Общая информация
Название [FreeCoursesOnline.Me] [UDACITY] PyTorch Scholarship Challenge - [FCO]
Тип
Размер 1.09Гб
Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[TGx]Downloaded from torrentgalaxy.org.txt 524б
01. 01 StyleTransfer V3-_urN9BQ7RHM.en.vtt 1.97Кб
01. 01 StyleTransfer V3-_urN9BQ7RHM.mp4 2.72Мб
01. 01 StyleTransfer V3-_urN9BQ7RHM.pt-BR.vtt 1.89Кб
01. 1 SentimentRNN Intro V1-bQWUuaMc9ZI.en.vtt 2.17Кб
01. 1 SentimentRNN Intro V1-bQWUuaMc9ZI.mp4 2.20Мб
01. Final project.html 6.37Кб
01. Introducing Alexis.html 9.06Кб
01. Introducing Alexis-38ExGpdyvJI.en.vtt 694б
01. Introducing Alexis-38ExGpdyvJI.mp4 2.05Мб
01. Introducing Alexis-38ExGpdyvJI.pt-BR.vtt 599б
01. Introducing Alexis-38ExGpdyvJI.zh-CN.vtt 615б
01. Introduction.html 9.18Кб
01. Introduction-tn-CrUTkCUc.en.vtt 3.28Кб
01. Introduction-tn-CrUTkCUc.mp4 7.54Мб
01. Introduction-tn-CrUTkCUc.pt-BR.vtt 3.09Кб
01. Introduction-tn-CrUTkCUc.zh-CN.vtt 2.84Кб
01. Intro to RNNs.html 7.28Кб
01. Origins of PyTorch.html 4.74Кб
01. Origins Of PyTorch V2-0eLXNFv6aT8.mp4 30.04Мб
01. Sentiment RNN, Introduction.html 5.35Кб
01. Style Transfer.html 5.14Кб
01. Welcome!.html 10.96Кб
01. Welcome!.html 5.79Кб
01. Welcome to the course!.html 7.22Кб
02. 02 SeparatingStyleandContent V2-PNFFAhymuHc.en.vtt 5.06Кб
02. 02 SeparatingStyleandContent V2-PNFFAhymuHc.mp4 9.19Мб
02. 02 SeparatingStyleandContent V2-PNFFAhymuHc.pt-BR.vtt 5.33Кб
02. Applications of CNNs.html 14.19Кб
02. Applications of CNNs-HrYNL_1SV2Y.en.vtt 5.37Кб
02. Applications of CNNs-HrYNL_1SV2Y.mp4 17.70Мб
02. Applications of CNNs-HrYNL_1SV2Y.pt-BR.vtt 5.66Кб
02. Applications of CNNs-HrYNL_1SV2Y.zh-CN.vtt 4.70Кб
02. Classification Problems 1.html 10.42Кб
02. Classsification Example-Dh625piH7Z0.en.vtt 2.70Кб
02. Classsification Example-Dh625piH7Z0.mp4 2.07Мб
02. Classsification Example-Dh625piH7Z0.pt-BR.vtt 2.51Кб
02. Classsification Example-Dh625piH7Z0.zh-CN.vtt 2.37Кб
02. Debugging and Designing PyTorch.html 4.78Кб
02. Debugging And Designing PyTorch-Nn8140ECzPU.mp4 11.71Мб
02. Installing PyTorch 1.0.html 4.40Кб
02. Instructors.html 6.92Кб
02. PyTorch 10 Install V1-kIwKPxgReFY.mp4 1.77Мб
02. PyTorch V2 Part 1 V1-6Z7WntXays8.en.vtt 9.75Кб
02. PyTorch V2 Part 1 V1-6Z7WntXays8.mp4 12.32Мб
02. RNN vs LSTM.html 6.10Кб
02. RNN Vs LSTM-70MgF-IwAr8.en.vtt 4.71Кб
02. RNN Vs LSTM-70MgF-IwAr8.mp4 3.58Мб
02. RNN Vs LSTM-70MgF-IwAr8.pt-BR.vtt 4.24Кб
02. RNN Vs LSTM-70MgF-IwAr8.zh-CN.vtt 4.22Кб
02. Sentiment Analysis RNNs.html 6.13Кб
02. Separating Style & Content.html 5.22Кб
02. Single layer neural networks.html 6.33Кб
03. 03 ContentRepandStyleTransfer V3-PQ1UuzOIjCM.en.vtt 5.65Кб
03. 03 ContentRepandStyleTransfer V3-PQ1UuzOIjCM.mp4 7.86Мб
03. 03 ContentRepandStyleTransfer V3-PQ1UuzOIjCM.pt-BR.vtt 5.93Кб
03. Basics of LSTM.html 6.11Кб
03. Classification Example-46PywnGa_cQ.en.vtt 1.76Кб
03. Classification Example-46PywnGa_cQ.mp4 1.62Мб
03. Classification Example-46PywnGa_cQ.pt-BR.vtt 1.60Кб
03. Classification Example-46PywnGa_cQ.zh-CN.vtt 1.65Кб
03. Classification Problems 2.html 9.25Кб
03. ConNet 01 LessonOutline V1 V1-77LzWE1qQrc.en.vtt 1.26Кб
03. ConNet 01 LessonOutline V1 V1-77LzWE1qQrc.mp4 2.34Мб
03. ConNet 01 LessonOutline V1 V1-77LzWE1qQrc.pt-BR.vtt 1.30Кб
03. Course Outline.html 6.04Кб
03. From Research to Production.html 4.77Кб
03. From Research To Production-eCysOAw8azs.mp4 20.81Мб
03. Lesson Outline.html 9.71Кб
03. LSTM Basics-gjb68a4XsqE.en.vtt 5.21Кб
03. LSTM Basics-gjb68a4XsqE.mp4 4.03Мб
03. LSTM Basics-gjb68a4XsqE.pt-BR.vtt 5.06Кб
03. LSTM Basics-gjb68a4XsqE.zh-CN.vtt 4.59Кб
03. Notebook Sentiment RNN.html 7.41Кб
03. PyTorch for Production.html 4.41Кб
03. PyTorch For Production V1-DBSoZWd4lQo.mp4 6.67Мб
03. PyTorch V2 Part 1 Solution V1-mNJ8CujTtpo.en.vtt 10.42Кб
03. PyTorch V2 Part 1 Solution V1-mNJ8CujTtpo.mp4 15.66Мб
03. Single layer neural networks solution.html 6.37Кб
03. VGG19 & Content Loss.html 5.21Кб
04. 3 Data PreProcessing V1-Xw1MWmql7no.en.vtt 6.93Кб
04. 3 Data PreProcessing V1-Xw1MWmql7no.mp4 10.09Мб
04. 41 GramMatrixStyleTransfer V3-e718uVAW3KU.en.vtt 5.23Кб
04. 41 GramMatrixStyleTransfer V3-e718uVAW3KU.mp4 7.76Мб
04. 41 GramMatrixStyleTransfer V3-e718uVAW3KU.pt-BR.vtt 5.70Кб
04. Architecture of LSTM.html 6.15Кб
04. ConNet 021 MNISTClassification V1 V2-a7bvIGZpcnk.en.vtt 2.82Кб
04. ConNet 021 MNISTClassification V1 V2-a7bvIGZpcnk.mp4 2.40Мб
04. ConNet 021 MNISTClassification V1 V2-a7bvIGZpcnk.pt-BR.vtt 2.64Кб
04. Data Pre-Processing.html 5.34Кб
04. Gram Matrix.html 7.61Кб
04. How this program works.html 6.13Кб
04. Hybrid Frontend.html 4.75Кб
04. Hybrid Frontend And JIT Compiler-J4z-P8yUZu4.mp4 22.89Мб
04. Linear Boundaries.html 9.95Кб
04. Linear Boundaries-X-uMlsBi07k.en.vtt 3.85Кб
04. Linear Boundaries-X-uMlsBi07k.mp4 3.85Мб
04. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt 3.67Кб
04. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt 3.36Кб
04. LSTM Architecture-ycwthhdx8ws.en.vtt 1.49Кб
04. LSTM Architecture-ycwthhdx8ws.mp4 1.07Мб
04. LSTM Architecture-ycwthhdx8ws.pt-BR.vtt 1.46Кб
04. LSTM Architecture-ycwthhdx8ws.zh-CN.vtt 1.34Кб
04. MNIST Dataset.html 9.24Кб
04. Networks Using Matrix Multiplication.html 6.38Кб
04. PyTorch Script Tracing V1-lYmQDUprQa0.mp4 8.37Мб
04. PyTorch V2 Part 1 Solution 2 V1-QLaGMz8Ca3E.en.vtt 4.52Кб
04. PyTorch V2 Part 1 Solution 2 V1-QLaGMz8Ca3E.mp4 6.57Мб
04. Torch Script & Tracing.html 4.41Кб
05. 09 Higher Dimensions-eBHunImDmWw.en.vtt 2.95Кб
05. 09 Higher Dimensions-eBHunImDmWw.mp4 2.59Мб
05. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt 2.66Кб
05. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt 2.38Кб
05. 42 StyleLossStyleTransfer V2-VazrQ7u-OHo.en.vtt 1.91Кб
05. 42 StyleLossStyleTransfer V2-VazrQ7u-OHo.mp4 1.65Мб
05. 42 StyleLossStyleTransfer V2-VazrQ7u-OHo.pt-BR.vtt 2.05Кб
05. 4 EncodingWords Sol V1-4RYyn3zv1Hg.en.vtt 4.78Кб
05. 4 EncodingWords Sol V1-4RYyn3zv1Hg.mp4 6.45Мб
05. Annotations.html 4.39Кб
05. ConNet 022 How Computers Interpret Images V1-mEPfoM68Fx4.en.vtt 3.84Кб
05. ConNet 022 How Computers Interpret Images V1-mEPfoM68Fx4.mp4 4.44Мб
05. ConNet 022 How Computers Interpret Images V1-mEPfoM68Fx4.pt-BR.vtt 4.07Кб
05. Cutting-Edge Applicationns In PyTorch-s8p6vqOubqw.mp4 15.87Мб
05. Cutting-edge Applications in PyTorch.html 4.81Кб
05. Encoding Words, Solution.html 5.34Кб
05. Higher Dimensions.html 10.42Кб
05. How Computers Interpret Images.html 10.76Кб
05. Join the Scholar Learning Community.html 5.83Кб
05. Learn Gate-aVHVI7ovbHY.en.vtt 2.63Кб
05. Learn Gate-aVHVI7ovbHY.mp4 2.22Мб
05. Learn Gate-aVHVI7ovbHY.pt-BR.vtt 2.66Кб
05. Learn Gate-aVHVI7ovbHY.zh-CN.vtt 2.51Кб
05. Multilayer Networks Solution.html 6.36Кб
05. PyTorch Script Annotation V2-pO1RM7mKaFg.mp4 7.25Мб
05. PyTorch V2 Part 1 Solution 3 V1-iMIo9p5iSbE.en.vtt 4.52Кб
05. PyTorch V2 Part 1 Solution 3 V1-iMIo9p5iSbE.mp4 5.90Мб
05. Style Loss.html 5.17Кб
05. The Learn Gate.html 6.70Кб
06. 05 LossWeightsStyleTransfer V2-qO8oiZBtG1I.en.vtt 2.81Кб
06. 05 LossWeightsStyleTransfer V2-qO8oiZBtG1I.mp4 4.80Мб
06. 05 LossWeightsStyleTransfer V2-qO8oiZBtG1I.pt-BR.vtt 2.84Кб
06. 5 GettingRid ZeroLength V1-Hs6ithuvDJg.en.vtt 3.60Кб
06. 5 GettingRid ZeroLength V1-Hs6ithuvDJg.mp4 4.59Мб
06. ConNet 03 MLPStructure&ClassScore V1 V1-fP0Odiai8sk.en.vtt 3.11Кб
06. ConNet 03 MLPStructure&ClassScore V1 V1-fP0Odiai8sk.mp4 2.87Мб
06. ConNet 03 MLPStructure&ClassScore V1 V1-fP0Odiai8sk.pt-BR.vtt 3.16Кб
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt 5.89Кб
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4 5.13Мб
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt 5.61Кб
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt 4.98Кб
06. Forget Gate-iWxpfxLUPSU.en.vtt 1.26Кб
06. Forget Gate-iWxpfxLUPSU.mp4 1.04Мб
06. Forget Gate-iWxpfxLUPSU.pt-BR.vtt 1.33Кб
06. Forget Gate-iWxpfxLUPSU.zh-CN.vtt 1.12Кб
06. Getting Rid of Zero-Length.html 5.36Кб
06. Loss Weights.html 5.18Кб
06. MLP Structure & Class Scores.html 9.49Кб
06. Neural Networks in PyTorch.html 6.32Кб
06. Perceptrons.html 10.35Кб
06. PyTorch C++ API.html 4.38Кб
06. PyTorch C API V2-P1S1dN1gHmw.mp4 11.42Мб
06. PyTorch V2 Part 2 V1-CSQOdOb2mlg.en.vtt 5.83Кб
06. PyTorch V2 Part 2 V1-CSQOdOb2mlg.mp4 10.84Мб
06. Scholarship Challenge Project.html 5.16Кб
06. The Forget Gate.html 6.62Кб
06. User Needs and Adding Features.html 4.78Кб
06. User Needs And Adding Features-7HH65_c7Acw.mp4 15.78Мб
07. 04 Do Your Research V1-CR4JeAn1fgk.en.vtt 2.69Кб
07. 04 Do Your Research V1-CR4JeAn1fgk.mp4 4.02Мб
07. 04 Do Your Research V1-CR4JeAn1fgk.pt-BR.vtt 2.80Кб
07. 6 Cleaning And Padding V1-UgPo1_cq-0g.en.vtt 4.60Кб
07. 6 Cleaning And Padding V1-UgPo1_cq-0g.mp4 6.36Мб
07. 6 VGG Features V1-Q5N2NEv7ADc.en.vtt 6.95Кб
07. 6 VGG Features V1-Q5N2NEv7ADc.mp4 11.15Мб
07. 6 VGG Features V1-Q5N2NEv7ADc.pt-BR.vtt 7.10Кб
07. Cleaning & Padding Data.html 5.35Кб
07. Do Your Research.html 8.76Кб
07. Neural Networks Solution.html 6.35Кб
07. PyTorch and the Facebook Product.html 4.79Кб
07. PyTorch And The Facebook Product-TjVveb0iVrA.mp4 7.55Мб
07. PyTorch V2 Part 2 Solution V1-zym36ihtOMY.en.vtt 7.53Кб
07. PyTorch V2 Part 2 Solution V1-zym36ihtOMY.mp4 8.74Мб
07. Remember Gate-0qlm86HaXuU.en.vtt 734б
07. Remember Gate-0qlm86HaXuU.mp4 676.91Кб
07. Remember Gate-0qlm86HaXuU.pt-BR.vtt 700б
07. Remember Gate-0qlm86HaXuU.zh-CN.vtt 632б
07. The Remember Gate.html 6.51Кб
07. VGG Features.html 5.13Кб
07. Want to learn more.html 6.87Кб
07. Why Neural Networks.html 9.24Кб
07. Why Neural Networks-zAkzOZntK6Y.en.vtt 1.38Кб
07. Why Neural Networks-zAkzOZntK6Y.mp4 982.27Кб
07. Why Neural Networks-zAkzOZntK6Y.pt-BR.vtt 1.27Кб
07. Why Neural Networks-zAkzOZntK6Y.zh-CN.vtt 1.18Кб
08. 7 PaddedFeatures Sol V1-sYOd1IDmep8.en.vtt 5.04Кб
08. 7 PaddedFeatures Sol V1-sYOd1IDmep8.mp4 5.48Мб
08. AND And OR Perceptrons-45K5N0P9wJk.en.vtt 3.00Кб
08. AND And OR Perceptrons-45K5N0P9wJk.mp4 2.68Мб
08. AND And OR Perceptrons-45K5N0P9wJk.pt-BR.vtt 3.15Кб
08. AND And OR Perceptrons-45K5N0P9wJk.zh-CN.vtt 2.48Кб
08. ConNet 05 Loss&Optimization V1 V3-BmPDtSXv18w.en.vtt 7.51Кб
08. ConNet 05 Loss&Optimization V1 V3-BmPDtSXv18w.mp4 6.55Мб
08. ConNet 05 Loss&Optimization V1 V3-BmPDtSXv18w.pt-BR.vtt 7.48Кб
08. Implementing Softmax Solution.html 6.24Кб
08. Loss & Optimization.html 8.83Кб
08. LSTM 7 Use Gate-5Ifolm1jTdY.en.vtt 1.75Кб
08. LSTM 7 Use Gate-5Ifolm1jTdY.mp4 1.50Мб
08. LSTM 7 Use Gate-5Ifolm1jTdY.pt-BR.vtt 1.73Кб
08. LSTM 7 Use Gate-5Ifolm1jTdY.zh-CN.vtt 1.50Кб
08. Notebook Style Transfer.html 7.14Кб
08. Padded Features, Solution.html 5.35Кб
08. Perceptrons as Logical Operators.html 20.82Кб
08. PyTorch V2 Part 2 Solution 2 V1-8KRX7HvqfP0.mp4 16.70Мб
08. The Future of PyTorch.html 4.75Кб
08. The Future Of PyTorch-vfCg3FoOjE4.mp4 14.51Мб
08. The Use Gate.html 6.74Кб
08. XOR Perceptron-TF83GfjYLdw.en.vtt 1.01Кб
08. XOR Perceptron-TF83GfjYLdw.mp4 947.00Кб
08. XOR Perceptron-TF83GfjYLdw.pt-BR.vtt 1.00Кб
08. XOR Perceptron-TF83GfjYLdw.zh-CN.vtt 1021б
09. 06 Defining A Network V1-9gvaQvyfLfY.en.vtt 7.13Кб
09. 06 Defining A Network V1-9gvaQvyfLfY.mp4 9.78Мб
09. 06 Defining A Network V1-9gvaQvyfLfY.pt-BR.vtt 6.84Кб
09. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt 4.11Кб
09. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4 3.66Мб
09. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt 4.17Кб
09. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt 3.50Кб
09. 7 Feats Gram Matrix V1-f89x9oAh6X0.en.vtt 3.13Кб
09. 7 Feats Gram Matrix V1-f89x9oAh6X0.mp4 5.64Мб
09. 7 Feats Gram Matrix V1-f89x9oAh6X0.pt-BR.vtt 3.32Кб
09. 8 TensorDataset Batching V1-Oxuf2QIPjj4.en.vtt 6.61Кб
09. 8 TensorDataset Batching V1-Oxuf2QIPjj4.mp4 9.01Мб
09. Defining a Network in PyTorch.html 9.91Кб
09. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt 420б
09. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4 260.01Кб
09. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt 364б
09. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt 390б
09. Features & Gram Matrix.html 5.17Кб
09. Learning Ai-NMItGw0GFGM.mp4 9.99Мб
09. Learning More in AI.html 4.72Кб
09. Network Architectures in PyTorch.html 6.33Кб
09. Perceptron Algorithm--zhTROHtscQ.en.vtt 2.64Кб
09. Perceptron Algorithm--zhTROHtscQ.mp4 1.92Мб
09. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt 2.41Кб
09. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt 2.35Кб
09. Perceptron Trick.html 13.03Кб
09. Putting it All Together.html 6.18Кб
09. Putting It All Together-IF8FlKW-Zo0.en.vtt 2.42Кб
09. Putting It All Together-IF8FlKW-Zo0.mp4 1.58Мб
09. Putting It All Together-IF8FlKW-Zo0.pt-BR.vtt 2.36Кб
09. Putting It All Together-IF8FlKW-Zo0.zh-CN.vtt 2.13Кб
09. PyTorch V2 Part 3 V1-9ILiZwbi9dA.en.vtt 15.28Кб
09. PyTorch V2 Part 3 V1-9ILiZwbi9dA.mp4 18.80Мб
09. TensorDataset & Batching Data.html 6.51Кб
10. 07 Training The Network V1-904bfqibcCw.en.vtt 6.54Кб
10. 07 Training The Network V1-904bfqibcCw.mp4 10.52Мб
10. 07 Training The Network V1-904bfqibcCw.pt-BR.vtt 6.12Кб
10. 8 Gram Matrix Sol V1-uncCKMI5Yns.en.vtt 3.55Кб
10. 8 Gram Matrix Sol V1-uncCKMI5Yns.mp4 4.82Мб
10. 8 Gram Matrix Sol V1-uncCKMI5Yns.pt-BR.vtt 3.70Кб
10. 9 DefiningModel V1-SpvIZl1YQRI.en.vtt 5.05Кб
10. 9 DefiningModel V1-SpvIZl1YQRI.mp4 5.63Мб
10. Defining the Model.html 5.32Кб
10. Gram Matrix Solution.html 5.16Кб
10. Network Architectures Solution.html 6.36Кб
10. Other architectures.html 6.55Кб
10. Other Architectures-MsxFDuYlTuQ.en.vtt 2.31Кб
10. Other Architectures-MsxFDuYlTuQ.mp4 1.71Мб
10. Other Architectures-MsxFDuYlTuQ.pt-BR.vtt 2.45Кб
10. Other Architectures-MsxFDuYlTuQ.zh-CN.vtt 2.04Кб
10. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.en.vtt 3.45Кб
10. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.mp4 2.87Мб
10. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt 3.27Кб
10. Perceptron Algorithm.html 16.62Кб
10. PyTorch V2 Part 3 Solution V2-zBWlOeX2sQM.en.vtt 15.36Кб
10. PyTorch V2 Part 3 Solution V2-zBWlOeX2sQM.mp4 21.27Мб
10. Training the Network.html 10.44Кб
11. 9 Defining Loss V1-lix8d3B2QcE.en.vtt 5.07Кб
11. 9 Defining Loss V1-lix8d3B2QcE.mp4 7.20Мб
11. 9 Defining Loss V1-lix8d3B2QcE.pt-BR.vtt 5.16Кб
11. Complete Sentiment RNN.html 11.65Кб
11. Defining the Loss.html 5.14Кб
11. Implementing RNNs.html 6.56Кб
11. Non-Linear Regions.html 9.22Кб
11. Non-Linear Regions-B8UrWnHh1Wc.en.vtt 1.77Кб
11. Non-Linear Regions-B8UrWnHh1Wc.mp4 1.33Мб
11. Non-Linear Regions-B8UrWnHh1Wc.pt-BR.vtt 1.51Кб
11. Non-Linear Regions-B8UrWnHh1Wc.zh-CN.vtt 1.57Кб
11. Pre-Notebook MLP Classification, Exercise.html 10.09Кб
11. PyTorch V2 Part 3 Solution 2 V1-ExyFG2MjsKs.en.vtt 2.73Кб
11. PyTorch V2 Part 3 Solution 2 V1-ExyFG2MjsKs.mp4 3.56Мб
11. Training a Network Solution.html 6.36Кб
12. 02 Time Series Prediction V2-xV5jHLFfJbQ.en.vtt 10.86Кб
12. 02 Time Series Prediction V2-xV5jHLFfJbQ.mp4 15.43Мб
12. 02 Time Series Prediction V2-xV5jHLFfJbQ.pt-BR.vtt 10.48Кб
12. 10 Loss Solution V1-DzaQm9awcwY.en.vtt 4.50Кб
12. 10 Loss Solution V1-DzaQm9awcwY.mp4 7.15Мб
12. 10 Loss Solution V1-DzaQm9awcwY.pt-BR.vtt 4.69Кб
12. Classifying Fashion-MNIST.html 6.55Кб
12. Error Functions.html 9.20Кб
12. Error Functions-YfUUunxWIJw.en.vtt 790б
12. Error Functions-YfUUunxWIJw.mp4 3.54Мб
12. Error Functions-YfUUunxWIJw.pt-BR.vtt 804б
12. Error Functions-YfUUunxWIJw.zh-CN.vtt 739б
12. Notebook MLP Classification, MNIST.html 9.31Кб
12. PyTorch - Part 4-AEJV_RKZ7VU.en.vtt 2.26Кб
12. PyTorch - Part 4-AEJV_RKZ7VU.mp4 3.32Мб
12. PyTorch - Part 4-AEJV_RKZ7VU.pt-BR.vtt 2.19Кб
12. PyTorch - Part 4-AEJV_RKZ7VU.zh-CN.vtt 1.91Кб
12. Time-Series Prediction.html 6.85Кб
12. Total Loss & Complete Solution.html 5.18Кб
12. Training the Model.html 12.01Кб
13. 03 Training Memory V1-sx7T_KP5v9I.en.vtt 7.85Кб
13. 03 Training Memory V1-sx7T_KP5v9I.mp4 9.57Мб
13. 03 Training Memory V1-sx7T_KP5v9I.pt-BR.vtt 7.42Кб
13. 09 One Solution V2-7q37WPjQhDA.en.vtt 7.93Кб
13. 09 One Solution V2-7q37WPjQhDA.mp4 11.59Мб
13. 09 One Solution V2-7q37WPjQhDA.pt-BR.vtt 7.60Кб
13. Error Functions-jfKShxGAbok.en.vtt 9.45Кб
13. Error Functions-jfKShxGAbok.mp4 7.21Мб
13. Error Functions-jfKShxGAbok.pt-BR.vtt 9.14Кб
13. Error Functions-jfKShxGAbok.zh-CN.vtt 8.35Кб
13. Fashion-MNIST Solution.html 6.34Кб
13. Log-loss Error Function.html 10.86Кб
13. One Solution.html 10.10Кб
13. PyTorch V2 Part 4 Solution V1-R6Y4hPLVQWM.en.vtt 6.14Кб
13. PyTorch V2 Part 4 Solution V1-R6Y4hPLVQWM.mp4 8.24Мб
13. Testing.html 9.33Кб
13. Training & Memory.html 8.02Кб
14. Character-Wise RNN-dXl3eWCGLdU.en.vtt 3.33Кб
14. Character-Wise RNN-dXl3eWCGLdU.mp4 2.88Мб
14. Character-Wise RNN-dXl3eWCGLdU.pt-BR.vtt 3.66Кб
14. Character-Wise RNN-dXl3eWCGLdU.zh-CN.vtt 3.04Кб
14. Character-wise RNNs.html 6.15Кб
14. ConNet10 ModelValidation V1 V2-b5934VsV3SA.en.vtt 4.62Кб
14. ConNet10 ModelValidation V1 V2-b5934VsV3SA.mp4 3.34Мб
14. ConNet10 ModelValidation V1 V2-b5934VsV3SA.pt-BR.vtt 4.35Кб
14. Discrete vs. Continuous-Rm2KxFaPiJg.en.vtt 5.70Кб
14. Discrete vs. Continuous-Rm2KxFaPiJg.mp4 5.35Мб
14. Discrete vs. Continuous-Rm2KxFaPiJg.pt-BR.vtt 5.67Кб
14. Discrete vs. Continuous-Rm2KxFaPiJg.zh-CN.vtt 4.67Кб
14. Discrete vs Continuous.html 11.48Кб
14. Discrete vs Continuous-rdP-RPDFkl0.en.vtt 551б
14. Discrete vs Continuous-rdP-RPDFkl0.mp4 2.26Мб
14. Discrete vs Continuous-rdP-RPDFkl0.pt-BR.vtt 584б
14. Discrete vs Continuous-rdP-RPDFkl0.zh-CN.vtt 481б
14. Inference, Solution.html 12.07Кб
14. Inference and Validation.html 6.33Кб
14. Model Validation.html 8.79Кб
14. PyTorch V2 Part 5 V1 (1)-XACXlkIdS7Y.en.vtt 8.91Кб
14. PyTorch V2 Part 5 V1 (1)-XACXlkIdS7Y.mp4 13.90Мб
15. 11 Validation Loss V2-uGPP_-pbBsc.en.vtt 8.76Кб
15. 11 Validation Loss V2-uGPP_-pbBsc.mp4 14.23Мб
15. 11 Validation Loss V2-uGPP_-pbBsc.pt-BR.vtt 8.43Кб
15. DL 18 Q Softmax V2-RC_A9Tu99y4.en.vtt 5.37Кб
15. DL 18 Q Softmax V2-RC_A9Tu99y4.mp4 4.01Мб
15. DL 18 Q Softmax V2-RC_A9Tu99y4.pt-BR.vtt 5.06Кб
15. DL 18 Q Softmax V2-RC_A9Tu99y4.zh-CN.vtt 4.37Кб
15. DL 18 S Softmax-n8S-v_LCTms.en.vtt 2.59Кб
15. DL 18 S Softmax-n8S-v_LCTms.mp4 1.95Мб
15. DL 18 S Softmax-n8S-v_LCTms.pt-BR.vtt 2.52Кб
15. DL 18 S Softmax-n8S-v_LCTms.zh-CN.vtt 2.30Кб
15. PyTorch V2 Part 5 Solution V1-AjrXltxqsK4.en.vtt 7.45Кб
15. PyTorch V2 Part 5 Solution V1-AjrXltxqsK4.mp4 15.84Мб
15. Quiz - Softmax-NNoezNnAMTY.en.vtt 495б
15. Quiz - Softmax-NNoezNnAMTY.mp4 1.73Мб
15. Quiz - Softmax-NNoezNnAMTY.pt-BR.vtt 501б
15. Quiz - Softmax-NNoezNnAMTY.zh-CN.vtt 548б
15. Sequence Batching.html 6.14Кб
15. Sequence-Batching-Z4OiyU0Cldg.en.vtt 2.09Кб
15. Sequence-Batching-Z4OiyU0Cldg.mp4 2.29Мб
15. Sequence-Batching-Z4OiyU0Cldg.pt-BR.vtt 2.33Кб
15. Sequence-Batching-Z4OiyU0Cldg.zh-CN.vtt 1.92Кб
15. Softmax.html 13.48Кб
15. Validation Loss.html 9.64Кб
15. Validation Solution.html 6.34Кб
16. ConNet 13 ImageClassification V1 V2-UHFBnitKraA.en.vtt 1.75Кб
16. ConNet 13 ImageClassification V1 V2-UHFBnitKraA.mp4 2.40Мб
16. ConNet 13 ImageClassification V1 V2-UHFBnitKraA.pt-BR.vtt 1.67Кб
16. Dropout Solution.html 6.34Кб
16. Image Classification Steps.html 8.83Кб
16. Notebook Character-Level RNN.html 8.04Кб
16. One-Hot Encoding.html 9.20Кб
16. One-Hot Encoding-AePvjhyvsBo.en.vtt 2.23Кб
16. One-Hot Encoding-AePvjhyvsBo.mp4 1.65Мб
16. One-Hot Encoding-AePvjhyvsBo.pt-BR.vtt 2.03Кб
16. One-Hot Encoding-AePvjhyvsBo.zh-CN.vtt 2.02Кб
16. PyTorch V2 Part 5 Solution 2 V1-3Py2SbtZLbc.en.vtt 2.06Кб
16. PyTorch V2 Part 5 Solution 2 V1-3Py2SbtZLbc.mp4 2.78Мб
17. 04 Implementing CharRNN V2-MMtgZXzFB10.en.vtt 11.56Кб
17. 04 Implementing CharRNN V2-MMtgZXzFB10.mp4 16.39Мб
17. 04 Implementing CharRNN V2-MMtgZXzFB10.pt-BR.vtt 10.73Кб
17. ConNet 14 MLPvsCNN V1 V2-Q7CR3cCOtJQ.en.vtt 3.04Кб
17. ConNet 14 MLPvsCNN V1 V2-Q7CR3cCOtJQ.mp4 4.24Мб
17. ConNet 14 MLPvsCNN V1 V2-Q7CR3cCOtJQ.pt-BR.vtt 2.97Кб
17. Implementing a Char-RNN.html 6.42Кб
17. Maximum Likelihood.html 11.58Кб
17. Maximum Likelihood 1-1yJx-QtlvNI.en.vtt 1.64Кб
17. Maximum Likelihood 1-1yJx-QtlvNI.mp4 5.75Мб
17. Maximum Likelihood 1-1yJx-QtlvNI.pt-BR.vtt 1.61Кб
17. Maximum Likelihood 1-1yJx-QtlvNI.zh-CN.vtt 1.43Кб
17. Maximum Likelihood 2-6nUUeQ9AeUA.en.vtt 4.41Кб
17. Maximum Likelihood 2-6nUUeQ9AeUA.mp4 3.85Мб
17. Maximum Likelihood 2-6nUUeQ9AeUA.pt-BR.vtt 4.49Кб
17. Maximum Likelihood 2-6nUUeQ9AeUA.zh-CN.vtt 3.67Кб
17. MLPs vs CNNs.html 9.04Кб
17. PyTorch - Part 6-3ZJfo2bR-uw.en.vtt 9.34Кб
17. PyTorch - Part 6-3ZJfo2bR-uw.mp4 15.82Мб
17. PyTorch - Part 6-3ZJfo2bR-uw.pt-BR.vtt 9.75Кб
17. PyTorch - Part 6-3ZJfo2bR-uw.zh-CN.vtt 7.87Кб
17. Saving and Loading Models.html 6.55Кб
18. 05 Batching Data V1-9Eg0wf3eW-k.en.vtt 5.17Кб
18. 05 Batching Data V1-9Eg0wf3eW-k.mp4 5.82Мб
18. 05 Batching Data V1-9Eg0wf3eW-k.pt-BR.vtt 4.92Кб
18. Batching Data, Solution.html 6.04Кб
18. Loading Image Data.html 6.53Кб
18. Local Connectivity.html 8.87Кб
18. Local Connectivity-z9wiDg0w-Dc.en.vtt 8.95Кб
18. Local Connectivity-z9wiDg0w-Dc.mp4 13.09Мб
18. Local Connectivity-z9wiDg0w-Dc.pt-BR.vtt 9.29Кб
18. Local Connectivity-z9wiDg0w-Dc.zh-CN.vtt 7.62Кб
18. Maximizing Probabilities.html 11.04Кб
18. PyTorch - Part 7-hFu7GTfRWks.en.vtt 10.67Кб
18. PyTorch - Part 7-hFu7GTfRWks.mp4 15.15Мб
18. PyTorch - Part 7-hFu7GTfRWks.pt-BR.vtt 10.86Кб
18. PyTorch - Part 7-hFu7GTfRWks.zh-CN.vtt 8.56Кб
18. Quiz - Cross 1--xxrisIvD0E.en.vtt 918б
18. Quiz - Cross 1--xxrisIvD0E.mp4 3.02Мб
18. Quiz - Cross 1--xxrisIvD0E.pt-BR.vtt 947б
18. Quiz - Cross 1--xxrisIvD0E.zh-CN.vtt 813б
18. Quiz Cross Entropy-njq6bYrPqSU.en.vtt 2.30Кб
18. Quiz Cross Entropy-njq6bYrPqSU.mp4 1.86Мб
18. Quiz Cross Entropy-njq6bYrPqSU.pt-BR.vtt 2.28Кб
18. Quiz Cross Entropy-njq6bYrPqSU.zh-CN.vtt 2.07Кб
19. 06 Defining Model V2-_LWzyqq4hCY.en.vtt 5.76Кб
19. 06 Defining Model V2-_LWzyqq4hCY.mp4 9.05Мб
19. 06 Defining Model V2-_LWzyqq4hCY.pt-BR.vtt 5.99Кб
19. 15 Filters And Convo RENDER V2-x_dhnhUzFNo.en.vtt 2.11Кб
19. 15 Filters And Convo RENDER V2-x_dhnhUzFNo.mp4 2.95Мб
19. 15 Filters And Convo RENDER V2-x_dhnhUzFNo.pt-BR.vtt 2.11Кб
19. Cross-Entropy 1.html 9.44Кб
19. Cross Entropy 1-iREoPUrpXvE.en.vtt 4.81Кб
19. Cross Entropy 1-iREoPUrpXvE.mp4 4.22Мб
19. Cross Entropy 1-iREoPUrpXvE.pt-BR.vtt 5.00Кб
19. Cross Entropy 1-iREoPUrpXvE.zh-CN.vtt 4.11Кб
19. Defining the Model.html 6.52Кб
19. Filters and the Convolutional Layer.html 8.83Кб
19. Loading Image Data Solution.html 6.35Кб
19. PyTorch V2 Part 7 Solution V1-d_NhvI1yEf0.en.vtt 4.47Кб
19. PyTorch V2 Part 7 Solution V1-d_NhvI1yEf0.mp4 6.80Мб
20. 07 CharRNN Solution V1-ed33qePHrJM.en.vtt 11.40Кб
20. 07 CharRNN Solution V1-ed33qePHrJM.mp4 18.32Мб
20. 07 CharRNN Solution V1-ed33qePHrJM.pt-BR.vtt 11.12Кб
20. Char-RNN, Solution.html 7.88Кб
20. ConNet 16 FIlters & Edges V2-hfqNqcEU6uI.en.vtt 1.61Кб
20. ConNet 16 FIlters & Edges V2-hfqNqcEU6uI.mp4 3.50Мб
20. ConNet 16 FIlters & Edges V2-hfqNqcEU6uI.pt-BR.vtt 1.63Кб
20. Cross-Entropy 2.html 11.73Кб
20. CrossEntropy V1-1BnhC6e0TFw.en.vtt 8.03Кб
20. CrossEntropy V1-1BnhC6e0TFw.mp4 6.61Мб
20. CrossEntropy V1-1BnhC6e0TFw.pt-BR.vtt 7.81Кб
20. CrossEntropy V1-1BnhC6e0TFw.zh-CN.vtt 6.66Кб
20. Filters & Edges.html 9.33Кб
20. Formula For Cross 1-qvr_ego_d6w.en.vtt 607б
20. Formula For Cross 1-qvr_ego_d6w.mp4 2.08Мб
20. Formula For Cross 1-qvr_ego_d6w.pt-BR.vtt 719б
20. Formula For Cross 1-qvr_ego_d6w.zh-CN.vtt 545б
20. PyTorch - Part 8-S9F7MtJ5jls.en.vtt 16.82Кб
20. PyTorch - Part 8-S9F7MtJ5jls.mp4 29.51Мб
20. PyTorch - Part 8-S9F7MtJ5jls.pt-BR.vtt 16.61Кб
20. PyTorch - Part 8-S9F7MtJ5jls.zh-CN.vtt 13.19Кб
20. Transfer Learning.html 6.53Кб
21. 08 Making Predictions V3-BhrpV3kwATo.en.vtt 8.77Кб
21. 08 Making Predictions V3-BhrpV3kwATo.mp4 12.38Мб
21. 08 Making Predictions V3-BhrpV3kwATo.pt-BR.vtt 8.92Кб
21. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.en.vtt 4.72Кб
21. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.mp4 4.14Мб
21. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.pt-BR.vtt 4.54Кб
21. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.zh-CN.vtt 4.01Кб
21. Frequency in Images.html 11.10Кб
21. Making Predictions.html 6.99Кб
21. Multi-Class Cross Entropy.html 10.41Кб
21. PyTorch V2 Part 8 Solution V1-4n6T93hKRD4.en.vtt 13.49Кб
21. PyTorch V2 Part 8 Solution V1-4n6T93hKRD4.mp4 18.50Мб
21. Transfer Learning Solution.html 6.35Кб
22. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.en.vtt 1.62Кб
22. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.mp4 1.49Мб
22. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.pt-BR.vtt 1.42Кб
22. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.zh-CN.vtt 1.46Кб
22. Error Function-V5kkHldUlVU.en.vtt 4.87Кб
22. Error Function-V5kkHldUlVU.mp4 4.84Мб
22. Error Function-V5kkHldUlVU.pt-BR.vtt 5.19Кб
22. Error Function-V5kkHldUlVU.zh-CN.vtt 4.15Кб
22. High-pass Filters.html 9.99Кб
22. High-pass Filters-OpcFn_H2V-Q.en.vtt 7.56Кб
22. High-pass Filters-OpcFn_H2V-Q.mp4 8.25Мб
22. High-pass Filters-OpcFn_H2V-Q.pt-BR.vtt 8.22Кб
22. High-pass Filters-OpcFn_H2V-Q.zh-CN.vtt 6.57Кб
22. Logistic Regression.html 10.88Кб
22. Tips, Tricks, and Other Notes.html 7.59Кб
23. Gradient Descent.html 17.21Кб
23. Gradient Descent-rhVIF-nigrY.en.vtt 3.85Кб
23. Gradient Descent-rhVIF-nigrY.mp4 3.76Мб
23. Gradient Descent-rhVIF-nigrY.pt-BR.vtt 3.98Кб
23. Quiz Kernels.html 9.98Кб
24. Gradient Descent Algorithm-snxmBgi_GeU.en.vtt 2.55Кб
24. Gradient Descent Algorithm-snxmBgi_GeU.mp4 1.98Мб
24. Gradient Descent Algorithm-snxmBgi_GeU.pt-BR.vtt 2.64Кб
24. Gradient Descent Algorithm-snxmBgi_GeU.zh-CN.vtt 2.21Кб
24. Logistic Regression Algorithm.html 9.28Кб
24. OpenCV & Creating Custom Filters.html 11.16Кб
25. Notebook Finding Edges.html 9.28Кб
25. Pre-Notebook Gradient Descent.html 11.24Кб
26. Convolutional Layer.html 11.34Кб
26. Notebook Gradient Descent.html 9.64Кб
27. Convolutional Layers (Part 2).html 9.67Кб
27. Convolutional Layers-RnM1D-XI--8.en.vtt 9.99Кб
27. Convolutional Layers-RnM1D-XI--8.mp4 19.81Мб
27. Convolutional Layers-RnM1D-XI--8.pt-BR.vtt 11.00Кб
27. Convolutional Layers-RnM1D-XI--8.zh-CN.vtt 8.71Кб
27. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.en.vtt 4.27Кб
27. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.mp4 3.20Мб
27. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.pt-BR.vtt 4.24Кб
27. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.zh-CN.vtt 3.60Кб
27. Perceptron vs Gradient Descent.html 9.59Кб
28. 17 Stride And Padding RENDER V1-GmStpNi8jBI.en.vtt 3.61Кб
28. 17 Stride And Padding RENDER V1-GmStpNi8jBI.mp4 6.09Мб
28. 17 Stride And Padding RENDER V1-GmStpNi8jBI.pt-BR.vtt 3.86Кб
28. Continuous Perceptrons.html 9.24Кб
28. Continuous Perceptrons-07-JJ-aGEfM.en.vtt 1.33Кб
28. Continuous Perceptrons-07-JJ-aGEfM.mp4 1.13Мб
28. Continuous Perceptrons-07-JJ-aGEfM.pt-BR.vtt 1.31Кб
28. Continuous Perceptrons-07-JJ-aGEfM.zh-CN.vtt 1.15Кб
28. Stride and Padding.html 8.80Кб
29. 24 CNNs PyTorch V2-GNxzWfiz3do.en.vtt 8.26Кб
29. 24 CNNs PyTorch V2-GNxzWfiz3do.mp4 12.60Мб
29. 24 CNNs PyTorch V2-GNxzWfiz3do.pt-BR.vtt 8.11Кб
29. CNNs in PyTorch.html 9.06Кб
29. Non-linear Data.html 9.20Кб
29. Non-Linear Data-F7ZiE8PQiSc.en.vtt 633б
29. Non-Linear Data-F7ZiE8PQiSc.mp4 2.14Мб
29. Non-Linear Data-F7ZiE8PQiSc.pt-BR.vtt 600б
29. Non-Linear Data-F7ZiE8PQiSc.zh-CN.vtt 624б
30. 18 Pooling RENDER V1-_Ok5xZwOtrk.en.vtt 2.90Кб
30. 18 Pooling RENDER V1-_Ok5xZwOtrk.mp4 2.98Мб
30. 18 Pooling RENDER V1-_Ok5xZwOtrk.pt-BR.vtt 3.20Кб
30. Non-Linear Models.html 9.21Кб
30. Non-Linear Models-HWuBKCZsCo8.en.vtt 1.30Кб
30. Non-Linear Models-HWuBKCZsCo8.mp4 1.13Мб
30. Non-Linear Models-HWuBKCZsCo8.pt-BR.vtt 1.39Кб
30. Non-Linear Models-HWuBKCZsCo8.zh-CN.vtt 1.12Кб
30. Pooling Layers.html 10.72Кб
31. 29 Neural Network Architecture 2-FWN3Sw5fFoM.en.vtt 3.02Кб
31. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4 2.83Мб
31. 29 Neural Network Architecture 2-FWN3Sw5fFoM.pt-BR.vtt 3.34Кб
31. 29 Neural Network Architecture 2-FWN3Sw5fFoM.zh-CN.vtt 2.76Кб
31. Combinando modelos-Boy3zHVrWB4.en.vtt 5.29Кб
31. Combinando modelos-Boy3zHVrWB4.mp4 4.73Мб
31. Combinando modelos-Boy3zHVrWB4.pt-BR.vtt 5.29Кб
31. Combinando modelos-Boy3zHVrWB4.zh-CN.vtt 4.61Кб
31. Layers-pg99FkXYK0M.en.vtt 3.40Кб
31. Layers-pg99FkXYK0M.mp4 3.11Мб
31. Layers-pg99FkXYK0M.pt-BR.vtt 3.29Кб
31. Layers-pg99FkXYK0M.zh-CN.vtt 3.04Кб
31. Multiclass Classification-uNTtvxwfox0.en.vtt 2.08Кб
31. Multiclass Classification-uNTtvxwfox0.mp4 1.88Мб
31. Multiclass Classification-uNTtvxwfox0.pt-BR.vtt 2.12Кб
31. Multiclass Classification-uNTtvxwfox0.zh-CN.vtt 1.82Кб
31. Neural Network Architecture.html 13.86Кб
31. Notebook Layer Visualization.html 9.29Кб
32. ConNet 20 Increasing Depth V2 RENDERv1 1 V2-YKif1KNpWeE.en.vtt 4.23Кб
32. ConNet 20 Increasing Depth V2 RENDERv1 1 V2-YKif1KNpWeE.mp4 4.90Мб
32. ConNet 20 Increasing Depth V2 RENDERv1 1 V2-YKif1KNpWeE.pt-BR.vtt 4.41Кб
32. DL 41 Feedforward FIX V2-hVCuvMGOfyY.en.vtt 6.17Кб
32. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4 5.33Мб
32. DL 41 Feedforward FIX V2-hVCuvMGOfyY.pt-BR.vtt 6.76Кб
32. DL 41 Feedforward FIX V2-hVCuvMGOfyY.zh-CN.vtt 5.33Кб
32. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.en.vtt 1.97Кб
32. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4 1.72Мб
32. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.pt-BR.vtt 2.12Кб
32. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.zh-CN.vtt 1.69Кб
32. Feedforward.html 10.49Кб
32. Increasing Depth.html 8.84Кб
33. 21 CNNs For Image Classification RENDER V2-smaw5GqRaoY.en.vtt 4.74Кб
33. 21 CNNs For Image Classification RENDER V2-smaw5GqRaoY.mp4 5.75Мб
33. 21 CNNs For Image Classification RENDER V2-smaw5GqRaoY.pt-BR.vtt 5.07Кб
33. Backpropagation.html 13.31Кб
33. Backpropagation V2-1SmY3TZTyUk.en.vtt 7.21Кб
33. Backpropagation V2-1SmY3TZTyUk.mp4 6.52Мб
33. Backpropagation V2-1SmY3TZTyUk.pt-BR.vtt 7.17Кб
33. Backpropagation V2-1SmY3TZTyUk.zh-CN.vtt 6.39Кб
33. Calculating The Gradient 1 -tVuZDbUrzzI.en.vtt 3.41Кб
33. Calculating The Gradient 1 -tVuZDbUrzzI.mp4 3.31Мб
33. Calculating The Gradient 1 -tVuZDbUrzzI.pt-BR.vtt 3.44Кб
33. Calculating The Gradient 1 -tVuZDbUrzzI.zh-CN.vtt 2.88Кб
33. Chain Rule-YAhIBOnbt54.en.vtt 1.65Кб
33. Chain Rule-YAhIBOnbt54.mp4 1.46Мб
33. Chain Rule-YAhIBOnbt54.pt-BR.vtt 1.73Кб
33. Chain Rule-YAhIBOnbt54.zh-CN.vtt 1.42Кб
33. CNNs for Image Classification.html 14.04Кб
33. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.en.vtt 6.16Кб
33. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4 5.69Мб
33. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.pt-BR.vtt 6.50Кб
33. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.zh-CN.vtt 5.05Кб
34. Convolutional Layers in PyTorch.html 20.73Кб
34. Pre-Notebook Analyzing Student Data.html 10.25Кб
35. ConNet 22 Feature Vector RENDER 1 V2-g6QuiVno8zI.en.vtt 3.87Кб
35. ConNet 22 Feature Vector RENDER 1 V2-g6QuiVno8zI.mp4 5.37Мб
35. ConNet 22 Feature Vector RENDER 1 V2-g6QuiVno8zI.pt-BR.vtt 3.90Кб
35. Feature Vector.html 8.81Кб
35. Notebook Analyzing Student Data.html 9.65Кб
36. 23 Cifar Class V1-FF_EmZ2sf2w.en.vtt 8.39Кб
36. 23 Cifar Class V1-FF_EmZ2sf2w.mp4 12.83Мб
36. 23 Cifar Class V1-FF_EmZ2sf2w.pt-BR.vtt 8.62Кб
36. CIFAR Classification Example.html 9.63Кб
36. Training Optimization.html 9.24Кб
36. Training Optimization-UiGKhx9pUYc.en.vtt 824б
36. Training Optimization-UiGKhx9pUYc.mp4 2.96Мб
36. Training Optimization-UiGKhx9pUYc.pt-BR.vtt 874б
36. Training Optimization-UiGKhx9pUYc.zh-CN.vtt 840б
37. Notebook CNN Classification.html 10.28Кб
37. Testing.html 9.14Кб
37. Testing-EeBZpb-PSac.en.vtt 2.41Кб
37. Testing-EeBZpb-PSac.mp4 2.00Мб
37. Testing-EeBZpb-PSac.pt-BR.vtt 2.37Кб
37. Testing-EeBZpb-PSac.zh-CN.vtt 1.99Кб
38. Notebook CNNs for CIFAR Image Classification.html 9.33Кб
38. Overfitting and Underfitting.html 9.29Кб
38. Underfitting And Overfitting-xj4PlXMsN-Y.en.vtt 7.49Кб
38. Underfitting And Overfitting-xj4PlXMsN-Y.mp4 6.42Мб
38. Underfitting And Overfitting-xj4PlXMsN-Y.pt-BR.vtt 8.15Кб
38. Underfitting And Overfitting-xj4PlXMsN-Y.zh-CN.vtt 6.54Кб
39. Early Stopping.html 9.23Кб
39. Image Augmentation.html 8.78Кб
39. Image Augmentation In Keras-zQnx2jZmjTA.en.vtt 4.56Кб
39. Image Augmentation In Keras-zQnx2jZmjTA.mp4 4.93Мб
39. Image Augmentation In Keras-zQnx2jZmjTA.pt-BR.vtt 4.53Кб
39. Model Complexity Graph-NnS0FJyVcDQ.en.vtt 5.32Кб
39. Model Complexity Graph-NnS0FJyVcDQ.mp4 4.90Мб
39. Model Complexity Graph-NnS0FJyVcDQ.pt-BR.vtt 5.52Кб
39. Model Complexity Graph-NnS0FJyVcDQ.zh-CN.vtt 4.65Кб
40. 26 Augmentation V1-J_gjHVt9pVw.en.vtt 3.42Кб
40. 26 Augmentation V1-J_gjHVt9pVw.mp4 7.62Мб
40. 26 Augmentation V1-J_gjHVt9pVw.pt-BR.vtt 3.26Кб
40. Augmentation Using Transformations.html 9.21Кб
40. DL 53 Q Regularization-KxROxcRsHL8.en.vtt 1.15Кб
40. DL 53 Q Regularization-KxROxcRsHL8.mp4 1.01Мб
40. DL 53 Q Regularization-KxROxcRsHL8.pt-BR.vtt 1.16Кб
40. DL 53 Q Regularization-KxROxcRsHL8.zh-CN.vtt 1.02Кб
40. Regularization.html 10.27Кб
41. Groundbreaking CNN Architectures.html 9.97Кб
41. Groundbreaking CNN Architectures-GdYOqihgb2k.en.vtt 3.59Кб
41. Groundbreaking CNN Architectures-GdYOqihgb2k.mp4 7.32Мб
41. Groundbreaking CNN Architectures-GdYOqihgb2k.pt-BR.vtt 3.86Кб
41. Regularization 2.html 9.19Кб
41. Regularization-ndYnUrx8xvs.en.vtt 8.07Кб
41. Regularization-ndYnUrx8xvs.mp4 7.57Мб
41. Regularization-ndYnUrx8xvs.pt-BR.vtt 8.78Кб
41. Regularization-ndYnUrx8xvs.zh-CN.vtt 6.96Кб
42. Dropout.html 9.14Кб
42. Dropout-Ty6K6YiGdBs.en.vtt 4.71Кб
42. Dropout-Ty6K6YiGdBs.mp4 4.22Мб
42. Dropout-Ty6K6YiGdBs.pt-BR.vtt 4.66Кб
42. Dropout-Ty6K6YiGdBs.zh-CN.vtt 4.06Кб
42. Visualizing CNNs (Part 1).html 11.09Кб
42. Visualizing CNNs-mnqS_EhEZVg.en.vtt 3.87Кб
42. Visualizing CNNs-mnqS_EhEZVg.mp4 9.20Мб
42. Visualizing CNNs-mnqS_EhEZVg.pt-BR.vtt 3.83Кб
42. Visualizing CNNs-mnqS_EhEZVg.zh-CN.vtt 3.33Кб
43. Local Minima.html 9.18Кб
43. Local Minima-gF_sW_nY-xw.en.vtt 1.14Кб
43. Local Minima-gF_sW_nY-xw.mp4 819.86Кб
43. Local Minima-gF_sW_nY-xw.pt-BR.vtt 1.05Кб
43. Local Minima-gF_sW_nY-xw.zh-CN.vtt 1.01Кб
43. Visualizing CNNs (Part 2).html 15.72Кб
44. ConNet 27 Summary Of CNNs V2 RENDER V3-Te9QCvhx6N8.en.vtt 2.03Кб
44. ConNet 27 Summary Of CNNs V2 RENDER V3-Te9QCvhx6N8.mp4 3.66Мб
44. ConNet 27 Summary Of CNNs V2 RENDER V3-Te9QCvhx6N8.pt-BR.vtt 2.16Кб
44. Random Restart.html 9.19Кб
44. Random Restart-idyBBCzXiqg.en.vtt 466б
44. Random Restart-idyBBCzXiqg.mp4 394.99Кб
44. Random Restart-idyBBCzXiqg.pt-BR.vtt 478б
44. Random Restart-idyBBCzXiqg.zh-CN.vtt 419б
44. Summary of CNNs.html 8.82Кб
45. Vanishing Gradient.html 9.22Кб
45. Vanishing Gradient-W_JJm_5syFw.en.vtt 1.46Кб
45. Vanishing Gradient-W_JJm_5syFw.mp4 1.32Мб
45. Vanishing Gradient-W_JJm_5syFw.pt-BR.vtt 1.56Кб
45. Vanishing Gradient-W_JJm_5syFw.zh-CN.vtt 1.24Кб
46. Other Activation Functions.html 9.57Кб
46. Other Activation Functions-kA-1vUt6cvQ.en.vtt 2.68Кб
46. Other Activation Functions-kA-1vUt6cvQ.mp4 2.30Мб
46. Other Activation Functions-kA-1vUt6cvQ.pt-BR.vtt 2.55Кб
46. Other Activation Functions-kA-1vUt6cvQ.zh-CN.vtt 2.34Кб
47. Batch vs Stochastic Gradient Descent.html 9.34Кб
47. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.en.vtt 4.64Кб
47. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.mp4 3.95Мб
47. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.pt-BR.vtt 4.63Кб
47. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.zh-CN.vtt 4.10Кб
48. Learning Rate Decay.html 9.19Кб
48. Learning Rate-TwJ8aSZoh2U.en.vtt 1.12Кб
48. Learning Rate-TwJ8aSZoh2U.mp4 927.05Кб
48. Learning Rate-TwJ8aSZoh2U.pt-BR.vtt 1.26Кб
48. Learning Rate-TwJ8aSZoh2U.zh-CN.vtt 1020б
49. Momentum.html 9.15Кб
49. Momentum-r-rYz_PEWC8.en.vtt 2.50Кб
49. Momentum-r-rYz_PEWC8.mp4 2.14Мб
49. Momentum-r-rYz_PEWC8.pt-BR.vtt 2.70Кб
49. Momentum-r-rYz_PEWC8.zh-CN.vtt 2.21Кб
50. Error Functions Around the World.html 9.31Кб
50. Error Functions Around the World-34AAcTECu2A.en.vtt 1.17Кб
50. Error Functions Around the World-34AAcTECu2A.mp4 1.73Мб
50. Error Functions Around the World-34AAcTECu2A.pt-BR.vtt 1.08Кб
50. Error Functions Around the World-34AAcTECu2A.zh-CN.vtt 1.06Кб
alexis-headshot.jpg 26.33Кб
and-quiz.png 265.78Кб
and-to-or.png 606.14Кб
bootstrap.min.css 137.64Кб
bootstrap.min.js 49.85Кб
cezanne-head.jpg 59.53Кб
cezanne-head.jpg 59.53Кб
cezanne-head.jpg 59.53Кб
codecogseqn-43.gif 7.96Кб
codecogseqn-49.gif 2.09Кб
codecogseqn-58.gif 919б
codecogseqn-60-2.png 8.94Кб
Course index.rar 5.79Кб
dancing-beemo.gif 318.16Кб
data.json 20.57Кб
data.json 137.34Кб
data.json 9.55Кб
data.json 26.69Кб
data.json 112.47Кб
data.json 16.01Кб
data.json 37.70Кб
data.json 45.65Кб
data.json 11.89Кб
data.json 7.69Кб
diagonal-line-1.png 5.76Кб
diagonal-line-2.png 6.62Кб
Discuss.FreeTutorials.Us.html 165.68Кб
FreeCoursesOnline.Me.html 108.30Кб
FreeTutorials.Eu.html 102.23Кб
full-padding-no-strides-transposed.gif 221.74Кб
grid-layer-1.png 35.30Кб
hero-bg-1.png 635.49Кб
image-04549.jpg 72.17Кб
index.html 3.41Кб
index.html 6.84Кб
index.html 3.72Кб
index.html 4.84Кб
index.html 6.63Кб
index.html 3.80Кб
index.html 4.47Кб
index.html 4.06Кб
index.html 3.40Кб
index.html 3.01Кб
jquery.mCustomScrollbar.concat.min.js 44.41Кб
jquery.mCustomScrollbar.min.css 41.83Кб
jquery-3.3.1.min.js 84.89Кб
KaTeX_AMS-Regular.ttf 69.75Кб
KaTeX_AMS-Regular.woff 39.26Кб
KaTeX_AMS-Regular.woff2 32.43Кб
KaTeX_Caligraphic-Bold.ttf 19.13Кб
KaTeX_Caligraphic-Bold.woff 11.85Кб
KaTeX_Caligraphic-Bold.woff2 10.35Кб
KaTeX_Caligraphic-Regular.ttf 18.52Кб
KaTeX_Caligraphic-Regular.woff 11.59Кб
KaTeX_Caligraphic-Regular.woff2 10.17Кб
KaTeX_Fraktur-Bold.ttf 35.13Кб
KaTeX_Fraktur-Bold.woff 22.84Кб
KaTeX_Fraktur-Bold.woff2 20.01Кб
KaTeX_Fraktur-Regular.ttf 33.84Кб
KaTeX_Fraktur-Regular.woff 22.31Кб
KaTeX_Fraktur-Regular.woff2 19.39Кб
KaTeX_Main-Bold.ttf 60.27Кб
KaTeX_Main-Bold.woff 35.89Кб
KaTeX_Main-Bold.woff2 29.90Кб
KaTeX_Main-BoldItalic.ttf 43.77Кб
KaTeX_Main-BoldItalic.woff 25.61Кб
KaTeX_Main-BoldItalic.woff2 21.67Кб
KaTeX_Main-Italic.ttf 46.83Кб
KaTeX_Main-Italic.woff 26.56Кб
KaTeX_Main-Italic.woff2 22.52Кб
KaTeX_Main-Regular.ttf 68.43Кб
KaTeX_Main-Regular.woff 38.52Кб
KaTeX_Main-Regular.woff2 32.09Кб
KaTeX_Math-BoldItalic.ttf 38.81Кб
KaTeX_Math-BoldItalic.woff 22.65Кб
KaTeX_Math-BoldItalic.woff2 19.57Кб
KaTeX_Math-Italic.ttf 40.48Кб
KaTeX_Math-Italic.woff 23.26Кб
KaTeX_Math-Italic.woff2 19.95Кб
KaTeX_SansSerif-Bold.ttf 33.23Кб
KaTeX_SansSerif-Bold.woff 18.72Кб
KaTeX_SansSerif-Bold.woff2 15.62Кб
KaTeX_SansSerif-Italic.ttf 30.57Кб
KaTeX_SansSerif-Italic.woff 17.70Кб
KaTeX_SansSerif-Italic.woff2 14.86Кб
KaTeX_SansSerif-Regular.ttf 29.45Кб
KaTeX_SansSerif-Regular.woff 16.39Кб
KaTeX_SansSerif-Regular.woff2 13.70Кб
KaTeX_Script-Regular.ttf 24.28Кб
KaTeX_Script-Regular.woff 13.53Кб
KaTeX_Script-Regular.woff2 11.99Кб
KaTeX_Size1-Regular.ttf 12.86Кб
KaTeX_Size1-Regular.woff 6.82Кб
KaTeX_Size1-Regular.woff2 5.69Кб
KaTeX_Size2-Regular.ttf 12.12Кб
KaTeX_Size2-Regular.woff 6.53Кб
KaTeX_Size2-Regular.woff2 5.43Кб
KaTeX_Size3-Regular.ttf 8.16Кб
KaTeX_Size3-Regular.woff 4.66Кб
KaTeX_Size3-Regular.woff2 3.77Кб
KaTeX_Size4-Regular.ttf 11.02Кб
KaTeX_Size4-Regular.woff 6.30Кб
KaTeX_Size4-Regular.woff2 5.06Кб
KaTeX_Typewriter-Regular.ttf 35.46Кб
KaTeX_Typewriter-Regular.woff 20.43Кб
KaTeX_Typewriter-Regular.woff2 17.13Кб
katex.min.css 21.56Кб
katex.min.js 231.26Кб
Lab - Final Challenge.html 6.51Кб
layer-1-grid.png 45.73Кб
mat-headshot.png 179.99Кб
mat-headshot.png 179.99Кб
mat-headshot.png 179.99Кб
meme.png 209.05Кб
meme.png 209.05Кб
meme.png 209.05Кб
opencv-logo-with-text.png 31.21Кб
or-quiz.png 393.62Кб
perceptronquiz.png 93.69Кб
plyr.css 23.62Кб
plyr.polyfilled.min.js 126.16Кб
points.png 63.17Кб
Presented By SaM.txt 33б
pytorch-project-image.png 219.13Кб
regularization-quiz.png 87.90Кб
relu-ex.png 120.95Кб
scholarships-team.png 107.05Кб
screen-shot-2016-11-24-at-12.08.11-pm.png 2.90Мб
screen-shot-2016-11-24-at-12.09.02-pm.png 3.09Мб
screen-shot-2016-11-24-at-12.09.24-pm.png 3.49Мб
screen-shot-2017-06-26-at-10.44.50-am.png 50.60Кб
screen-shot-2017-11-16-at-4.26.22-pm.png 41.24Кб
screen-shot-2017-11-16-at-4.27.58-pm.png 27.77Кб
screen-shot-2017-11-16-at-4.31.41-pm.png 44.91Кб
screen-shot-2018-05-31-at-2.59.36-pm.png 192.67Кб
screen-shot-2018-05-31-at-3.06.07-pm.png 169.94Кб
screen-shot-2018-05-31-at-3.07.03-pm.png 52.08Кб
screen-shot-2018-09-10-at-7.38.39-pm.png 296.26Кб
screen-shot-2018-09-24-at-3.17.56-pm.png 112.47Кб
screen-shot-2018-09-24-at-3.18.33-pm.png 458.93Кб
screen-shot-2018-10-15-at-8.35.15-pm.png 119.96Кб
screen-shot-2018-11-05-at-11.33.57-am.png 153.88Кб
screen-shot-2018-11-06-at-2.30.04-pm.png 75.93Кб
screen-shot-2018-11-06-at-2.48.40-pm.png 58.05Кб
sebastian-dlnd-card.png 572.91Кб
sigmoid-derivative.gif 2.09Кб
student-quiz.png 748.98Кб
students-first.png 293.58Кб
styles.css 3.76Кб
Torrent Downloaded From GloDls.to.txt 84б
udacimak.png 461.07Кб
udacitypytorch-welcomepage-image-v2.png 847.62Кб
Upload+image.png 115.09Кб
xor.png 214.95Кб
xor-quiz.png 94.14Кб
Статистика распространения по странам
Всего 0
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент