Общая информация
Название 2021 Python for Machine Learning & Data Science Masterclass
Тип
Размер 10.59Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[TGx]Downloaded from torrentgalaxy.to .txt 585б
0 16б
1 18б
1.1 11-Logistic-Regression-Models.zip 2.02Мб
1.1 12-K-Nearest-Neighbors.zip 1.35Мб
1.1 13-Support-Vector-Machines.zip 1.51Мб
1.1 14-Decision-Trees.zip 1.79Мб
1.1 data_banknote_authentication.csv 45.38Кб
1.2 15-Random-Forests.zip 3.94Мб
1. A note from Jose on Feature Engineering and Data Preparation.html 990б
1. Capstone Project Overview.mp4 93.20Мб
1. Capstone Project Overview.srt 20.60Кб
1. EARLY BIRD INFO.html 550б
1. Early Bird Note on Downloading .zip for Logistic Regression Notes.html 523б
1. Introduction to KNN Section.mp4 11.41Мб
1. Introduction to KNN Section.srt 3.63Кб
1. Introduction to Linear Regression Section.mp4 8.87Мб
1. Introduction to Linear Regression Section.srt 2.68Кб
1. Introduction to Machine Learning Overview Section.mp4 29.73Мб
1. Introduction to Machine Learning Overview Section.srt 8.58Кб
1. Introduction to Matplotlib.mp4 21.57Мб
1. Introduction to Matplotlib.srt 6.72Кб
1. Introduction to NumPy.mp4 11.28Мб
1. Introduction to NumPy.srt 3.01Кб
1. Introduction to Pandas.mp4 21.01Мб
1. Introduction to Pandas.srt 7.24Кб
1. Introduction to Random Forests Section.mp4 9.49Мб
1. Introduction to Random Forests Section.srt 2.81Кб
1. Introduction to Seaborn.mp4 20.00Мб
1. Introduction to Seaborn.srt 6.51Кб
1. Introduction to Support Vector Machines.mp4 9.39Мб
1. Introduction to Support Vector Machines.srt 2.30Кб
1. Introduction to Tree Based Methods.mp4 7.43Мб
1. Introduction to Tree Based Methods.srt 2.21Кб
1. Machine Learning Pathway.mp4 40.54Мб
1. Machine Learning Pathway.srt 15.79Кб
1. OPTIONAL Python Crash Course.html 472б
1. Section Overview and Introduction.mp4 20.53Мб
1. Section Overview and Introduction.srt 5.05Кб
10 1.22Мб
10. Classification Metrics - Precison, Recall, F1-Score.mp4 33.06Мб
10. Classification Metrics - Precison, Recall, F1-Score.srt 8.34Кб
10. Coding Regression with Random Forest Regressor - Part Three - Polynomials.mp4 60.02Мб
10. Coding Regression with Random Forest Regressor - Part Three - Polynomials.srt 15.34Кб
10. Linear Regression - Residual Plots.mp4 59.52Мб
10. Linear Regression - Residual Plots.srt 20.22Кб
10. Matplotlib Exercise Questions Overview.mp4 50.78Мб
10. Matplotlib Exercise Questions Overview.srt 9.33Кб
10. Pandas - Useful Methods - Apply on Single Column.mp4 73.05Мб
10. Pandas - Useful Methods - Apply on Single Column.srt 20.23Кб
10. Seaborn - Comparison Plots - Coding with Seaborn.mp4 70.16Мб
10. Seaborn - Comparison Plots - Coding with Seaborn.srt 15.70Кб
10. Support Vector Machine Project Solutions.mp4 108.85Мб
10. Support Vector Machine Project Solutions.srt 25.94Кб
100 1.41Мб
101 1.43Мб
102 400.81Кб
103 1.01Мб
104 1.65Мб
105 398.27Кб
106 719.74Кб
107 1.09Мб
108 1.23Мб
109 1.76Мб
11 1.05Мб
11. Classification Metrics - ROC Curves.mp4 34.29Мб
11. Classification Metrics - ROC Curves.srt 11.06Кб
11. Coding Regression with Random Forest Regressor - Part Four - Advanced Models.mp4 59.02Мб
11. Coding Regression with Random Forest Regressor - Part Four - Advanced Models.srt 15.45Кб
11. Linear Regression - Model Deployment and Coefficient Interpretation.mp4 88.19Мб
11. Linear Regression - Model Deployment and Coefficient Interpretation.srt 25.62Кб
11. Matplotlib Exercise Questions - Solutions.mp4 123.11Мб
11. Matplotlib Exercise Questions - Solutions.srt 24.53Кб
11. Pandas - Useful Methods - Apply on Multiple Columns.mp4 98.55Мб
11. Pandas - Useful Methods - Apply on Multiple Columns.srt 25.93Кб
11. Seaborn Grid Plots.mp4 91.62Мб
11. Seaborn Grid Plots.srt 20.50Кб
110 1.97Мб
111 985.71Кб
112 949.06Кб
113 1.46Мб
114 1.54Мб
115 1.56Мб
116 116.89Кб
117 948.56Кб
118 1.32Мб
119 1.53Мб
12 889.95Кб
12. Logistic Regression with Scikit-Learn - Part Three - Performance Evaluation.mp4 74.21Мб
12. Logistic Regression with Scikit-Learn - Part Three - Performance Evaluation.srt 23.43Кб
12. Pandas - Useful Methods - Statistical Information and Sorting.mp4 85.65Мб
12. Pandas - Useful Methods - Statistical Information and Sorting.srt 23.40Кб
12. Polynomial Regression - Theory and Motivation.mp4 44.24Мб
12. Polynomial Regression - Theory and Motivation.srt 11.21Кб
12. Seaborn - Matrix Plots.mp4 71.25Мб
12. Seaborn - Matrix Plots.srt 21.09Кб
120 1.68Мб
121 1.98Мб
122 200.96Кб
123 320.47Кб
124 320.47Кб
125 345.82Кб
126 760.24Кб
127 1.42Мб
128 1.56Мб
129 1.71Мб
13 133.09Кб
13. Missing Data - Overview.mp4 53.18Мб
13. Missing Data - Overview.srt 18.36Кб
13. Multi-Class Classification with Logistic Regression - Part One - Data and EDA.mp4 44.03Мб
13. Multi-Class Classification with Logistic Regression - Part One - Data and EDA.srt 12.01Кб
13. Polynomial Regression - Creating Polynomial Features.mp4 52.62Мб
13. Polynomial Regression - Creating Polynomial Features.srt 16.39Кб
13. Seaborn Plot Exercises Overview.mp4 49.91Мб
13. Seaborn Plot Exercises Overview.srt 11.26Кб
130 1.83Мб
131 1.90Мб
132 675.41Кб
133 965.98Кб
134 1.95Мб
135 329.06Кб
136 594.42Кб
137 838.84Кб
138 280.27Кб
139 495.38Кб
14 1.63Мб
14. Missing Data - Pandas Operations.mp4 97.86Мб
14. Missing Data - Pandas Operations.srt 27.41Кб
14. Multi-Class Classification with Logistic Regression - Part Two - Model.mp4 110.96Мб
14. Multi-Class Classification with Logistic Regression - Part Two - Model.srt 23.82Кб
14. Polynomial Regression - Training and Evaluation.mp4 48.87Мб
14. Polynomial Regression - Training and Evaluation.srt 14.17Кб
14. Seaborn Plot Exercises Solutions.mp4 110.60Мб
14. Seaborn Plot Exercises Solutions.srt 22.40Кб
140 1.06Мб
141 100.75Кб
142 397.38Кб
143 531.26Кб
144 1.74Мб
145 198.46Кб
146 925.90Кб
147 1.45Мб
148 1.63Мб
149 252.08Кб
15 774.24Кб
15. Bias Variance Trade-Off.mp4 43.04Мб
15. Bias Variance Trade-Off.srt 15.94Кб
15. GroupBy Operations - Part One.mp4 93.11Мб
15. GroupBy Operations - Part One.srt 21.41Кб
15. Logistic Regression Exercise Project Overview.mp4 35.80Мб
15. Logistic Regression Exercise Project Overview.srt 6.49Кб
150 662.13Кб
151 850.24Кб
152 1.75Мб
153 143.49Кб
154 444.46Кб
155 1010.56Кб
156 1.47Мб
157 2.00Мб
158 729.46Кб
159 887.65Кб
16 968.53Кб
16. GroupBy Operations - Part Two - MultiIndex.mp4 105.86Мб
16. GroupBy Operations - Part Two - MultiIndex.srt 20.86Кб
16. Logistic Regression Project Exercise - Solutions.mp4 168.39Мб
16. Logistic Regression Project Exercise - Solutions.srt 35.59Кб
16. Polynomial Regression - Choosing Degree of Polynomial.mp4 72.93Мб
16. Polynomial Regression - Choosing Degree of Polynomial.srt 19.88Кб
160 961.79Кб
161 495.36Кб
162 601.27Кб
163 733.36Кб
164 521.05Кб
165 629.59Кб
166 1.13Мб
167 582.55Кб
168 1016.18Кб
169 66.51Кб
17 1.04Мб
17. Combining DataFrames - Concatenation.mp4 50.51Мб
17. Combining DataFrames - Concatenation.srt 15.02Кб
17. Polynomial Regression - Model Deployment.mp4 28.94Мб
17. Polynomial Regression - Model Deployment.srt 8.38Кб
18 1.40Мб
18. Combining DataFrames - Inner Merge.mp4 53.61Мб
18. Combining DataFrames - Inner Merge.srt 18.52Кб
18. Regularization Overview.mp4 33.34Мб
18. Regularization Overview.srt 10.33Кб
19 273.01Кб
19. Combining DataFrames - Left and Right Merge.mp4 27.90Мб
19. Combining DataFrames - Left and Right Merge.srt 9.10Кб
19. Feature Scaling.mp4 53.97Мб
19. Feature Scaling.srt 14.83Кб
2 20б
2.1 UNZIP_ME_FOR_NOTEBOOKS_V4.zip 35.69Мб
2. Capstone Project Solutions - Part One.mp4 116.95Мб
2. Capstone Project Solutions - Part One.srt 26.84Кб
2. COURSE OVERVIEW LECTURE - PLEASE DO NOT SKIP!.mp4 24.55Мб
2. COURSE OVERVIEW LECTURE - PLEASE DO NOT SKIP!.srt 7.17Кб
2. Cross Validation - Test Train Split.mp4 60.46Мб
2. Cross Validation - Test Train Split.srt 17.43Кб
2. Decision Tree - History.mp4 51.89Мб
2. Decision Tree - History.srt 13.15Кб
2. History of Support Vector Machines.mp4 31.42Мб
2. History of Support Vector Machines.srt 6.52Кб
2. Introduction to Feature Engineering and Data Preparation.mp4 78.11Мб
2. Introduction to Feature Engineering and Data Preparation.srt 24.10Кб
2. Introduction to Logistic Regression Section.mp4 31.68Мб
2. Introduction to Logistic Regression Section.srt 8.39Кб
2. KNN Classification - Theory and Intuition.mp4 50.19Мб
2. KNN Classification - Theory and Intuition.srt 16.92Кб
2. Linear Regression - Algorithm History.mp4 54.71Мб
2. Linear Regression - Algorithm History.srt 13.09Кб
2. Matplotlib Basics.mp4 53.61Мб
2. Matplotlib Basics.srt 19.64Кб
2. NumPy Arrays.mp4 109.63Мб
2. NumPy Arrays.srt 31.91Кб
2. Python Crash Course - Part One.mp4 29.52Мб
2. Python Crash Course - Part One.srt 24.63Кб
2. Random Forests - History and Motivation.mp4 44.91Мб
2. Random Forests - History and Motivation.srt 17.22Кб
2. Scatterplots with Seaborn.mp4 128.61Мб
2. Scatterplots with Seaborn.srt 29.72Кб
2. Series - Part One.mp4 38.47Мб
2. Series - Part One.srt 13.39Кб
2. Why Machine Learning.mp4 44.77Мб
2. Why Machine Learning.srt 14.66Кб
20 376.13Кб
20. Combining DataFrames - Outer Merge.mp4 39.89Мб
20. Combining DataFrames - Outer Merge.srt 14.57Кб
20. Introduction to Cross Validation.mp4 62.58Мб
20. Introduction to Cross Validation.srt 19.81Кб
21 1.15Мб
21. Pandas - Text Methods for String Data.mp4 75.69Мб
21. Pandas - Text Methods for String Data.srt 23.95Кб
21. Regularization Data Setup.mp4 34.44Мб
21. Regularization Data Setup.srt 12.42Кб
22 1.35Мб
22. L2 Regularization - Ridge Regression Theory.mp4 61.09Мб
22. L2 Regularization - Ridge Regression Theory.srt 20.72Кб
22. Pandas - Time Methods for Date and Time Data.mp4 101.92Мб
22. Pandas - Time Methods for Date and Time Data.srt 31.72Кб
23 139.29Кб
23. L2 Regularization - Ridge Regression - Python Implementation.mp4 96.42Мб
23. L2 Regularization - Ridge Regression - Python Implementation.srt 26.45Кб
23. Pandas Input and Output - CSV Files.mp4 49.87Мб
23. Pandas Input and Output - CSV Files.srt 16.59Кб
24 834.26Кб
24. L1 Regularization - Lasso Regression - Background and Implementation.mp4 100.00Мб
24. L1 Regularization - Lasso Regression - Background and Implementation.srt 22.44Кб
24. Pandas Input and Output - HTML Tables.mp4 106.65Мб
24. Pandas Input and Output - HTML Tables.srt 22.36Кб
25 81.63Кб
25. L1 and L2 Regularization - Elastic Net.mp4 93.41Мб
25. L1 and L2 Regularization - Elastic Net.srt 25.72Кб
25. Pandas Input and Output - Excel Files.mp4 34.58Мб
25. Pandas Input and Output - Excel Files.srt 10.88Кб
26 2.00Мб
26. Linear Regression Project - Data Overview.mp4 39.07Мб
26. Linear Regression Project - Data Overview.srt 7.67Кб
26. Pandas Input and Output - SQL Databases.mp4 103.19Мб
26. Pandas Input and Output - SQL Databases.srt 29.43Кб
27 743.64Кб
27. Pandas Pivot Tables.mp4 128.74Мб
27. Pandas Pivot Tables.srt 32.18Кб
28 1.25Мб
28. Pandas Project Exercise Overview.mp4 41.07Мб
28. Pandas Project Exercise Overview.srt 9.59Кб
29 1.45Мб
29. Pandas Project Exercise Solutions.mp4 181.60Мб
29. Pandas Project Exercise Solutions.srt 38.76Кб
3 240б
3.1 UNZIP_ME_FOR_NOTEBOOKS_V4.zip 35.69Мб
3. Anaconda Python and Jupyter Install and Setup.mp4 98.75Мб
3. Anaconda Python and Jupyter Install and Setup.srt 21.55Кб
3. Capstone Project Solutions - Part Two.mp4 111.05Мб
3. Capstone Project Solutions - Part Two.srt 23.48Кб
3. Check-in Labeled Index in Pandas Series.html 163б
3. Coding Exercise Check-in Creating NumPy Arrays.html 163б
3. Cross Validation - Test Validation Train Split.mp4 77.29Мб
3. Cross Validation - Test Validation Train Split.srt 21.65Кб
3. Dealing with Outliers.mp4 141.01Мб
3. Dealing with Outliers.srt 41.20Кб
3. Decision Tree - Terminology.mp4 15.06Мб
3. Decision Tree - Terminology.srt 6.42Кб
3. Distribution Plots - Part One - Understanding Plot Types.mp4 32.05Мб
3. Distribution Plots - Part One - Understanding Plot Types.srt 15.00Кб
3. KNN Coding with Python - Part One.mp4 83.24Мб
3. KNN Coding with Python - Part One.srt 22.24Кб
3. Linear Regression - Understanding Ordinary Least Squares.mp4 86.26Мб
3. Linear Regression - Understanding Ordinary Least Squares.srt 22.52Кб
3. Logistic Regression - Theory and Intuition - Part One The Logistic Function.mp4 34.17Мб
3. Logistic Regression - Theory and Intuition - Part One The Logistic Function.srt 8.09Кб
3. Matplotlib - Understanding the Figure Object.mp4 25.81Мб
3. Matplotlib - Understanding the Figure Object.srt 11.55Кб
3. Python Crash Course - Part Two.mp4 22.25Мб
3. Python Crash Course - Part Two.srt 18.03Кб
3. Random Forests - Key Hyperparameters.mp4 19.13Мб
3. Random Forests - Key Hyperparameters.srt 4.44Кб
3. SVM - Theory and Intuition - Hyperplanes and Margins.mp4 66.78Мб
3. SVM - Theory and Intuition - Hyperplanes and Margins.srt 18.58Кб
3. Types of Machine Learning Algorithms.mp4 38.68Мб
3. Types of Machine Learning Algorithms.srt 11.63Кб
30 138.64Кб
31 1.28Мб
32 1.40Мб
33 1.58Мб
34 1.82Мб
35 165.19Кб
36 140.08Кб
37 608.22Кб
38 819.06Кб
39 912.92Кб
4 408б
4. Capstone Project Solutions - Part Three.mp4 143.96Мб
4. Capstone Project Solutions - Part Three.srt 30.88Кб
4. Cross Validation - cross_val_score.mp4 57.73Мб
4. Cross Validation - cross_val_score.srt 17.42Кб
4. Dealing with Missing Data Part One - Evaluation of Missing Data.mp4 56.66Мб
4. Dealing with Missing Data Part One - Evaluation of Missing Data.srt 16.97Кб
4. Decision Tree - Understanding Gini Impurity.mp4 35.66Мб
4. Decision Tree - Understanding Gini Impurity.srt 11.10Кб
4. Distribution Plots - Part Two - Coding with Seaborn.mp4 77.74Мб
4. Distribution Plots - Part Two - Coding with Seaborn.srt 24.79Кб
4. KNN Coding with Python - Part Two - Choosing K.mp4 112.37Мб
4. KNN Coding with Python - Part Two - Choosing K.srt 35.26Кб
4. Linear Regression - Cost Functions.mp4 36.02Мб
4. Linear Regression - Cost Functions.srt 11.46Кб
4. Logistic Regression - Theory and Intuition - Part Two Linear to Logistic.mp4 24.37Мб
4. Logistic Regression - Theory and Intuition - Part Two Linear to Logistic.srt 7.27Кб
4. Matplotlib - Implementing Figures and Axes.mp4 59.09Мб
4. Matplotlib - Implementing Figures and Axes.srt 20.97Кб
4. Note on Environment Setup - Please read me!.html 857б
4. NumPy Indexing and Selection.mp4 46.35Мб
4. NumPy Indexing and Selection.srt 16.22Кб
4. Python Crash Course - Part Three.mp4 23.17Мб
4. Python Crash Course - Part Three.srt 16.57Кб
4. Random Forests - Number of Estimators and Features in Subsets.mp4 60.90Мб
4. Random Forests - Number of Estimators and Features in Subsets.srt 16.16Кб
4. Series - Part Two.mp4 45.30Мб
4. Series - Part Two.srt 15.37Кб
4. Supervised Machine Learning Process.mp4 71.42Мб
4. Supervised Machine Learning Process.srt 19.76Кб
4. SVM - Theory and Intuition - Kernel Intuition.mp4 26.26Мб
4. SVM - Theory and Intuition - Kernel Intuition.srt 7.11Кб
40 85.57Кб
41 386.56Кб
42 1.95Мб
43 281.57Кб
44 716.53Кб
45 1.81Мб
46 1.74Мб
47 353.75Кб
48 777.03Кб
49 1.07Мб
5 269б
5.1 Backup Google Link for requirements.txt file.html 143б
5.2 requirements.txt 221б
5. Categorical Plots - Statistics within Categories - Understanding Plot Types.mp4 21.86Мб
5. Categorical Plots - Statistics within Categories - Understanding Plot Types.srt 8.80Кб
5. Coding Exercise Check-in Selecting Data from Numpy Array.html 163б
5. Companion Book - Introduction to Statistical Learning.mp4 19.29Мб
5. Companion Book - Introduction to Statistical Learning.srt 4.66Кб
5. Constructing Decision Trees with Gini Impurity - Part One.mp4 38.32Мб
5. Constructing Decision Trees with Gini Impurity - Part One.srt 11.48Кб
5. Cross Validation - cross_validate.mp4 47.61Мб
5. Cross Validation - cross_validate.srt 11.23Кб
5. DataFrames - Part One - Creating a DataFrame.mp4 114.08Мб
5. DataFrames - Part One - Creating a DataFrame.srt 29.00Кб
5. Dealing with Missing Data Part Two - Filling or Dropping data based on Rows.mp4 125.24Мб
5. Dealing with Missing Data Part Two - Filling or Dropping data based on Rows.srt 31.42Кб
5. Environment Setup.mp4 49.32Мб
5. Environment Setup.srt 14.49Кб
5. KNN Classification Project Exercise Overview.mp4 31.18Мб
5. KNN Classification Project Exercise Overview.srt 5.23Кб
5. Linear Regression - Gradient Descent.mp4 65.04Мб
5. Linear Regression - Gradient Descent.srt 16.73Кб
5. Logistic Regression - Theory and Intuition - Linear to Logistic Math.mp4 75.82Мб
5. Logistic Regression - Theory and Intuition - Linear to Logistic Math.srt 24.81Кб
5. Matplotlib - Figure Parameters.mp4 23.75Мб
5. Matplotlib - Figure Parameters.srt 7.65Кб
5. Python Crash Course - Exercise Questions.mp4 5.01Мб
5. Python Crash Course - Exercise Questions.srt 2.53Кб
5. Random Forests - Bootstrapping and Out-of-Bag Error.mp4 63.32Мб
5. Random Forests - Bootstrapping and Out-of-Bag Error.srt 17.97Кб
5. SVM - Theory and Intuition - Kernel Trick and Mathematics.mp4 93.86Мб
5. SVM - Theory and Intuition - Kernel Trick and Mathematics.srt 29.30Кб
50 832.81Кб
51 1.26Мб
52 1.89Мб
53 1.89Мб
54 265.85Кб
55 727.75Кб
56 1.17Мб
57 182.99Кб
58 314.95Кб
59 1.79Мб
6 1.17Мб
6. Categorical Plots - Statistics within Categories - Coding with Seaborn.mp4 54.99Мб
6. Categorical Plots - Statistics within Categories - Coding with Seaborn.srt 14.61Кб
6. Coding Classification with Random Forest Classifier - Part One.mp4 68.49Мб
6. Coding Classification with Random Forest Classifier - Part One.srt 18.08Кб
6. Constructing Decision Trees with Gini Impurity - Part Two.mp4 52.15Мб
6. Constructing Decision Trees with Gini Impurity - Part Two.srt 16.42Кб
6. DataFrames - Part Two - Basic Properties.mp4 53.90Мб
6. DataFrames - Part Two - Basic Properties.srt 13.28Кб
6. Dealing with Missing Data Part 3 - Fixing data based on Columns.mp4 122.78Мб
6. Dealing with Missing Data Part 3 - Fixing data based on Columns.srt 36.75Кб
6. Grid Search.mp4 78.11Мб
6. Grid Search.srt 19.26Кб
6. KNN Classification Project Exercise Solutions.mp4 109.73Мб
6. KNN Classification Project Exercise Solutions.srt 21.40Кб
6. Logistic Regression - Theory and Intuition - Best fit with Maximum Likelihood.mp4 76.83Мб
6. Logistic Regression - Theory and Intuition - Best fit with Maximum Likelihood.srt 22.96Кб
6. Matplotlib - Subplots Functionality.mp4 96.18Мб
6. Matplotlib - Subplots Functionality.srt 28.63Кб
6. NumPy Operations.mp4 48.59Мб
6. NumPy Operations.srt 12.05Кб
6. Python coding Simple Linear Regression.mp4 91.92Мб
6. Python coding Simple Linear Regression.srt 28.14Кб
6. Python Crash Course - Exercise Solutions.mp4 25.10Мб
6. Python Crash Course - Exercise Solutions.srt 13.43Кб
6. SVM with Scikit-Learn and Python - Classification Part One.mp4 62.71Мб
6. SVM with Scikit-Learn and Python - Classification Part One.srt 16.38Кб
60 797.60Кб
61 862.54Кб
62 977.87Кб
63 1.07Мб
64 594.83Кб
65 762.90Кб
66 1.84Мб
67 1.51Мб
68 1.22Мб
69 985.60Кб
7 1.39Мб
7. Categorical Plots - Distributions within Categories - Understanding Plot Types.mp4 61.09Мб
7. Categorical Plots - Distributions within Categories - Understanding Plot Types.srt 20.10Кб
7. Check-In Operations on NumPy Array.html 163б
7. Coding Classification with Random Forest Classifier - Part Two.mp4 139.04Мб
7. Coding Classification with Random Forest Classifier - Part Two.srt 32.15Кб
7. Coding Decision Trees - Part One - The Data.mp4 115.13Мб
7. Coding Decision Trees - Part One - The Data.srt 29.27Кб
7. DataFrames - Part Three - Working with Columns.mp4 89.30Мб
7. DataFrames - Part Three - Working with Columns.srt 20.61Кб
7. Dealing with Categorical Data - Encoding Options.mp4 78.74Мб
7. Dealing with Categorical Data - Encoding Options.srt 20.10Кб
7. Linear Regression Project Overview.mp4 27.48Мб
7. Linear Regression Project Overview.srt 5.82Кб
7. Logistic Regression with Scikit-Learn - Part One - EDA.mp4 73.22Мб
7. Logistic Regression with Scikit-Learn - Part One - EDA.srt 21.90Кб
7. Matplotlib Styling - Legends.mp4 34.10Мб
7. Matplotlib Styling - Legends.srt 10.35Кб
7. Overview of Scikit-Learn and Python.mp4 45.61Мб
7. Overview of Scikit-Learn and Python.srt 12.34Кб
7. SVM with Scikit-Learn and Python - Classification Part Two.mp4 96.60Мб
7. SVM with Scikit-Learn and Python - Classification Part Two.srt 23.94Кб
70 696.97Кб
71 1.29Мб
72 1.42Мб
73 928.47Кб
74 935.07Кб
75 1.10Мб
76 1.54Мб
77 1.98Мб
78 492.64Кб
79 934.69Кб
8 781.77Кб
8. Categorical Plots - Distributions within Categories - Coding with Seaborn.mp4 111.24Мб
8. Categorical Plots - Distributions within Categories - Coding with Seaborn.srt 28.26Кб
8. Coding Decision Trees - Part Two -Creating the Model.mp4 136.35Мб
8. Coding Decision Trees - Part Two -Creating the Model.srt 32.69Кб
8. Coding Regression with Random Forest Regressor - Part One - Data.mp4 27.61Мб
8. Coding Regression with Random Forest Regressor - Part One - Data.srt 6.86Кб
8. DataFrames - Part Four - Working with Rows.mp4 96.72Мб
8. DataFrames - Part Four - Working with Rows.srt 21.08Кб
8. Linear Regression Project - Solutions.mp4 95.84Мб
8. Linear Regression Project - Solutions.srt 18.29Кб
8. Linear Regression - Scikit-Learn Train Test Split.mp4 82.93Мб
8. Linear Regression - Scikit-Learn Train Test Split.srt 23.78Кб
8. Logistic Regression with Scikit-Learn - Part Two - Model Training.mp4 35.26Мб
8. Logistic Regression with Scikit-Learn - Part Two - Model Training.srt 9.57Кб
8. Matplotlib Styling - Colors and Styles.mp4 81.19Мб
8. Matplotlib Styling - Colors and Styles.srt 21.04Кб
8. NumPy Exercises.mp4 11.52Мб
8. NumPy Exercises.srt 2.07Кб
8. SVM with Scikit-Learn and Python - Regression Tasks.mp4 99.27Мб
8. SVM with Scikit-Learn and Python - Regression Tasks.srt 29.99Кб
80 1000.23Кб
81 276.90Кб
82 1.34Мб
83 1.01Мб
84 1.29Мб
85 28.96Кб
86 100.95Кб
87 394.69Кб
88 397.47Кб
89 835.09Кб
9 910.45Кб
9. Advanced Matplotlib Commands (Optional).mp4 40.44Мб
9. Advanced Matplotlib Commands (Optional).srt 6.49Кб
9. Classification Metrics - Confusion Matrix and Accuracy.mp4 46.99Мб
9. Classification Metrics - Confusion Matrix and Accuracy.srt 13.92Кб
9. Coding Regression with Random Forest Regressor - Part Two - Basic Models.mp4 89.73Мб
9. Coding Regression with Random Forest Regressor - Part Two - Basic Models.srt 20.42Кб
9. Linear Regression - Scikit-Learn Performance Evaluation - Regression.mp4 73.16Мб
9. Linear Regression - Scikit-Learn Performance Evaluation - Regression.srt 23.00Кб
9. Numpy Exercises - Solutions.mp4 48.57Мб
9. Numpy Exercises - Solutions.srt 10.87Кб
9. Pandas - Conditional Filtering.mp4 90.05Мб
9. Pandas - Conditional Filtering.srt 27.14Кб
9. Seaborn - Comparison Plots - Understanding the Plot Types.mp4 23.35Мб
9. Seaborn - Comparison Plots - Understanding the Plot Types.srt 8.73Кб
9. Support Vector Machine Project Overview.mp4 40.46Мб
9. Support Vector Machine Project Overview.srt 6.87Кб
90 1.38Мб
91 1.85Мб
92 109.57Кб
93 1.22Мб
94 1.49Мб
95 1.81Мб
96 93.25Кб
97 132.55Кб
98 697.10Кб
99 1.13Мб
TutsNode.com.txt 63б
Статистика распространения по странам
Сенегал (SN) 2
США (US) 1
Пакистан (PK) 1
Всего 4
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент