynb 50.72Кб
33. The Hough transform Implementation.mp4 59.69Мб
33. The Hough transform Implementation.srt 6.74Кб
34 557.01Кб
34. Summary of the section.mp4 6.46Мб
34. Summary of the section.srt 1.60Кб
35 1017.96Кб
36 135.55Кб
37 479.72Кб
38 896.47Кб
39 821.08Кб
4 83б
4.1 Udemy_KNN_background_subtractor.ipynb 62.58Мб
4.2 traffic.flv 2.39Мб
4. Introduction to the project.mp4 36.94Мб
4. Introduction to the project.srt 4.99Кб
4. KNN background subtractor.mp4 48.70Мб
4. KNN background subtractor.srt 5.63Кб
4. Masking the region of interest.mp4 40.11Мб
4. Masking the region of interest.srt 4.97Кб
4. Requirement of Self-Driving Cars.mp4 24.91Мб
4. Requirement of Self-Driving Cars.srt 3.88Кб
4. The YOLO architecture.mp4 8.96Мб
4. The YOLO architecture.srt 1.73Кб
4. U-NET.mp4 12.80Мб
4. U-NET.srt 2.88Кб
4. Visualizing data.mp4 61.57Мб
4. Visualizing data.srt 4.88Кб
4. What is Neuron.mp4 7.22Мб
4. What is Neuron.srt 1.79Кб
4. What is tanh function.mp4 2.40Мб
4. What is tanh function.srt 1.12Кб
40 9.17Кб
41 849.12Кб
42 97.58Кб
43 307.94Кб
44 338.39Кб
45 844.56Кб
46 727.21Кб
47 909.13Кб
48 19.69Кб
49 947.67Кб
5 725.70Кб
5.1 traffic-signs-data-20210225T074843Z-001.zip 117.80Мб
5.1 yolo.h5 237.19Мб
5.2 coco_classes.txt 625б
5.3 images3-20210325T032710Z-001.zip 346.71Кб
5.4 Udemy_Image_YOLO_Implementation.ipynb 10.08Кб
5. Applying bitwise_and.mp4 22.89Мб
5. Applying bitwise_and.srt 2.76Кб
5. Detecting pedestrians Introduction.mp4 51.20Мб
5. Detecting pedestrians Introduction.srt 7.25Кб
5. Digital representation of an image.mp4 31.26Мб
5. Digital representation of an image.srt 5.41Кб
5. Loading data.mp4 56.00Мб
5. Loading data.srt 7.72Кб
5. SegNet.mp4 10.76Мб
5. SegNet.srt 1.98Кб
5. Standardizing data.mp4 14.46Мб
5. Standardizing data.srt 2.10Кб
5. What is Multilayer Neural Network.mp4 40.29Мб
5. What is Multilayer Neural Network.srt 6.93Кб
5. What is Softmax function.mp4 2.41Мб
5. What is Softmax function.srt 1.23Кб
5. YOLO Implementation Part 1.mp4 177.40Мб
5. YOLO Implementation Part 1.srt 19.07Кб
50 108.71Кб
51 522.55Кб
52 64.39Кб
53 105.00Кб
54 302.49Кб
55 481.31Кб
56 941.97Кб
57 870.22Кб
58 75.66Кб
59 381.61Кб
6 40.29Кб
6.1 Udemy_Converting_images_from_RGB_to_grayscale.ipynb 236.17Кб
6.1 Udemy_road_markings (1).ipynb 1.91Мб
6.1 Udemy_YOLO_detection_video.ipynb 178.96Мб
6.2 images2-20210319T024702Z-001.zip 638.45Кб
6.2 video_sample.mp4 8.71Мб
6. Applying the Hough transform.mp4 53.87Мб
6. Applying the Hough transform.srt 6.48Кб
6. Building and compiling the model.mp4 53.12Мб
6. Building and compiling the model.srt 6.17Кб
6. Converting images from RGB to grayscale.mp4 37.49Мб
6. Converting images from RGB to grayscale.srt 5.53Кб
6. Encoder and Decoder.mp4 5.06Мб
6. Encoder and Decoder.srt 1.18Кб
6. Exploring image.mp4 6.43Мб
6. Exploring image.srt 1.31Кб
6. MeanShift Introduction.mp4 72.30Мб
6. MeanShift Introduction.srt 7.30Кб
6. What is keras (Optional from AI in Healthcare course).mp4 34.08Мб
6. What is keras (Optional from AI in Healthcare course).srt 6.05Кб
6. What is The Exponential linear unit function.mp4 1.86Мб
6. What is The Exponential linear unit function.srt 822б
6. YOLO Implementation Part 2.mp4 329.85Мб
6. YOLO Implementation Part 2.srt 23.17Кб
60 760.03Кб
61 1023.91Кб
62 119.68Кб
63 390.51Кб
64 525.41Кб
65 853.09Кб
66 860.96Кб
67 508.67Кб
68 881.82Кб
69 360.94Кб
7 616.69Кб
7.1 Udemy_Converting_images_from_RGB_to_grayscale (1).ipynb 259.59Кб
7.1 Udemy_Detecting_pedestrian.ipynb 2.58Кб
7.1 Udemy_road_markings (2).ipynb 2.58Мб
7. Data Preperation.mp4 38.89Мб
7. Data Preperation.srt 5.47Кб
7. Detection with the grayscale image.mp4 31.63Мб
7. Detection with the grayscale image.srt 4.50Кб
7. Important Terms in this course.mp4 105.92Мб
7. Important Terms in this course.srt 11.16Кб
7. Kalman filter.mp4 53.53Мб
7. Kalman filter.srt 4.49Кб
7. Optimizing the detected road markings.mp4 193.40Мб
7. Optimizing the detected road markings.srt 17.77Кб
7. Pyramid Scene Parsing Network.mp4 12.93Мб
7. Pyramid Scene Parsing Network.srt 2.21Кб
7. Training the model.mp4 124.40Мб
7. Training the model.srt 12.03Кб
7. What is Swish function.mp4 3.75Мб
7. What is Swish function.srt 1.92Кб
70 484.37Кб
71 488.34Кб
72 89.58Кб
73 89.72Кб
74 307.70Кб
75 653.22Кб
76 662.61Кб
77 154.38Кб
78 247.86Кб
79 457.91Кб
8 767.46Кб
8.1 Udemy_Converting_images_from_RGB_to_grayscale (1).ipynb 259.59Кб
8.1 Udemy_road_markings_videos.ipynb 156.25Мб
8.1 Udemy_Traffic_sign.ipynb 49.27Кб
8.2 test2.mp4 31.93Мб
8. DeepLabv3+.mp4 10.18Мб
8. DeepLabv3+.srt 2.12Кб
8. Detecting road markings in a video.mp4 150.21Мб
8. Detecting road markings in a video.srt 16.44Кб
8. Implementing pedestrians detection Part 1.mp4 119.93Мб
8. Implementing pedestrians detection Part 1.srt 11.63Кб
8. Important note about tools in this course.mp4 5.27Мб
8. Important note about tools in this course.srt 2.18Кб
8. Predicting new, unseen data.mp4 24.36Мб
8. Predicting new, unseen data.srt 3.25Кб
8. QUICK FIX Video.mp4 8.83Мб
8. QUICK FIX Video.srt 977б
8. Training model.mp4 105.40Мб
8. Training model.srt 10.74Кб
8. What is sigmoid function.mp4 3.25Мб
8. What is sigmoid function.srt 1.50Кб
80 719.00Кб
81 115.91Кб
82 275.00Кб
83 146.98Кб
84 762.07Кб
85 766.12Кб
86 504.15Кб
87 855.34Кб
88 32.28Кб
89 65.56Кб
9 806.91Кб
9.1 Udemy_Detecting_pedestrian (1).ipynb 8.19Кб
9.1 Udemy_Traffic_sign (1).ipynb 236.65Кб
9. Activation Function Implementation.mp4 36.90Мб
9. Activation Function Implementation.srt 6.85Кб
9. E-Net.mp4 23.76Мб
9. E-Net.srt 4.18Кб
9. Evaluating the model's performance.mp4 13.94Мб
9. Evaluating the model's performance.srt 2.05Кб
9. Implementing pedestrians detection Part 2.mp4 88.63Мб
9. Implementing pedestrians detection Part 2.srt 8.72Кб
9. Introduction to Self-Driving Cars.mp4 58.91Мб
9. Introduction to Self-Driving Cars.srt 9.02Кб
9. Introduction to the Color space techniques.mp4 7.25Мб
9. Introduction to the Color space techniques.srt 1.31Кб
9. Model accuracy.mp4 181.35Мб
9. Model accuracy.srt 18.56Кб
9. Summary of the section.mp4 7.99Мб
9. Summary of the section.srt 1.80Кб
90 173.98Кб
91 212.88Кб
92 273.98Кб
93 553.06Кб
94 660.77Кб
95 715.77Кб
96 60.67Кб
97 767.93Кб
98 70.60Кб
99 205.31Кб
TutsNode.com.txt 63б
Статистика распространения по странам
Китай (CN) 2
Турция (TR) 2
Россия (RU) 1
Гонконг (HK) 1
Франция (FR) 1
Саудовская Аравия (SA) 1
Всего 8
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент