Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
[TGx]Downloaded from torrentgalaxy.org.txt |
524б |
01. 01 StyleTransfer V3-_urN9BQ7RHM.en.vtt |
1.97Кб |
01. 01 StyleTransfer V3-_urN9BQ7RHM.mp4 |
2.72Мб |
01. 01 StyleTransfer V3-_urN9BQ7RHM.pt-BR.vtt |
1.89Кб |
01. 1 SentimentRNN Intro V1-bQWUuaMc9ZI.en.vtt |
2.17Кб |
01. 1 SentimentRNN Intro V1-bQWUuaMc9ZI.mp4 |
2.20Мб |
01. Final project.html |
6.37Кб |
01. Introducing Alexis.html |
9.06Кб |
01. Introducing Alexis-38ExGpdyvJI.en.vtt |
694б |
01. Introducing Alexis-38ExGpdyvJI.mp4 |
2.05Мб |
01. Introducing Alexis-38ExGpdyvJI.pt-BR.vtt |
599б |
01. Introducing Alexis-38ExGpdyvJI.zh-CN.vtt |
615б |
01. Introduction.html |
9.18Кб |
01. Introduction-tn-CrUTkCUc.en.vtt |
3.28Кб |
01. Introduction-tn-CrUTkCUc.mp4 |
7.54Мб |
01. Introduction-tn-CrUTkCUc.pt-BR.vtt |
3.09Кб |
01. Introduction-tn-CrUTkCUc.zh-CN.vtt |
2.84Кб |
01. Intro to RNNs.html |
7.28Кб |
01. Origins of PyTorch.html |
4.74Кб |
01. Origins Of PyTorch V2-0eLXNFv6aT8.mp4 |
30.04Мб |
01. Sentiment RNN, Introduction.html |
5.35Кб |
01. Style Transfer.html |
5.14Кб |
01. Welcome!.html |
10.96Кб |
01. Welcome!.html |
5.79Кб |
01. Welcome to the course!.html |
7.22Кб |
02. 02 SeparatingStyleandContent V2-PNFFAhymuHc.en.vtt |
5.06Кб |
02. 02 SeparatingStyleandContent V2-PNFFAhymuHc.mp4 |
9.19Мб |
02. 02 SeparatingStyleandContent V2-PNFFAhymuHc.pt-BR.vtt |
5.33Кб |
02. Applications of CNNs.html |
14.19Кб |
02. Applications of CNNs-HrYNL_1SV2Y.en.vtt |
5.37Кб |
02. Applications of CNNs-HrYNL_1SV2Y.mp4 |
17.70Мб |
02. Applications of CNNs-HrYNL_1SV2Y.pt-BR.vtt |
5.66Кб |
02. Applications of CNNs-HrYNL_1SV2Y.zh-CN.vtt |
4.70Кб |
02. Classification Problems 1.html |
10.42Кб |
02. Classsification Example-Dh625piH7Z0.en.vtt |
2.70Кб |
02. Classsification Example-Dh625piH7Z0.mp4 |
2.07Мб |
02. Classsification Example-Dh625piH7Z0.pt-BR.vtt |
2.51Кб |
02. Classsification Example-Dh625piH7Z0.zh-CN.vtt |
2.37Кб |
02. Debugging and Designing PyTorch.html |
4.78Кб |
02. Debugging And Designing PyTorch-Nn8140ECzPU.mp4 |
11.71Мб |
02. Installing PyTorch 1.0.html |
4.40Кб |
02. Instructors.html |
6.92Кб |
02. PyTorch 10 Install V1-kIwKPxgReFY.mp4 |
1.77Мб |
02. PyTorch V2 Part 1 V1-6Z7WntXays8.en.vtt |
9.75Кб |
02. PyTorch V2 Part 1 V1-6Z7WntXays8.mp4 |
12.32Мб |
02. RNN vs LSTM.html |
6.10Кб |
02. RNN Vs LSTM-70MgF-IwAr8.en.vtt |
4.71Кб |
02. RNN Vs LSTM-70MgF-IwAr8.mp4 |
3.58Мб |
02. RNN Vs LSTM-70MgF-IwAr8.pt-BR.vtt |
4.24Кб |
02. RNN Vs LSTM-70MgF-IwAr8.zh-CN.vtt |
4.22Кб |
02. Sentiment Analysis RNNs.html |
6.13Кб |
02. Separating Style & Content.html |
5.22Кб |
02. Single layer neural networks.html |
6.33Кб |
03. 03 ContentRepandStyleTransfer V3-PQ1UuzOIjCM.en.vtt |
5.65Кб |
03. 03 ContentRepandStyleTransfer V3-PQ1UuzOIjCM.mp4 |
7.86Мб |
03. 03 ContentRepandStyleTransfer V3-PQ1UuzOIjCM.pt-BR.vtt |
5.93Кб |
03. Basics of LSTM.html |
6.11Кб |
03. Classification Example-46PywnGa_cQ.en.vtt |
1.76Кб |
03. Classification Example-46PywnGa_cQ.mp4 |
1.62Мб |
03. Classification Example-46PywnGa_cQ.pt-BR.vtt |
1.60Кб |
03. Classification Example-46PywnGa_cQ.zh-CN.vtt |
1.65Кб |
03. Classification Problems 2.html |
9.25Кб |
03. ConNet 01 LessonOutline V1 V1-77LzWE1qQrc.en.vtt |
1.26Кб |
03. ConNet 01 LessonOutline V1 V1-77LzWE1qQrc.mp4 |
2.34Мб |
03. ConNet 01 LessonOutline V1 V1-77LzWE1qQrc.pt-BR.vtt |
1.30Кб |
03. Course Outline.html |
6.04Кб |
03. From Research to Production.html |
4.77Кб |
03. From Research To Production-eCysOAw8azs.mp4 |
20.81Мб |
03. Lesson Outline.html |
9.71Кб |
03. LSTM Basics-gjb68a4XsqE.en.vtt |
5.21Кб |
03. LSTM Basics-gjb68a4XsqE.mp4 |
4.03Мб |
03. LSTM Basics-gjb68a4XsqE.pt-BR.vtt |
5.06Кб |
03. LSTM Basics-gjb68a4XsqE.zh-CN.vtt |
4.59Кб |
03. Notebook Sentiment RNN.html |
7.41Кб |
03. PyTorch for Production.html |
4.41Кб |
03. PyTorch For Production V1-DBSoZWd4lQo.mp4 |
6.67Мб |
03. PyTorch V2 Part 1 Solution V1-mNJ8CujTtpo.en.vtt |
10.42Кб |
03. PyTorch V2 Part 1 Solution V1-mNJ8CujTtpo.mp4 |
15.66Мб |
03. Single layer neural networks solution.html |
6.37Кб |
03. VGG19 & Content Loss.html |
5.21Кб |
04. 3 Data PreProcessing V1-Xw1MWmql7no.en.vtt |
6.93Кб |
04. 3 Data PreProcessing V1-Xw1MWmql7no.mp4 |
10.09Мб |
04. 41 GramMatrixStyleTransfer V3-e718uVAW3KU.en.vtt |
5.23Кб |
04. 41 GramMatrixStyleTransfer V3-e718uVAW3KU.mp4 |
7.76Мб |
04. 41 GramMatrixStyleTransfer V3-e718uVAW3KU.pt-BR.vtt |
5.70Кб |
04. Architecture of LSTM.html |
6.15Кб |
04. ConNet 021 MNISTClassification V1 V2-a7bvIGZpcnk.en.vtt |
2.82Кб |
04. ConNet 021 MNISTClassification V1 V2-a7bvIGZpcnk.mp4 |
2.40Мб |
04. ConNet 021 MNISTClassification V1 V2-a7bvIGZpcnk.pt-BR.vtt |
2.64Кб |
04. Data Pre-Processing.html |
5.34Кб |
04. Gram Matrix.html |
7.61Кб |
04. How this program works.html |
6.13Кб |
04. Hybrid Frontend.html |
4.75Кб |
04. Hybrid Frontend And JIT Compiler-J4z-P8yUZu4.mp4 |
22.89Мб |
04. Linear Boundaries.html |
9.95Кб |
04. Linear Boundaries-X-uMlsBi07k.en.vtt |
3.85Кб |
04. Linear Boundaries-X-uMlsBi07k.mp4 |
3.85Мб |
04. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt |
3.67Кб |
04. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt |
3.36Кб |
04. LSTM Architecture-ycwthhdx8ws.en.vtt |
1.49Кб |
04. LSTM Architecture-ycwthhdx8ws.mp4 |
1.07Мб |
04. LSTM Architecture-ycwthhdx8ws.pt-BR.vtt |
1.46Кб |
04. LSTM Architecture-ycwthhdx8ws.zh-CN.vtt |
1.34Кб |
04. MNIST Dataset.html |
9.24Кб |
04. Networks Using Matrix Multiplication.html |
6.38Кб |
04. PyTorch Script Tracing V1-lYmQDUprQa0.mp4 |
8.37Мб |
04. PyTorch V2 Part 1 Solution 2 V1-QLaGMz8Ca3E.en.vtt |
4.52Кб |
04. PyTorch V2 Part 1 Solution 2 V1-QLaGMz8Ca3E.mp4 |
6.57Мб |
04. Torch Script & Tracing.html |
4.41Кб |
05. 09 Higher Dimensions-eBHunImDmWw.en.vtt |
2.95Кб |
05. 09 Higher Dimensions-eBHunImDmWw.mp4 |
2.59Мб |
05. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt |
2.66Кб |
05. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt |
2.38Кб |
05. 42 StyleLossStyleTransfer V2-VazrQ7u-OHo.en.vtt |
1.91Кб |
05. 42 StyleLossStyleTransfer V2-VazrQ7u-OHo.mp4 |
1.65Мб |
05. 42 StyleLossStyleTransfer V2-VazrQ7u-OHo.pt-BR.vtt |
2.05Кб |
05. 4 EncodingWords Sol V1-4RYyn3zv1Hg.en.vtt |
4.78Кб |
05. 4 EncodingWords Sol V1-4RYyn3zv1Hg.mp4 |
6.45Мб |
05. Annotations.html |
4.39Кб |
05. ConNet 022 How Computers Interpret Images V1-mEPfoM68Fx4.en.vtt |
3.84Кб |
05. ConNet 022 How Computers Interpret Images V1-mEPfoM68Fx4.mp4 |
4.44Мб |
05. ConNet 022 How Computers Interpret Images V1-mEPfoM68Fx4.pt-BR.vtt |
4.07Кб |
05. Cutting-Edge Applicationns In PyTorch-s8p6vqOubqw.mp4 |
15.87Мб |
05. Cutting-edge Applications in PyTorch.html |
4.81Кб |
05. Encoding Words, Solution.html |
5.34Кб |
05. Higher Dimensions.html |
10.42Кб |
05. How Computers Interpret Images.html |
10.76Кб |
05. Join the Scholar Learning Community.html |
5.83Кб |
05. Learn Gate-aVHVI7ovbHY.en.vtt |
2.63Кб |
05. Learn Gate-aVHVI7ovbHY.mp4 |
2.22Мб |
05. Learn Gate-aVHVI7ovbHY.pt-BR.vtt |
2.66Кб |
05. Learn Gate-aVHVI7ovbHY.zh-CN.vtt |
2.51Кб |
05. Multilayer Networks Solution.html |
6.36Кб |
05. PyTorch Script Annotation V2-pO1RM7mKaFg.mp4 |
7.25Мб |
05. PyTorch V2 Part 1 Solution 3 V1-iMIo9p5iSbE.en.vtt |
4.52Кб |
05. PyTorch V2 Part 1 Solution 3 V1-iMIo9p5iSbE.mp4 |
5.90Мб |
05. Style Loss.html |
5.17Кб |
05. The Learn Gate.html |
6.70Кб |
06. 05 LossWeightsStyleTransfer V2-qO8oiZBtG1I.en.vtt |
2.81Кб |
06. 05 LossWeightsStyleTransfer V2-qO8oiZBtG1I.mp4 |
4.80Мб |
06. 05 LossWeightsStyleTransfer V2-qO8oiZBtG1I.pt-BR.vtt |
2.84Кб |
06. 5 GettingRid ZeroLength V1-Hs6ithuvDJg.en.vtt |
3.60Кб |
06. 5 GettingRid ZeroLength V1-Hs6ithuvDJg.mp4 |
4.59Мб |
06. ConNet 03 MLPStructure&ClassScore V1 V1-fP0Odiai8sk.en.vtt |
3.11Кб |
06. ConNet 03 MLPStructure&ClassScore V1 V1-fP0Odiai8sk.mp4 |
2.87Мб |
06. ConNet 03 MLPStructure&ClassScore V1 V1-fP0Odiai8sk.pt-BR.vtt |
3.16Кб |
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt |
5.89Кб |
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4 |
5.13Мб |
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt |
5.61Кб |
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt |
4.98Кб |
06. Forget Gate-iWxpfxLUPSU.en.vtt |
1.26Кб |
06. Forget Gate-iWxpfxLUPSU.mp4 |
1.04Мб |
06. Forget Gate-iWxpfxLUPSU.pt-BR.vtt |
1.33Кб |
06. Forget Gate-iWxpfxLUPSU.zh-CN.vtt |
1.12Кб |
06. Getting Rid of Zero-Length.html |
5.36Кб |
06. Loss Weights.html |
5.18Кб |
06. MLP Structure & Class Scores.html |
9.49Кб |
06. Neural Networks in PyTorch.html |
6.32Кб |
06. Perceptrons.html |
10.35Кб |
06. PyTorch C++ API.html |
4.38Кб |
06. PyTorch C API V2-P1S1dN1gHmw.mp4 |
11.42Мб |
06. PyTorch V2 Part 2 V1-CSQOdOb2mlg.en.vtt |
5.83Кб |
06. PyTorch V2 Part 2 V1-CSQOdOb2mlg.mp4 |
10.84Мб |
06. Scholarship Challenge Project.html |
5.16Кб |
06. The Forget Gate.html |
6.62Кб |
06. User Needs and Adding Features.html |
4.78Кб |
06. User Needs And Adding Features-7HH65_c7Acw.mp4 |
15.78Мб |
07. 04 Do Your Research V1-CR4JeAn1fgk.en.vtt |
2.69Кб |
07. 04 Do Your Research V1-CR4JeAn1fgk.mp4 |
4.02Мб |
07. 04 Do Your Research V1-CR4JeAn1fgk.pt-BR.vtt |
2.80Кб |
07. 6 Cleaning And Padding V1-UgPo1_cq-0g.en.vtt |
4.60Кб |
07. 6 Cleaning And Padding V1-UgPo1_cq-0g.mp4 |
6.36Мб |
07. 6 VGG Features V1-Q5N2NEv7ADc.en.vtt |
6.95Кб |
07. 6 VGG Features V1-Q5N2NEv7ADc.mp4 |
11.15Мб |
07. 6 VGG Features V1-Q5N2NEv7ADc.pt-BR.vtt |
7.10Кб |
07. Cleaning & Padding Data.html |
5.35Кб |
07. Do Your Research.html |
8.76Кб |
07. Neural Networks Solution.html |
6.35Кб |
07. PyTorch and the Facebook Product.html |
4.79Кб |
07. PyTorch And The Facebook Product-TjVveb0iVrA.mp4 |
7.55Мб |
07. PyTorch V2 Part 2 Solution V1-zym36ihtOMY.en.vtt |
7.53Кб |
07. PyTorch V2 Part 2 Solution V1-zym36ihtOMY.mp4 |
8.74Мб |
07. Remember Gate-0qlm86HaXuU.en.vtt |
734б |
07. Remember Gate-0qlm86HaXuU.mp4 |
676.91Кб |
07. Remember Gate-0qlm86HaXuU.pt-BR.vtt |
700б |
07. Remember Gate-0qlm86HaXuU.zh-CN.vtt |
632б |
07. The Remember Gate.html |
6.51Кб |
07. VGG Features.html |
5.13Кб |
07. Want to learn more.html |
6.87Кб |
07. Why Neural Networks.html |
9.24Кб |
07. Why Neural Networks-zAkzOZntK6Y.en.vtt |
1.38Кб |
07. Why Neural Networks-zAkzOZntK6Y.mp4 |
982.27Кб |
07. Why Neural Networks-zAkzOZntK6Y.pt-BR.vtt |
1.27Кб |
07. Why Neural Networks-zAkzOZntK6Y.zh-CN.vtt |
1.18Кб |
08. 7 PaddedFeatures Sol V1-sYOd1IDmep8.en.vtt |
5.04Кб |
08. 7 PaddedFeatures Sol V1-sYOd1IDmep8.mp4 |
5.48Мб |
08. AND And OR Perceptrons-45K5N0P9wJk.en.vtt |
3.00Кб |
08. AND And OR Perceptrons-45K5N0P9wJk.mp4 |
2.68Мб |
08. AND And OR Perceptrons-45K5N0P9wJk.pt-BR.vtt |
3.15Кб |
08. AND And OR Perceptrons-45K5N0P9wJk.zh-CN.vtt |
2.48Кб |
08. ConNet 05 Loss&Optimization V1 V3-BmPDtSXv18w.en.vtt |
7.51Кб |
08. ConNet 05 Loss&Optimization V1 V3-BmPDtSXv18w.mp4 |
6.55Мб |
08. ConNet 05 Loss&Optimization V1 V3-BmPDtSXv18w.pt-BR.vtt |
7.48Кб |
08. Implementing Softmax Solution.html |
6.24Кб |
08. Loss & Optimization.html |
8.83Кб |
08. LSTM 7 Use Gate-5Ifolm1jTdY.en.vtt |
1.75Кб |
08. LSTM 7 Use Gate-5Ifolm1jTdY.mp4 |
1.50Мб |
08. LSTM 7 Use Gate-5Ifolm1jTdY.pt-BR.vtt |
1.73Кб |
08. LSTM 7 Use Gate-5Ifolm1jTdY.zh-CN.vtt |
1.50Кб |
08. Notebook Style Transfer.html |
7.14Кб |
08. Padded Features, Solution.html |
5.35Кб |
08. Perceptrons as Logical Operators.html |
20.82Кб |
08. PyTorch V2 Part 2 Solution 2 V1-8KRX7HvqfP0.mp4 |
16.70Мб |
08. The Future of PyTorch.html |
4.75Кб |
08. The Future Of PyTorch-vfCg3FoOjE4.mp4 |
14.51Мб |
08. The Use Gate.html |
6.74Кб |
08. XOR Perceptron-TF83GfjYLdw.en.vtt |
1.01Кб |
08. XOR Perceptron-TF83GfjYLdw.mp4 |
947.00Кб |
08. XOR Perceptron-TF83GfjYLdw.pt-BR.vtt |
1.00Кб |
08. XOR Perceptron-TF83GfjYLdw.zh-CN.vtt |
1021б |
09. 06 Defining A Network V1-9gvaQvyfLfY.en.vtt |
7.13Кб |
09. 06 Defining A Network V1-9gvaQvyfLfY.mp4 |
9.78Мб |
09. 06 Defining A Network V1-9gvaQvyfLfY.pt-BR.vtt |
6.84Кб |
09. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt |
4.11Кб |
09. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4 |
3.66Мб |
09. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt |
4.17Кб |
09. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt |
3.50Кб |
09. 7 Feats Gram Matrix V1-f89x9oAh6X0.en.vtt |
3.13Кб |
09. 7 Feats Gram Matrix V1-f89x9oAh6X0.mp4 |
5.64Мб |
09. 7 Feats Gram Matrix V1-f89x9oAh6X0.pt-BR.vtt |
3.32Кб |
09. 8 TensorDataset Batching V1-Oxuf2QIPjj4.en.vtt |
6.61Кб |
09. 8 TensorDataset Batching V1-Oxuf2QIPjj4.mp4 |
9.01Мб |
09. Defining a Network in PyTorch.html |
9.91Кб |
09. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt |
420б |
09. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4 |
260.01Кб |
09. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt |
364б |
09. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt |
390б |
09. Features & Gram Matrix.html |
5.17Кб |
09. Learning Ai-NMItGw0GFGM.mp4 |
9.99Мб |
09. Learning More in AI.html |
4.72Кб |
09. Network Architectures in PyTorch.html |
6.33Кб |
09. Perceptron Algorithm--zhTROHtscQ.en.vtt |
2.64Кб |
09. Perceptron Algorithm--zhTROHtscQ.mp4 |
1.92Мб |
09. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt |
2.41Кб |
09. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt |
2.35Кб |
09. Perceptron Trick.html |
13.03Кб |
09. Putting it All Together.html |
6.18Кб |
09. Putting It All Together-IF8FlKW-Zo0.en.vtt |
2.42Кб |
09. Putting It All Together-IF8FlKW-Zo0.mp4 |
1.58Мб |
09. Putting It All Together-IF8FlKW-Zo0.pt-BR.vtt |
2.36Кб |
09. Putting It All Together-IF8FlKW-Zo0.zh-CN.vtt |
2.13Кб |
09. PyTorch V2 Part 3 V1-9ILiZwbi9dA.en.vtt |
15.28Кб |
09. PyTorch V2 Part 3 V1-9ILiZwbi9dA.mp4 |
18.80Мб |
09. TensorDataset & Batching Data.html |
6.51Кб |
10. 07 Training The Network V1-904bfqibcCw.en.vtt |
6.54Кб |
10. 07 Training The Network V1-904bfqibcCw.mp4 |
10.52Мб |
10. 07 Training The Network V1-904bfqibcCw.pt-BR.vtt |
6.12Кб |
10. 8 Gram Matrix Sol V1-uncCKMI5Yns.en.vtt |
3.55Кб |
10. 8 Gram Matrix Sol V1-uncCKMI5Yns.mp4 |
4.82Мб |
10. 8 Gram Matrix Sol V1-uncCKMI5Yns.pt-BR.vtt |
3.70Кб |
10. 9 DefiningModel V1-SpvIZl1YQRI.en.vtt |
5.05Кб |
10. 9 DefiningModel V1-SpvIZl1YQRI.mp4 |
5.63Мб |
10. Defining the Model.html |
5.32Кб |
10. Gram Matrix Solution.html |
5.16Кб |
10. Network Architectures Solution.html |
6.36Кб |
10. Other architectures.html |
6.55Кб |
10. Other Architectures-MsxFDuYlTuQ.en.vtt |
2.31Кб |
10. Other Architectures-MsxFDuYlTuQ.mp4 |
1.71Мб |
10. Other Architectures-MsxFDuYlTuQ.pt-BR.vtt |
2.45Кб |
10. Other Architectures-MsxFDuYlTuQ.zh-CN.vtt |
2.04Кб |
10. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.en.vtt |
3.45Кб |
10. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.mp4 |
2.87Мб |
10. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt |
3.27Кб |
10. Perceptron Algorithm.html |
16.62Кб |
10. PyTorch V2 Part 3 Solution V2-zBWlOeX2sQM.en.vtt |
15.36Кб |
10. PyTorch V2 Part 3 Solution V2-zBWlOeX2sQM.mp4 |
21.27Мб |
10. Training the Network.html |
10.44Кб |
11. 9 Defining Loss V1-lix8d3B2QcE.en.vtt |
5.07Кб |
11. 9 Defining Loss V1-lix8d3B2QcE.mp4 |
7.20Мб |
11. 9 Defining Loss V1-lix8d3B2QcE.pt-BR.vtt |
5.16Кб |
11. Complete Sentiment RNN.html |
11.65Кб |
11. Defining the Loss.html |
5.14Кб |
11. Implementing RNNs.html |
6.56Кб |
11. Non-Linear Regions.html |
9.22Кб |
11. Non-Linear Regions-B8UrWnHh1Wc.en.vtt |
1.77Кб |
11. Non-Linear Regions-B8UrWnHh1Wc.mp4 |
1.33Мб |
11. Non-Linear Regions-B8UrWnHh1Wc.pt-BR.vtt |
1.51Кб |
11. Non-Linear Regions-B8UrWnHh1Wc.zh-CN.vtt |
1.57Кб |
11. Pre-Notebook MLP Classification, Exercise.html |
10.09Кб |
11. PyTorch V2 Part 3 Solution 2 V1-ExyFG2MjsKs.en.vtt |
2.73Кб |
11. PyTorch V2 Part 3 Solution 2 V1-ExyFG2MjsKs.mp4 |
3.56Мб |
11. Training a Network Solution.html |
6.36Кб |
12. 02 Time Series Prediction V2-xV5jHLFfJbQ.en.vtt |
10.86Кб |
12. 02 Time Series Prediction V2-xV5jHLFfJbQ.mp4 |
15.43Мб |
12. 02 Time Series Prediction V2-xV5jHLFfJbQ.pt-BR.vtt |
10.48Кб |
12. 10 Loss Solution V1-DzaQm9awcwY.en.vtt |
4.50Кб |
12. 10 Loss Solution V1-DzaQm9awcwY.mp4 |
7.15Мб |
12. 10 Loss Solution V1-DzaQm9awcwY.pt-BR.vtt |
4.69Кб |
12. Classifying Fashion-MNIST.html |
6.55Кб |
12. Error Functions.html |
9.20Кб |
12. Error Functions-YfUUunxWIJw.en.vtt |
790б |
12. Error Functions-YfUUunxWIJw.mp4 |
3.54Мб |
12. Error Functions-YfUUunxWIJw.pt-BR.vtt |
804б |
12. Error Functions-YfUUunxWIJw.zh-CN.vtt |
739б |
12. Notebook MLP Classification, MNIST.html |
9.31Кб |
12. PyTorch - Part 4-AEJV_RKZ7VU.en.vtt |
2.26Кб |
12. PyTorch - Part 4-AEJV_RKZ7VU.mp4 |
3.32Мб |
12. PyTorch - Part 4-AEJV_RKZ7VU.pt-BR.vtt |
2.19Кб |
12. PyTorch - Part 4-AEJV_RKZ7VU.zh-CN.vtt |
1.91Кб |
12. Time-Series Prediction.html |
6.85Кб |
12. Total Loss & Complete Solution.html |
5.18Кб |
12. Training the Model.html |
12.01Кб |
13. 03 Training Memory V1-sx7T_KP5v9I.en.vtt |
7.85Кб |
13. 03 Training Memory V1-sx7T_KP5v9I.mp4 |
9.57Мб |
13. 03 Training Memory V1-sx7T_KP5v9I.pt-BR.vtt |
7.42Кб |
13. 09 One Solution V2-7q37WPjQhDA.en.vtt |
7.93Кб |
13. 09 One Solution V2-7q37WPjQhDA.mp4 |
11.59Мб |
13. 09 One Solution V2-7q37WPjQhDA.pt-BR.vtt |
7.60Кб |
13. Error Functions-jfKShxGAbok.en.vtt |
9.45Кб |
13. Error Functions-jfKShxGAbok.mp4 |
7.21Мб |
13. Error Functions-jfKShxGAbok.pt-BR.vtt |
9.14Кб |
13. Error Functions-jfKShxGAbok.zh-CN.vtt |
8.35Кб |
13. Fashion-MNIST Solution.html |
6.34Кб |
13. Log-loss Error Function.html |
10.86Кб |
13. One Solution.html |
10.10Кб |
13. PyTorch V2 Part 4 Solution V1-R6Y4hPLVQWM.en.vtt |
6.14Кб |
13. PyTorch V2 Part 4 Solution V1-R6Y4hPLVQWM.mp4 |
8.24Мб |
13. Testing.html |
9.33Кб |
13. Training & Memory.html |
8.02Кб |
14. Character-Wise RNN-dXl3eWCGLdU.en.vtt |
3.33Кб |
14. Character-Wise RNN-dXl3eWCGLdU.mp4 |
2.88Мб |
14. Character-Wise RNN-dXl3eWCGLdU.pt-BR.vtt |
3.66Кб |
14. Character-Wise RNN-dXl3eWCGLdU.zh-CN.vtt |
3.04Кб |
14. Character-wise RNNs.html |
6.15Кб |
14. ConNet10 ModelValidation V1 V2-b5934VsV3SA.en.vtt |
4.62Кб |
14. ConNet10 ModelValidation V1 V2-b5934VsV3SA.mp4 |
3.34Мб |
14. ConNet10 ModelValidation V1 V2-b5934VsV3SA.pt-BR.vtt |
4.35Кб |
14. Discrete vs. Continuous-Rm2KxFaPiJg.en.vtt |
5.70Кб |
14. Discrete vs. Continuous-Rm2KxFaPiJg.mp4 |
5.35Мб |
14. Discrete vs. Continuous-Rm2KxFaPiJg.pt-BR.vtt |
5.67Кб |
14. Discrete vs. Continuous-Rm2KxFaPiJg.zh-CN.vtt |
4.67Кб |
14. Discrete vs Continuous.html |
11.48Кб |
14. Discrete vs Continuous-rdP-RPDFkl0.en.vtt |
551б |
14. Discrete vs Continuous-rdP-RPDFkl0.mp4 |
2.26Мб |
14. Discrete vs Continuous-rdP-RPDFkl0.pt-BR.vtt |
584б |
14. Discrete vs Continuous-rdP-RPDFkl0.zh-CN.vtt |
481б |
14. Inference, Solution.html |
12.07Кб |
14. Inference and Validation.html |
6.33Кб |
14. Model Validation.html |
8.79Кб |
14. PyTorch V2 Part 5 V1 (1)-XACXlkIdS7Y.en.vtt |
8.91Кб |
14. PyTorch V2 Part 5 V1 (1)-XACXlkIdS7Y.mp4 |
13.90Мб |
15. 11 Validation Loss V2-uGPP_-pbBsc.en.vtt |
8.76Кб |
15. 11 Validation Loss V2-uGPP_-pbBsc.mp4 |
14.23Мб |
15. 11 Validation Loss V2-uGPP_-pbBsc.pt-BR.vtt |
8.43Кб |
15. DL 18 Q Softmax V2-RC_A9Tu99y4.en.vtt |
5.37Кб |
15. DL 18 Q Softmax V2-RC_A9Tu99y4.mp4 |
4.01Мб |
15. DL 18 Q Softmax V2-RC_A9Tu99y4.pt-BR.vtt |
5.06Кб |
15. DL 18 Q Softmax V2-RC_A9Tu99y4.zh-CN.vtt |
4.37Кб |
15. DL 18 S Softmax-n8S-v_LCTms.en.vtt |
2.59Кб |
15. DL 18 S Softmax-n8S-v_LCTms.mp4 |
1.95Мб |
15. DL 18 S Softmax-n8S-v_LCTms.pt-BR.vtt |
2.52Кб |
15. DL 18 S Softmax-n8S-v_LCTms.zh-CN.vtt |
2.30Кб |
15. PyTorch V2 Part 5 Solution V1-AjrXltxqsK4.en.vtt |
7.45Кб |
15. PyTorch V2 Part 5 Solution V1-AjrXltxqsK4.mp4 |
15.84Мб |
15. Quiz - Softmax-NNoezNnAMTY.en.vtt |
495б |
15. Quiz - Softmax-NNoezNnAMTY.mp4 |
1.73Мб |
15. Quiz - Softmax-NNoezNnAMTY.pt-BR.vtt |
501б |
15. Quiz - Softmax-NNoezNnAMTY.zh-CN.vtt |
548б |
15. Sequence Batching.html |
6.14Кб |
15. Sequence-Batching-Z4OiyU0Cldg.en.vtt |
2.09Кб |
15. Sequence-Batching-Z4OiyU0Cldg.mp4 |
2.29Мб |
15. Sequence-Batching-Z4OiyU0Cldg.pt-BR.vtt |
2.33Кб |
15. Sequence-Batching-Z4OiyU0Cldg.zh-CN.vtt |
1.92Кб |
15. Softmax.html |
13.48Кб |
15. Validation Loss.html |
9.64Кб |
15. Validation Solution.html |
6.34Кб |
16. ConNet 13 ImageClassification V1 V2-UHFBnitKraA.en.vtt |
1.75Кб |
16. ConNet 13 ImageClassification V1 V2-UHFBnitKraA.mp4 |
2.40Мб |
16. ConNet 13 ImageClassification V1 V2-UHFBnitKraA.pt-BR.vtt |
1.67Кб |
16. Dropout Solution.html |
6.34Кб |
16. Image Classification Steps.html |
8.83Кб |
16. Notebook Character-Level RNN.html |
8.04Кб |
16. One-Hot Encoding.html |
9.20Кб |
16. One-Hot Encoding-AePvjhyvsBo.en.vtt |
2.23Кб |
16. One-Hot Encoding-AePvjhyvsBo.mp4 |
1.65Мб |
16. One-Hot Encoding-AePvjhyvsBo.pt-BR.vtt |
2.03Кб |
16. One-Hot Encoding-AePvjhyvsBo.zh-CN.vtt |
2.02Кб |
16. PyTorch V2 Part 5 Solution 2 V1-3Py2SbtZLbc.en.vtt |
2.06Кб |
16. PyTorch V2 Part 5 Solution 2 V1-3Py2SbtZLbc.mp4 |
2.78Мб |
17. 04 Implementing CharRNN V2-MMtgZXzFB10.en.vtt |
11.56Кб |
17. 04 Implementing CharRNN V2-MMtgZXzFB10.mp4 |
16.39Мб |
17. 04 Implementing CharRNN V2-MMtgZXzFB10.pt-BR.vtt |
10.73Кб |
17. ConNet 14 MLPvsCNN V1 V2-Q7CR3cCOtJQ.en.vtt |
3.04Кб |
17. ConNet 14 MLPvsCNN V1 V2-Q7CR3cCOtJQ.mp4 |
4.24Мб |
17. ConNet 14 MLPvsCNN V1 V2-Q7CR3cCOtJQ.pt-BR.vtt |
2.97Кб |
17. Implementing a Char-RNN.html |
6.42Кб |
17. Maximum Likelihood.html |
11.58Кб |
17. Maximum Likelihood 1-1yJx-QtlvNI.en.vtt |
1.64Кб |
17. Maximum Likelihood 1-1yJx-QtlvNI.mp4 |
5.75Мб |
17. Maximum Likelihood 1-1yJx-QtlvNI.pt-BR.vtt |
1.61Кб |
17. Maximum Likelihood 1-1yJx-QtlvNI.zh-CN.vtt |
1.43Кб |
17. Maximum Likelihood 2-6nUUeQ9AeUA.en.vtt |
4.41Кб |
17. Maximum Likelihood 2-6nUUeQ9AeUA.mp4 |
3.85Мб |
17. Maximum Likelihood 2-6nUUeQ9AeUA.pt-BR.vtt |
4.49Кб |
17. Maximum Likelihood 2-6nUUeQ9AeUA.zh-CN.vtt |
3.67Кб |
17. MLPs vs CNNs.html |
9.04Кб |
17. PyTorch - Part 6-3ZJfo2bR-uw.en.vtt |
9.34Кб |
17. PyTorch - Part 6-3ZJfo2bR-uw.mp4 |
15.82Мб |
17. PyTorch - Part 6-3ZJfo2bR-uw.pt-BR.vtt |
9.75Кб |
17. PyTorch - Part 6-3ZJfo2bR-uw.zh-CN.vtt |
7.87Кб |
17. Saving and Loading Models.html |
6.55Кб |
18. 05 Batching Data V1-9Eg0wf3eW-k.en.vtt |
5.17Кб |
18. 05 Batching Data V1-9Eg0wf3eW-k.mp4 |
5.82Мб |
18. 05 Batching Data V1-9Eg0wf3eW-k.pt-BR.vtt |
4.92Кб |
18. Batching Data, Solution.html |
6.04Кб |
18. Loading Image Data.html |
6.53Кб |
18. Local Connectivity.html |
8.87Кб |
18. Local Connectivity-z9wiDg0w-Dc.en.vtt |
8.95Кб |
18. Local Connectivity-z9wiDg0w-Dc.mp4 |
13.09Мб |
18. Local Connectivity-z9wiDg0w-Dc.pt-BR.vtt |
9.29Кб |
18. Local Connectivity-z9wiDg0w-Dc.zh-CN.vtt |
7.62Кб |
18. Maximizing Probabilities.html |
11.04Кб |
18. PyTorch - Part 7-hFu7GTfRWks.en.vtt |
10.67Кб |
18. PyTorch - Part 7-hFu7GTfRWks.mp4 |
15.15Мб |
18. PyTorch - Part 7-hFu7GTfRWks.pt-BR.vtt |
10.86Кб |
18. PyTorch - Part 7-hFu7GTfRWks.zh-CN.vtt |
8.56Кб |
18. Quiz - Cross 1--xxrisIvD0E.en.vtt |
918б |
18. Quiz - Cross 1--xxrisIvD0E.mp4 |
3.02Мб |
18. Quiz - Cross 1--xxrisIvD0E.pt-BR.vtt |
947б |
18. Quiz - Cross 1--xxrisIvD0E.zh-CN.vtt |
813б |
18. Quiz Cross Entropy-njq6bYrPqSU.en.vtt |
2.30Кб |
18. Quiz Cross Entropy-njq6bYrPqSU.mp4 |
1.86Мб |
18. Quiz Cross Entropy-njq6bYrPqSU.pt-BR.vtt |
2.28Кб |
18. Quiz Cross Entropy-njq6bYrPqSU.zh-CN.vtt |
2.07Кб |
19. 06 Defining Model V2-_LWzyqq4hCY.en.vtt |
5.76Кб |
19. 06 Defining Model V2-_LWzyqq4hCY.mp4 |
9.05Мб |
19. 06 Defining Model V2-_LWzyqq4hCY.pt-BR.vtt |
5.99Кб |
19. 15 Filters And Convo RENDER V2-x_dhnhUzFNo.en.vtt |
2.11Кб |
19. 15 Filters And Convo RENDER V2-x_dhnhUzFNo.mp4 |
2.95Мб |
19. 15 Filters And Convo RENDER V2-x_dhnhUzFNo.pt-BR.vtt |
2.11Кб |
19. Cross-Entropy 1.html |
9.44Кб |
19. Cross Entropy 1-iREoPUrpXvE.en.vtt |
4.81Кб |
19. Cross Entropy 1-iREoPUrpXvE.mp4 |
4.22Мб |
19. Cross Entropy 1-iREoPUrpXvE.pt-BR.vtt |
5.00Кб |
19. Cross Entropy 1-iREoPUrpXvE.zh-CN.vtt |
4.11Кб |
19. Defining the Model.html |
6.52Кб |
19. Filters and the Convolutional Layer.html |
8.83Кб |
19. Loading Image Data Solution.html |
6.35Кб |
19. PyTorch V2 Part 7 Solution V1-d_NhvI1yEf0.en.vtt |
4.47Кб |
19. PyTorch V2 Part 7 Solution V1-d_NhvI1yEf0.mp4 |
6.80Мб |
20. 07 CharRNN Solution V1-ed33qePHrJM.en.vtt |
11.40Кб |
20. 07 CharRNN Solution V1-ed33qePHrJM.mp4 |
18.32Мб |
20. 07 CharRNN Solution V1-ed33qePHrJM.pt-BR.vtt |
11.12Кб |
20. Char-RNN, Solution.html |
7.88Кб |
20. ConNet 16 FIlters & Edges V2-hfqNqcEU6uI.en.vtt |
1.61Кб |
20. ConNet 16 FIlters & Edges V2-hfqNqcEU6uI.mp4 |
3.50Мб |
20. ConNet 16 FIlters & Edges V2-hfqNqcEU6uI.pt-BR.vtt |
1.63Кб |
20. Cross-Entropy 2.html |
11.73Кб |
20. CrossEntropy V1-1BnhC6e0TFw.en.vtt |
8.03Кб |
20. CrossEntropy V1-1BnhC6e0TFw.mp4 |
6.61Мб |
20. CrossEntropy V1-1BnhC6e0TFw.pt-BR.vtt |
7.81Кб |
20. CrossEntropy V1-1BnhC6e0TFw.zh-CN.vtt |
6.66Кб |
20. Filters & Edges.html |
9.33Кб |
20. Formula For Cross 1-qvr_ego_d6w.en.vtt |
607б |
20. Formula For Cross 1-qvr_ego_d6w.mp4 |
2.08Мб |
20. Formula For Cross 1-qvr_ego_d6w.pt-BR.vtt |
719б |
20. Formula For Cross 1-qvr_ego_d6w.zh-CN.vtt |
545б |
20. PyTorch - Part 8-S9F7MtJ5jls.en.vtt |
16.82Кб |
20. PyTorch - Part 8-S9F7MtJ5jls.mp4 |
29.51Мб |
20. PyTorch - Part 8-S9F7MtJ5jls.pt-BR.vtt |
16.61Кб |
20. PyTorch - Part 8-S9F7MtJ5jls.zh-CN.vtt |
13.19Кб |
20. Transfer Learning.html |
6.53Кб |
21. 08 Making Predictions V3-BhrpV3kwATo.en.vtt |
8.77Кб |
21. 08 Making Predictions V3-BhrpV3kwATo.mp4 |
12.38Мб |
21. 08 Making Predictions V3-BhrpV3kwATo.pt-BR.vtt |
8.92Кб |
21. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.en.vtt |
4.72Кб |
21. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.mp4 |
4.14Мб |
21. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.pt-BR.vtt |
4.54Кб |
21. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.zh-CN.vtt |
4.01Кб |
21. Frequency in Images.html |
11.10Кб |
21. Making Predictions.html |
6.99Кб |
21. Multi-Class Cross Entropy.html |
10.41Кб |
21. PyTorch V2 Part 8 Solution V1-4n6T93hKRD4.en.vtt |
13.49Кб |
21. PyTorch V2 Part 8 Solution V1-4n6T93hKRD4.mp4 |
18.50Мб |
21. Transfer Learning Solution.html |
6.35Кб |
22. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.en.vtt |
1.62Кб |
22. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.mp4 |
1.49Мб |
22. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.pt-BR.vtt |
1.42Кб |
22. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.zh-CN.vtt |
1.46Кб |
22. Error Function-V5kkHldUlVU.en.vtt |
4.87Кб |
22. Error Function-V5kkHldUlVU.mp4 |
4.84Мб |
22. Error Function-V5kkHldUlVU.pt-BR.vtt |
5.19Кб |
22. Error Function-V5kkHldUlVU.zh-CN.vtt |
4.15Кб |
22. High-pass Filters.html |
9.99Кб |
22. High-pass Filters-OpcFn_H2V-Q.en.vtt |
7.56Кб |
22. High-pass Filters-OpcFn_H2V-Q.mp4 |
8.25Мб |
22. High-pass Filters-OpcFn_H2V-Q.pt-BR.vtt |
8.22Кб |
22. High-pass Filters-OpcFn_H2V-Q.zh-CN.vtt |
6.57Кб |
22. Logistic Regression.html |
10.88Кб |
22. Tips, Tricks, and Other Notes.html |
7.59Кб |
23. Gradient Descent.html |
17.21Кб |
23. Gradient Descent-rhVIF-nigrY.en.vtt |
3.85Кб |
23. Gradient Descent-rhVIF-nigrY.mp4 |
3.76Мб |
23. Gradient Descent-rhVIF-nigrY.pt-BR.vtt |
3.98Кб |
23. Quiz Kernels.html |
9.98Кб |
24. Gradient Descent Algorithm-snxmBgi_GeU.en.vtt |
2.55Кб |
24. Gradient Descent Algorithm-snxmBgi_GeU.mp4 |
1.98Мб |
24. Gradient Descent Algorithm-snxmBgi_GeU.pt-BR.vtt |
2.64Кб |
24. Gradient Descent Algorithm-snxmBgi_GeU.zh-CN.vtt |
2.21Кб |
24. Logistic Regression Algorithm.html |
9.28Кб |
24. OpenCV & Creating Custom Filters.html |
11.16Кб |
25. Notebook Finding Edges.html |
9.28Кб |
25. Pre-Notebook Gradient Descent.html |
11.24Кб |
26. Convolutional Layer.html |
11.34Кб |
26. Notebook Gradient Descent.html |
9.64Кб |
27. Convolutional Layers (Part 2).html |
9.67Кб |
27. Convolutional Layers-RnM1D-XI--8.en.vtt |
9.99Кб |
27. Convolutional Layers-RnM1D-XI--8.mp4 |
19.81Мб |
27. Convolutional Layers-RnM1D-XI--8.pt-BR.vtt |
11.00Кб |
27. Convolutional Layers-RnM1D-XI--8.zh-CN.vtt |
8.71Кб |
27. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.en.vtt |
4.27Кб |
27. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.mp4 |
3.20Мб |
27. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.pt-BR.vtt |
4.24Кб |
27. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.zh-CN.vtt |
3.60Кб |
27. Perceptron vs Gradient Descent.html |
9.59Кб |
28. 17 Stride And Padding RENDER V1-GmStpNi8jBI.en.vtt |
3.61Кб |
28. 17 Stride And Padding RENDER V1-GmStpNi8jBI.mp4 |
6.09Мб |
28. 17 Stride And Padding RENDER V1-GmStpNi8jBI.pt-BR.vtt |
3.86Кб |
28. Continuous Perceptrons.html |
9.24Кб |
28. Continuous Perceptrons-07-JJ-aGEfM.en.vtt |
1.33Кб |
28. Continuous Perceptrons-07-JJ-aGEfM.mp4 |
1.13Мб |
28. Continuous Perceptrons-07-JJ-aGEfM.pt-BR.vtt |
1.31Кб |
28. Continuous Perceptrons-07-JJ-aGEfM.zh-CN.vtt |
1.15Кб |
28. Stride and Padding.html |
8.80Кб |
29. 24 CNNs PyTorch V2-GNxzWfiz3do.en.vtt |
8.26Кб |
29. 24 CNNs PyTorch V2-GNxzWfiz3do.mp4 |
12.60Мб |
29. 24 CNNs PyTorch V2-GNxzWfiz3do.pt-BR.vtt |
8.11Кб |
29. CNNs in PyTorch.html |
9.06Кб |
29. Non-linear Data.html |
9.20Кб |
29. Non-Linear Data-F7ZiE8PQiSc.en.vtt |
633б |
29. Non-Linear Data-F7ZiE8PQiSc.mp4 |
2.14Мб |
29. Non-Linear Data-F7ZiE8PQiSc.pt-BR.vtt |
600б |
29. Non-Linear Data-F7ZiE8PQiSc.zh-CN.vtt |
624б |
30. 18 Pooling RENDER V1-_Ok5xZwOtrk.en.vtt |
2.90Кб |
30. 18 Pooling RENDER V1-_Ok5xZwOtrk.mp4 |
2.98Мб |
30. 18 Pooling RENDER V1-_Ok5xZwOtrk.pt-BR.vtt |
3.20Кб |
30. Non-Linear Models.html |
9.21Кб |
30. Non-Linear Models-HWuBKCZsCo8.en.vtt |
1.30Кб |
30. Non-Linear Models-HWuBKCZsCo8.mp4 |
1.13Мб |
30. Non-Linear Models-HWuBKCZsCo8.pt-BR.vtt |
1.39Кб |
30. Non-Linear Models-HWuBKCZsCo8.zh-CN.vtt |
1.12Кб |
30. Pooling Layers.html |
10.72Кб |
31. 29 Neural Network Architecture 2-FWN3Sw5fFoM.en.vtt |
3.02Кб |
31. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4 |
2.83Мб |
31. 29 Neural Network Architecture 2-FWN3Sw5fFoM.pt-BR.vtt |
3.34Кб |
31. 29 Neural Network Architecture 2-FWN3Sw5fFoM.zh-CN.vtt |
2.76Кб |
31. Combinando modelos-Boy3zHVrWB4.en.vtt |
5.29Кб |
31. Combinando modelos-Boy3zHVrWB4.mp4 |
4.73Мб |
31. Combinando modelos-Boy3zHVrWB4.pt-BR.vtt |
5.29Кб |
31. Combinando modelos-Boy3zHVrWB4.zh-CN.vtt |
4.61Кб |
31. Layers-pg99FkXYK0M.en.vtt |
3.40Кб |
31. Layers-pg99FkXYK0M.mp4 |
3.11Мб |
31. Layers-pg99FkXYK0M.pt-BR.vtt |
3.29Кб |
31. Layers-pg99FkXYK0M.zh-CN.vtt |
3.04Кб |
31. Multiclass Classification-uNTtvxwfox0.en.vtt |
2.08Кб |
31. Multiclass Classification-uNTtvxwfox0.mp4 |
1.88Мб |
31. Multiclass Classification-uNTtvxwfox0.pt-BR.vtt |
2.12Кб |
31. Multiclass Classification-uNTtvxwfox0.zh-CN.vtt |
1.82Кб |
31. Neural Network Architecture.html |
13.86Кб |
31. Notebook Layer Visualization.html |
9.29Кб |
32. ConNet 20 Increasing Depth V2 RENDERv1 1 V2-YKif1KNpWeE.en.vtt |
4.23Кб |
32. ConNet 20 Increasing Depth V2 RENDERv1 1 V2-YKif1KNpWeE.mp4 |
4.90Мб |
32. ConNet 20 Increasing Depth V2 RENDERv1 1 V2-YKif1KNpWeE.pt-BR.vtt |
4.41Кб |
32. DL 41 Feedforward FIX V2-hVCuvMGOfyY.en.vtt |
6.17Кб |
32. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4 |
5.33Мб |
32. DL 41 Feedforward FIX V2-hVCuvMGOfyY.pt-BR.vtt |
6.76Кб |
32. DL 41 Feedforward FIX V2-hVCuvMGOfyY.zh-CN.vtt |
5.33Кб |
32. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.en.vtt |
1.97Кб |
32. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4 |
1.72Мб |
32. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.pt-BR.vtt |
2.12Кб |
32. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.zh-CN.vtt |
1.69Кб |
32. Feedforward.html |
10.49Кб |
32. Increasing Depth.html |
8.84Кб |
33. 21 CNNs For Image Classification RENDER V2-smaw5GqRaoY.en.vtt |
4.74Кб |
33. 21 CNNs For Image Classification RENDER V2-smaw5GqRaoY.mp4 |
5.75Мб |
33. 21 CNNs For Image Classification RENDER V2-smaw5GqRaoY.pt-BR.vtt |
5.07Кб |
33. Backpropagation.html |
13.31Кб |
33. Backpropagation V2-1SmY3TZTyUk.en.vtt |
7.21Кб |
33. Backpropagation V2-1SmY3TZTyUk.mp4 |
6.52Мб |
33. Backpropagation V2-1SmY3TZTyUk.pt-BR.vtt |
7.17Кб |
33. Backpropagation V2-1SmY3TZTyUk.zh-CN.vtt |
6.39Кб |
33. Calculating The Gradient 1 -tVuZDbUrzzI.en.vtt |
3.41Кб |
33. Calculating The Gradient 1 -tVuZDbUrzzI.mp4 |
3.31Мб |
33. Calculating The Gradient 1 -tVuZDbUrzzI.pt-BR.vtt |
3.44Кб |
33. Calculating The Gradient 1 -tVuZDbUrzzI.zh-CN.vtt |
2.88Кб |
33. Chain Rule-YAhIBOnbt54.en.vtt |
1.65Кб |
33. Chain Rule-YAhIBOnbt54.mp4 |
1.46Мб |
33. Chain Rule-YAhIBOnbt54.pt-BR.vtt |
1.73Кб |
33. Chain Rule-YAhIBOnbt54.zh-CN.vtt |
1.42Кб |
33. CNNs for Image Classification.html |
14.04Кб |
33. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.en.vtt |
6.16Кб |
33. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4 |
5.69Мб |
33. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.pt-BR.vtt |
6.50Кб |
33. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.zh-CN.vtt |
5.05Кб |
34. Convolutional Layers in PyTorch.html |
20.73Кб |
34. Pre-Notebook Analyzing Student Data.html |
10.25Кб |
35. ConNet 22 Feature Vector RENDER 1 V2-g6QuiVno8zI.en.vtt |
3.87Кб |
35. ConNet 22 Feature Vector RENDER 1 V2-g6QuiVno8zI.mp4 |
5.37Мб |
35. ConNet 22 Feature Vector RENDER 1 V2-g6QuiVno8zI.pt-BR.vtt |
3.90Кб |
35. Feature Vector.html |
8.81Кб |
35. Notebook Analyzing Student Data.html |
9.65Кб |
36. 23 Cifar Class V1-FF_EmZ2sf2w.en.vtt |
8.39Кб |
36. 23 Cifar Class V1-FF_EmZ2sf2w.mp4 |
12.83Мб |
36. 23 Cifar Class V1-FF_EmZ2sf2w.pt-BR.vtt |
8.62Кб |
36. CIFAR Classification Example.html |
9.63Кб |
36. Training Optimization.html |
9.24Кб |
36. Training Optimization-UiGKhx9pUYc.en.vtt |
824б |
36. Training Optimization-UiGKhx9pUYc.mp4 |
2.96Мб |
36. Training Optimization-UiGKhx9pUYc.pt-BR.vtt |
874б |
36. Training Optimization-UiGKhx9pUYc.zh-CN.vtt |
840б |
37. Notebook CNN Classification.html |
10.28Кб |
37. Testing.html |
9.14Кб |
37. Testing-EeBZpb-PSac.en.vtt |
2.41Кб |
37. Testing-EeBZpb-PSac.mp4 |
2.00Мб |
37. Testing-EeBZpb-PSac.pt-BR.vtt |
2.37Кб |
37. Testing-EeBZpb-PSac.zh-CN.vtt |
1.99Кб |
38. Notebook CNNs for CIFAR Image Classification.html |
9.33Кб |
38. Overfitting and Underfitting.html |
9.29Кб |
38. Underfitting And Overfitting-xj4PlXMsN-Y.en.vtt |
7.49Кб |
38. Underfitting And Overfitting-xj4PlXMsN-Y.mp4 |
6.42Мб |
38. Underfitting And Overfitting-xj4PlXMsN-Y.pt-BR.vtt |
8.15Кб |
38. Underfitting And Overfitting-xj4PlXMsN-Y.zh-CN.vtt |
6.54Кб |
39. Early Stopping.html |
9.23Кб |
39. Image Augmentation.html |
8.78Кб |
39. Image Augmentation In Keras-zQnx2jZmjTA.en.vtt |
4.56Кб |
39. Image Augmentation In Keras-zQnx2jZmjTA.mp4 |
4.93Мб |
39. Image Augmentation In Keras-zQnx2jZmjTA.pt-BR.vtt |
4.53Кб |
39. Model Complexity Graph-NnS0FJyVcDQ.en.vtt |
5.32Кб |
39. Model Complexity Graph-NnS0FJyVcDQ.mp4 |
4.90Мб |
39. Model Complexity Graph-NnS0FJyVcDQ.pt-BR.vtt |
5.52Кб |
39. Model Complexity Graph-NnS0FJyVcDQ.zh-CN.vtt |
4.65Кб |
40. 26 Augmentation V1-J_gjHVt9pVw.en.vtt |
3.42Кб |
40. 26 Augmentation V1-J_gjHVt9pVw.mp4 |
7.62Мб |
40. 26 Augmentation V1-J_gjHVt9pVw.pt-BR.vtt |
3.26Кб |
40. Augmentation Using Transformations.html |
9.21Кб |
40. DL 53 Q Regularization-KxROxcRsHL8.en.vtt |
1.15Кб |
40. DL 53 Q Regularization-KxROxcRsHL8.mp4 |
1.01Мб |
40. DL 53 Q Regularization-KxROxcRsHL8.pt-BR.vtt |
1.16Кб |
40. DL 53 Q Regularization-KxROxcRsHL8.zh-CN.vtt |
1.02Кб |
40. Regularization.html |
10.27Кб |
41. Groundbreaking CNN Architectures.html |
9.97Кб |
41. Groundbreaking CNN Architectures-GdYOqihgb2k.en.vtt |
3.59Кб |
41. Groundbreaking CNN Architectures-GdYOqihgb2k.mp4 |
7.32Мб |
41. Groundbreaking CNN Architectures-GdYOqihgb2k.pt-BR.vtt |
3.86Кб |
41. Regularization 2.html |
9.19Кб |
41. Regularization-ndYnUrx8xvs.en.vtt |
8.07Кб |
41. Regularization-ndYnUrx8xvs.mp4 |
7.57Мб |
41. Regularization-ndYnUrx8xvs.pt-BR.vtt |
8.78Кб |
41. Regularization-ndYnUrx8xvs.zh-CN.vtt |
6.96Кб |
42. Dropout.html |
9.14Кб |
42. Dropout-Ty6K6YiGdBs.en.vtt |
4.71Кб |
42. Dropout-Ty6K6YiGdBs.mp4 |
4.22Мб |
42. Dropout-Ty6K6YiGdBs.pt-BR.vtt |
4.66Кб |
42. Dropout-Ty6K6YiGdBs.zh-CN.vtt |
4.06Кб |
42. Visualizing CNNs (Part 1).html |
11.09Кб |
42. Visualizing CNNs-mnqS_EhEZVg.en.vtt |
3.87Кб |
42. Visualizing CNNs-mnqS_EhEZVg.mp4 |
9.20Мб |
42. Visualizing CNNs-mnqS_EhEZVg.pt-BR.vtt |
3.83Кб |
42. Visualizing CNNs-mnqS_EhEZVg.zh-CN.vtt |
3.33Кб |
43. Local Minima.html |
9.18Кб |
43. Local Minima-gF_sW_nY-xw.en.vtt |
1.14Кб |
43. Local Minima-gF_sW_nY-xw.mp4 |
819.86Кб |
43. Local Minima-gF_sW_nY-xw.pt-BR.vtt |
1.05Кб |
43. Local Minima-gF_sW_nY-xw.zh-CN.vtt |
1.01Кб |
43. Visualizing CNNs (Part 2).html |
15.72Кб |
44. ConNet 27 Summary Of CNNs V2 RENDER V3-Te9QCvhx6N8.en.vtt |
2.03Кб |
44. ConNet 27 Summary Of CNNs V2 RENDER V3-Te9QCvhx6N8.mp4 |
3.66Мб |
44. ConNet 27 Summary Of CNNs V2 RENDER V3-Te9QCvhx6N8.pt-BR.vtt |
2.16Кб |
44. Random Restart.html |
9.19Кб |
44. Random Restart-idyBBCzXiqg.en.vtt |
466б |
44. Random Restart-idyBBCzXiqg.mp4 |
394.99Кб |
44. Random Restart-idyBBCzXiqg.pt-BR.vtt |
478б |
44. Random Restart-idyBBCzXiqg.zh-CN.vtt |
419б |
44. Summary of CNNs.html |
8.82Кб |
45. Vanishing Gradient.html |
9.22Кб |
45. Vanishing Gradient-W_JJm_5syFw.en.vtt |
1.46Кб |
45. Vanishing Gradient-W_JJm_5syFw.mp4 |
1.32Мб |
45. Vanishing Gradient-W_JJm_5syFw.pt-BR.vtt |
1.56Кб |
45. Vanishing Gradient-W_JJm_5syFw.zh-CN.vtt |
1.24Кб |
46. Other Activation Functions.html |
9.57Кб |
46. Other Activation Functions-kA-1vUt6cvQ.en.vtt |
2.68Кб |
46. Other Activation Functions-kA-1vUt6cvQ.mp4 |
2.30Мб |
46. Other Activation Functions-kA-1vUt6cvQ.pt-BR.vtt |
2.55Кб |
46. Other Activation Functions-kA-1vUt6cvQ.zh-CN.vtt |
2.34Кб |
47. Batch vs Stochastic Gradient Descent.html |
9.34Кб |
47. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.en.vtt |
4.64Кб |
47. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.mp4 |
3.95Мб |
47. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.pt-BR.vtt |
4.63Кб |
47. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.zh-CN.vtt |
4.10Кб |
48. Learning Rate Decay.html |
9.19Кб |
48. Learning Rate-TwJ8aSZoh2U.en.vtt |
1.12Кб |
48. Learning Rate-TwJ8aSZoh2U.mp4 |
927.05Кб |
48. Learning Rate-TwJ8aSZoh2U.pt-BR.vtt |
1.26Кб |
48. Learning Rate-TwJ8aSZoh2U.zh-CN.vtt |
1020б |
49. Momentum.html |
9.15Кб |
49. Momentum-r-rYz_PEWC8.en.vtt |
2.50Кб |
49. Momentum-r-rYz_PEWC8.mp4 |
2.14Мб |
49. Momentum-r-rYz_PEWC8.pt-BR.vtt |
2.70Кб |
49. Momentum-r-rYz_PEWC8.zh-CN.vtt |
2.21Кб |
50. Error Functions Around the World.html |
9.31Кб |
50. Error Functions Around the World-34AAcTECu2A.en.vtt |
1.17Кб |
50. Error Functions Around the World-34AAcTECu2A.mp4 |
1.73Мб |
50. Error Functions Around the World-34AAcTECu2A.pt-BR.vtt |
1.08Кб |
50. Error Functions Around the World-34AAcTECu2A.zh-CN.vtt |
1.06Кб |
alexis-headshot.jpg |
26.33Кб |
and-quiz.png |
265.78Кб |
and-to-or.png |
606.14Кб |
bootstrap.min.css |
137.64Кб |
bootstrap.min.js |
49.85Кб |
cezanne-head.jpg |
59.53Кб |
cezanne-head.jpg |
59.53Кб |
cezanne-head.jpg |
59.53Кб |
codecogseqn-43.gif |
7.96Кб |
codecogseqn-49.gif |
2.09Кб |
codecogseqn-58.gif |
919б |
codecogseqn-60-2.png |
8.94Кб |
Course index.rar |
5.79Кб |
dancing-beemo.gif |
318.16Кб |
data.json |
20.57Кб |
data.json |
137.34Кб |
data.json |
9.55Кб |
data.json |
26.69Кб |
data.json |
112.47Кб |
data.json |
16.01Кб |
data.json |
37.70Кб |
data.json |
45.65Кб |
data.json |
11.89Кб |
data.json |
7.69Кб |
diagonal-line-1.png |
5.76Кб |
diagonal-line-2.png |
6.62Кб |
Discuss.FreeTutorials.Us.html |
165.68Кб |
FreeCoursesOnline.Me.html |
108.30Кб |
FreeTutorials.Eu.html |
102.23Кб |
full-padding-no-strides-transposed.gif |
221.74Кб |
grid-layer-1.png |
35.30Кб |
hero-bg-1.png |
635.49Кб |
image-04549.jpg |
72.17Кб |
index.html |
3.41Кб |
index.html |
6.84Кб |
index.html |
3.72Кб |
index.html |
4.84Кб |
index.html |
6.63Кб |
index.html |
3.80Кб |
index.html |
4.47Кб |
index.html |
4.06Кб |
index.html |
3.40Кб |
index.html |
3.01Кб |
jquery.mCustomScrollbar.concat.min.js |
44.41Кб |
jquery.mCustomScrollbar.min.css |
41.83Кб |
jquery-3.3.1.min.js |
84.89Кб |
KaTeX_AMS-Regular.ttf |
69.75Кб |
KaTeX_AMS-Regular.woff |
39.26Кб |
KaTeX_AMS-Regular.woff2 |
32.43Кб |
KaTeX_Caligraphic-Bold.ttf |
19.13Кб |
KaTeX_Caligraphic-Bold.woff |
11.85Кб |
KaTeX_Caligraphic-Bold.woff2 |
10.35Кб |
KaTeX_Caligraphic-Regular.ttf |
18.52Кб |
KaTeX_Caligraphic-Regular.woff |
11.59Кб |
KaTeX_Caligraphic-Regular.woff2 |
10.17Кб |
KaTeX_Fraktur-Bold.ttf |
35.13Кб |
KaTeX_Fraktur-Bold.woff |
22.84Кб |
KaTeX_Fraktur-Bold.woff2 |
20.01Кб |
KaTeX_Fraktur-Regular.ttf |
33.84Кб |
KaTeX_Fraktur-Regular.woff |
22.31Кб |
KaTeX_Fraktur-Regular.woff2 |
19.39Кб |
KaTeX_Main-Bold.ttf |
60.27Кб |
KaTeX_Main-Bold.woff |
35.89Кб |
KaTeX_Main-Bold.woff2 |
29.90Кб |
KaTeX_Main-BoldItalic.ttf |
43.77Кб |
KaTeX_Main-BoldItalic.woff |
25.61Кб |
KaTeX_Main-BoldItalic.woff2 |
21.67Кб |
KaTeX_Main-Italic.ttf |
46.83Кб |
KaTeX_Main-Italic.woff |
26.56Кб |
KaTeX_Main-Italic.woff2 |
22.52Кб |
KaTeX_Main-Regular.ttf |
68.43Кб |
KaTeX_Main-Regular.woff |
38.52Кб |
KaTeX_Main-Regular.woff2 |
32.09Кб |
KaTeX_Math-BoldItalic.ttf |
38.81Кб |
KaTeX_Math-BoldItalic.woff |
22.65Кб |
KaTeX_Math-BoldItalic.woff2 |
19.57Кб |
KaTeX_Math-Italic.ttf |
40.48Кб |
KaTeX_Math-Italic.woff |
23.26Кб |
KaTeX_Math-Italic.woff2 |
19.95Кб |
KaTeX_SansSerif-Bold.ttf |
33.23Кб |
KaTeX_SansSerif-Bold.woff |
18.72Кб |
KaTeX_SansSerif-Bold.woff2 |
15.62Кб |
KaTeX_SansSerif-Italic.ttf |
30.57Кб |
KaTeX_SansSerif-Italic.woff |
17.70Кб |
KaTeX_SansSerif-Italic.woff2 |
14.86Кб |
KaTeX_SansSerif-Regular.ttf |
29.45Кб |
KaTeX_SansSerif-Regular.woff |
16.39Кб |
KaTeX_SansSerif-Regular.woff2 |
13.70Кб |
KaTeX_Script-Regular.ttf |
24.28Кб |
KaTeX_Script-Regular.woff |
13.53Кб |
KaTeX_Script-Regular.woff2 |
11.99Кб |
KaTeX_Size1-Regular.ttf |
12.86Кб |
KaTeX_Size1-Regular.woff |
6.82Кб |
KaTeX_Size1-Regular.woff2 |
5.69Кб |
KaTeX_Size2-Regular.ttf |
12.12Кб |
KaTeX_Size2-Regular.woff |
6.53Кб |
KaTeX_Size2-Regular.woff2 |
5.43Кб |
KaTeX_Size3-Regular.ttf |
8.16Кб |
KaTeX_Size3-Regular.woff |
4.66Кб |
KaTeX_Size3-Regular.woff2 |
3.77Кб |
KaTeX_Size4-Regular.ttf |
11.02Кб |
KaTeX_Size4-Regular.woff |
6.30Кб |
KaTeX_Size4-Regular.woff2 |
5.06Кб |
KaTeX_Typewriter-Regular.ttf |
35.46Кб |
KaTeX_Typewriter-Regular.woff |
20.43Кб |
KaTeX_Typewriter-Regular.woff2 |
17.13Кб |
katex.min.css |
21.56Кб |
katex.min.js |
231.26Кб |
Lab - Final Challenge.html |
6.51Кб |
layer-1-grid.png |
45.73Кб |
mat-headshot.png |
179.99Кб |
mat-headshot.png |
179.99Кб |
mat-headshot.png |
179.99Кб |
meme.png |
209.05Кб |
meme.png |
209.05Кб |
meme.png |
209.05Кб |
opencv-logo-with-text.png |
31.21Кб |
or-quiz.png |
393.62Кб |
perceptronquiz.png |
93.69Кб |
plyr.css |
23.62Кб |
plyr.polyfilled.min.js |
126.16Кб |
points.png |
63.17Кб |
Presented By SaM.txt |
33б |
pytorch-project-image.png |
219.13Кб |
regularization-quiz.png |
87.90Кб |
relu-ex.png |
120.95Кб |
scholarships-team.png |
107.05Кб |
screen-shot-2016-11-24-at-12.08.11-pm.png |
2.90Мб |
screen-shot-2016-11-24-at-12.09.02-pm.png |
3.09Мб |
screen-shot-2016-11-24-at-12.09.24-pm.png |
3.49Мб |
screen-shot-2017-06-26-at-10.44.50-am.png |
50.60Кб |
screen-shot-2017-11-16-at-4.26.22-pm.png |
41.24Кб |
screen-shot-2017-11-16-at-4.27.58-pm.png |
27.77Кб |
screen-shot-2017-11-16-at-4.31.41-pm.png |
44.91Кб |
screen-shot-2018-05-31-at-2.59.36-pm.png |
192.67Кб |
screen-shot-2018-05-31-at-3.06.07-pm.png |
169.94Кб |
screen-shot-2018-05-31-at-3.07.03-pm.png |
52.08Кб |
screen-shot-2018-09-10-at-7.38.39-pm.png |
296.26Кб |
screen-shot-2018-09-24-at-3.17.56-pm.png |
112.47Кб |
screen-shot-2018-09-24-at-3.18.33-pm.png |
458.93Кб |
screen-shot-2018-10-15-at-8.35.15-pm.png |
119.96Кб |
screen-shot-2018-11-05-at-11.33.57-am.png |
153.88Кб |
screen-shot-2018-11-06-at-2.30.04-pm.png |
75.93Кб |
screen-shot-2018-11-06-at-2.48.40-pm.png |
58.05Кб |
sebastian-dlnd-card.png |
572.91Кб |
sigmoid-derivative.gif |
2.09Кб |
student-quiz.png |
748.98Кб |
students-first.png |
293.58Кб |
styles.css |
3.76Кб |
Torrent Downloaded From GloDls.to.txt |
84б |
udacimak.png |
461.07Кб |
udacitypytorch-welcomepage-image-v2.png |
847.62Кб |
Upload+image.png |
115.09Кб |
xor.png |
214.95Кб |
xor-quiz.png |
94.14Кб |