Общая информация
Название [Tutorialsplanet.NET] Udemy - Financial Engineering and Artificial Intelligence in Python
Тип
Размер 6.15Гб
Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[Tutorialsplanet.NET].url 128б
[Tutorialsplanet.NET].url 128б
[Tutorialsplanet.NET].url 128б
1. Algorithmic Trading Section Introduction.mp4 14.03Мб
1. Algorithmic Trading Section Introduction.srt 3.60Кб
1. Anaconda Environment Setup.mp4 180.77Мб
1. Anaconda Environment Setup.srt 19.70Кб
1. Colab Notebooks.html 256б
1. Financial Basics Section Introduction.mp4 28.96Мб
1. Financial Basics Section Introduction.srt 7.41Кб
1. How to Code by Yourself (part 1).mp4 71.84Мб
1. How to Code by Yourself (part 1).srt 22.65Кб
1. How to Succeed in this Course (Long Version).mp4 35.21Мб
1. How to Succeed in this Course (Long Version).srt 14.71Кб
1. Introduction and Outline.mp4 46.84Мб
1. Introduction and Outline.srt 9.58Кб
1. Portfolio Optimization Section Introduction.mp4 24.36Мб
1. Portfolio Optimization Section Introduction.srt 4.83Кб
1. Reinforcement Learning Section Introduction.mp4 40.88Мб
1. Reinforcement Learning Section Introduction.srt 8.67Кб
1. Statistical Factor Models (Beginner).mp4 63.37Мб
1. Statistical Factor Models (Beginner).srt 21.18Кб
1. Time Series Analysis Section Introduction.mp4 31.84Мб
1. Time Series Analysis Section Introduction.srt 9.33Кб
1. Trading APIs and Deploying Your Strategy in the Real World.mp4 31.89Мб
1. Trading APIs and Deploying Your Strategy in the Real World.srt 7.62Кб
1. Trend-Following Strategy with Reinforcement Learning API.mp4 49.61Мб
1. Trend-Following Strategy with Reinforcement Learning API.srt 15.72Кб
1. What is the Appendix.mp4 16.38Мб
1. What is the Appendix.srt 3.77Кб
1. Why Sequence Models (pt 1).mp4 49.40Мб
1. Why Sequence Models (pt 1).srt 18.72Кб
10. Adjusted Close (Code).mp4 20.95Мб
10. Adjusted Close (Code).srt 4.59Кб
10. Epsilon-Greedy.mp4 41.63Мб
10. Epsilon-Greedy.srt 7.44Кб
10. Maximum and Minimum Portfolio Return in Code.mp4 28.00Мб
10. Maximum and Minimum Portfolio Return in Code.srt 5.80Кб
10. Simple Exponential Smoothing for Forecasting (Code).mp4 59.17Мб
10. Simple Exponential Smoothing for Forecasting (Code).srt 12.63Кб
11. Back to Returns (Code).mp4 45.65Мб
11. Back to Returns (Code).srt 9.07Кб
11. Holt's Linear Trend Model (Theory).mp4 32.96Мб
11. Holt's Linear Trend Model (Theory).srt 10.08Кб
11. Mean-Variance Optimization.mp4 31.62Мб
11. Mean-Variance Optimization.srt 10.01Кб
11. Q-Learning.mp4 66.91Мб
11. Q-Learning.srt 18.04Кб
12. Holt's Linear Trend Model (Code).mp4 18.66Мб
12. Holt's Linear Trend Model (Code).srt 3.45Кб
12. How to Learn Reinforcement Learning.mp4 40.39Мб
12. How to Learn Reinforcement Learning.srt 7.56Кб
12. QQ-Plots.mp4 20.70Мб
12. QQ-Plots.srt 7.19Кб
12. The Efficient Frontier.mp4 30.70Мб
12. The Efficient Frontier.srt 9.54Кб
13. Holt-Winters (Theory).mp4 48.84Мб
13. Holt-Winters (Theory).srt 15.00Кб
13. Mean-Variance Optimization And The Efficient Frontier in Code.mp4 53.29Мб
13. Mean-Variance Optimization And The Efficient Frontier in Code.srt 11.23Кб
13. QQ-Plots (Code).mp4 35.34Мб
13. QQ-Plots (Code).srt 9.94Кб
14. Global Minimum Variance (GMV) Portfolio.mp4 8.58Мб
14. Global Minimum Variance (GMV) Portfolio.srt 2.35Кб
14. Holt-Winters (Code).mp4 52.48Мб
14. Holt-Winters (Code).srt 9.82Кб
14. The t-Distribution.mp4 19.71Мб
14. The t-Distribution.srt 5.07Кб
15. Autoregressive Models - AR(p).mp4 53.63Мб
15. Autoregressive Models - AR(p).srt 16.67Кб
15. Global Minimum Variance (GMV) Portfolio in Code.mp4 13.64Мб
15. Global Minimum Variance (GMV) Portfolio in Code.srt 2.47Кб
15. The t-Distribution (Code).mp4 50.74Мб
15. The t-Distribution (Code).srt 10.46Кб
16. Moving Average Models - MA(q).mp4 10.93Мб
16. Moving Average Models - MA(q).srt 4.16Кб
16. Sharpe Ratio.mp4 37.59Мб
16. Sharpe Ratio.srt 9.97Кб
16. Skewness and Kurtosis.mp4 34.64Мб
16. Skewness and Kurtosis.srt 10.36Кб
17. ARIMA.mp4 42.69Мб
17. ARIMA.srt 13.80Кб
17. Confidence Intervals.mp4 38.76Мб
17. Confidence Intervals.srt 13.70Кб
17. Maximum Sharpe Ratio in Code.mp4 43.71Мб
17. Maximum Sharpe Ratio in Code.srt 8.26Кб
18. ARIMA in Code (pt 1).mp4 135.23Мб
18. ARIMA in Code (pt 1).srt 24.49Кб
18. Confidence Intervals (Code).mp4 12.32Мб
18. Confidence Intervals (Code).srt 2.82Кб
18. Portfolio with a Risk-Free Asset and Tangency Portfolio.mp4 37.84Мб
18. Portfolio with a Risk-Free Asset and Tangency Portfolio.srt 12.40Кб
19. Risk-Free Asset and Tangency Portfolio in Code.mp4 13.58Мб
19. Risk-Free Asset and Tangency Portfolio in Code.srt 2.57Кб
19. Stationarity.mp4 49.59Мб
19. Stationarity.srt 16.29Кб
19. Statistical Testing.mp4 60.71Мб
19. Statistical Testing.srt 20.82Кб
2.1 Github Link.html 116б
2. BONUS Lecture.mp4 37.79Мб
2. BONUS Lecture.srt 7.83Кб
2. Efficient Market Hypothesis.mp4 54.80Мб
2. Efficient Market Hypothesis.srt 16.08Кб
2. Elements of a Reinforcement Learning Problem.mp4 105.15Мб
2. Elements of a Reinforcement Learning Problem.srt 25.92Кб
2. Getting Financial Data.mp4 41.85Мб
2. Getting Financial Data.srt 9.95Кб
2. High Frequency Trading (HFT).mp4 22.04Мб
2. High Frequency Trading (HFT).srt 5.27Кб
2. How to Code by Yourself (part 2).mp4 49.16Мб
2. How to Code by Yourself (part 2).srt 13.18Кб
2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4 150.56Мб
2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt 14.15Кб
2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 105.57Мб
2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt 31.94Кб
2. Statistical Factor Models (Intermediate).mp4 40.50Мб
2. Statistical Factor Models (Intermediate).srt 13.09Кб
2. The S&P500.mp4 11.70Мб
2. The S&P500.srt 3.34Кб
2. Trend-Following Strategy.mp4 55.86Мб
2. Trend-Following Strategy.srt 17.95Кб
2. Trend-Following Strategy Revisited (Code).mp4 55.76Мб
2. Trend-Following Strategy Revisited (Code).srt 10.53Кб
2. VIP Finance Enthusiasts, Beware of Marketers!.mp4 13.51Мб
2. VIP Finance Enthusiasts, Beware of Marketers!.srt 2.81Кб
2. Where to get the code.mp4 44.23Мб
2. Where to get the code.srt 12.37Кб
2. Why Sequence Models (pt 2).mp4 41.20Мб
2. Why Sequence Models (pt 2).srt 16.04Кб
20. Capital Asset Pricing Model (CAPM).mp4 52.23Мб
20. Capital Asset Pricing Model (CAPM).srt 16.02Кб
20. Stationarity Code.mp4 64.55Мб
20. Stationarity Code.srt 10.76Кб
20. Statistical Testing (Code).mp4 41.89Мб
20. Statistical Testing (Code).srt 9.06Кб
21. ACF (Autocorrelation Function).mp4 37.28Мб
21. ACF (Autocorrelation Function).srt 12.98Кб
21. Covariance and Correlation.mp4 32.87Мб
21. Covariance and Correlation.srt 10.81Кб
21. Problems with Markowitz Portfolio Theory and Robust Estimation.mp4 48.06Мб
21. Problems with Markowitz Portfolio Theory and Robust Estimation.srt 12.18Кб
22. Covariance and Correlation (Code).mp4 38.93Мб
22. Covariance and Correlation (Code).srt 7.14Кб
22. PACF (Partial Autocorrelation Funtion).mp4 26.18Мб
22. PACF (Partial Autocorrelation Funtion).srt 7.97Кб
22. Portfolio Optimization Section Conclusion.mp4 17.49Мб
22. Portfolio Optimization Section Conclusion.srt 2.89Кб
23. ACF and PACF in Code (pt 1).mp4 42.27Мб
23. ACF and PACF in Code (pt 1).srt 9.34Кб
23. Alpha and Beta.mp4 28.75Мб
23. Alpha and Beta.srt 9.26Кб
24. ACF and PACF in Code (pt 2).mp4 35.39Мб
24. ACF and PACF in Code (pt 2).srt 8.02Кб
24. Alpha and Beta (Code).mp4 45.80Мб
24. Alpha and Beta (Code).srt 10.39Кб
25. Auto ARIMA and SARIMAX.mp4 40.64Мб
25. Auto ARIMA and SARIMAX.srt 12.28Кб
25. Mixture of Gaussians.mp4 29.33Мб
25. Mixture of Gaussians.srt 9.17Кб
26. Mixture of Gaussians (Code).mp4 33.51Мб
26. Mixture of Gaussians (Code).srt 8.22Кб
26. Model Selection, AIC and BIC.mp4 47.28Мб
26. Model Selection, AIC and BIC.srt 13.46Кб
27. ARIMA in Code (pt 2).mp4 109.85Мб
27. ARIMA in Code (pt 2).srt 16.66Кб
27. Volatility Clustering.mp4 18.52Мб
27. Volatility Clustering.srt 3.88Кб
28. ARIMA in Code (pt 3).mp4 111.97Мб
28. ARIMA in Code (pt 3).srt 18.05Кб
28. Price Simulation.mp4 11.99Мб
28. Price Simulation.srt 4.02Кб
29. ACF and PACF for Stock Returns.mp4 48.93Мб
29. ACF and PACF for Stock Returns.srt 8.45Кб
29. Price Simulation (Code).mp4 12.24Мб
29. Price Simulation (Code).srt 3.10Кб
3. Getting Financial Data (Code).mp4 62.59Мб
3. Getting Financial Data (Code).srt 9.46Кб
3. HMM Parameters.mp4 37.43Мб
3. HMM Parameters.srt 12.35Кб
3. Machine Learning and AI Prerequisite Roadmap (pt 1).mp4 79.64Мб
3. Machine Learning and AI Prerequisite Roadmap (pt 1).srt 16.77Кб
3. Proof that using Jupyter Notebook is the same as not using it.mp4 69.45Мб
3. Proof that using Jupyter Notebook is the same as not using it.srt 14.05Кб
3. Q-Learning in an Algorithmic Trading Context.mp4 29.67Мб
3. Q-Learning in an Algorithmic Trading Context.srt 9.29Кб
3. Random Walk Hypothesis.mp4 71.46Мб
3. Random Walk Hypothesis.srt 19.10Кб
3. Scope of the course.mp4 24.37Мб
3. Scope of the course.srt 5.16Кб
3. States, Actions, Rewards, Policies.mp4 44.24Мб
3. States, Actions, Rewards, Policies.srt 11.67Кб
3. Statistical Factor Models (Advanced).mp4 73.07Мб
3. Statistical Factor Models (Advanced).srt 25.40Кб
3. Trend-Following Strategy in Code (pt 1).mp4 63.78Мб
3. Trend-Following Strategy in Code (pt 1).srt 9.38Кб
3. What is Risk.mp4 30.51Мб
3. What is Risk.srt 9.35Кб
30. Financial Basics Section Summary.mp4 9.98Мб
30. Financial Basics Section Summary.srt 3.07Кб
30. Forecasting.mp4 39.29Мб
30. Forecasting.srt 12.14Кб
31. Suggestion Box.mp4 16.10Мб
31. Suggestion Box.srt 4.66Кб
31. Time Series Analysis Section Conclusion.mp4 18.14Мб
31. Time Series Analysis Section Conclusion.srt 5.29Кб
4. HMM Tasks and the Viterbi Algorithm.mp4 65.01Мб
4. HMM Tasks and the Viterbi Algorithm.srt 19.23Кб
4. How to Practice.mp4 24.52Мб
4. How to Practice.srt 5.20Кб
4. Machine Learning and AI Prerequisite Roadmap (pt 2).mp4 108.17Мб
4. Machine Learning and AI Prerequisite Roadmap (pt 2).srt 23.55Кб
4. Markov Decision Processes (MDPs).mp4 50.71Мб
4. Markov Decision Processes (MDPs).srt 12.70Кб
4. Representing States.mp4 32.55Мб
4. Representing States.srt 9.56Кб
4. Statistical Factor Models (Code).mp4 101.03Мб
4. Statistical Factor Models (Code).srt 18.59Кб
4. The Naive Forecast.mp4 30.95Мб
4. The Naive Forecast.srt 9.23Кб
4. Trend-Following Strategy in Code (pt 2).mp4 69.09Мб
4. Trend-Following Strategy in Code (pt 2).srt 12.00Кб
4. Understanding Financial Data.mp4 28.53Мб
4. Understanding Financial Data.srt 6.61Кб
4. Why Diversify.mp4 33.24Мб
4. Why Diversify.srt 10.50Кб
5. Describing a Portfolio (pt 1).mp4 36.52Мб
5. Describing a Portfolio (pt 1).srt 12.35Кб
5. HMM for Modeling Volatility Clustering in Code.mp4 101.96Мб
5. HMM for Modeling Volatility Clustering in Code.srt 24.11Кб
5. Machine Learning-Based Trading Strategy.mp4 33.32Мб
5. Machine Learning-Based Trading Strategy.srt 10.30Кб
5. Q-Learning for Algorithmic Trading in Code.mp4 103.04Мб
5. Q-Learning for Algorithmic Trading in Code.srt 18.50Кб
5. Simple Moving Average (Theory).mp4 19.90Мб
5. Simple Moving Average (Theory).srt 5.73Кб
5. The Return.mp4 23.55Мб
5. The Return.srt 6.32Кб
5. Understanding Financial Data (Code).mp4 75.54Мб
5. Understanding Financial Data (Code).srt 15.10Кб
5. Warmup (Optional).mp4 23.17Мб
5. Warmup (Optional).srt 6.05Кб
6. Dealing with Missing Data.mp4 28.20Мб
6. Dealing with Missing Data.srt 7.76Кб
6. Describing a Portfolio (pt 2).mp4 22.75Мб
6. Describing a Portfolio (pt 2).srt 7.88Кб
6. Machine Learning-Based Trading Strategy in Code.mp4 69.54Мб
6. Machine Learning-Based Trading Strategy in Code.srt 10.38Кб
6. Simple Moving Average (Code).mp4 55.75Мб
6. Simple Moving Average (Code).srt 9.45Кб
6. Value Functions and the Bellman Equation.mp4 47.86Мб
6. Value Functions and the Bellman Equation.srt 12.63Кб
7. Classification-Based Trading Strategy in Code.mp4 25.11Мб
7. Classification-Based Trading Strategy in Code.srt 4.25Кб
7. Dealing with Missing Data (Code).mp4 37.68Мб
7. Dealing with Missing Data (Code).srt 8.95Кб
7. Exponentially-Weighted Moving Average (Theory).mp4 37.76Мб
7. Exponentially-Weighted Moving Average (Theory).srt 14.60Кб
7. Visualizing Random Portfolios and Monte Carlo Simulation (pt 1).mp4 73.44Мб
7. Visualizing Random Portfolios and Monte Carlo Simulation (pt 1).srt 16.22Кб
7. What does it mean to “learn”.mp4 31.77Мб
7. What does it mean to “learn”.srt 8.91Кб
8. Exponentially-Weighted Moving Average (Code).mp4 54.34Мб
8. Exponentially-Weighted Moving Average (Code).srt 14.66Кб
8. Returns.mp4 29.22Мб
8. Returns.srt 11.72Кб
8. Solving the Bellman Equation with Reinforcement Learning (pt 1).mp4 42.79Мб
8. Solving the Bellman Equation with Reinforcement Learning (pt 1).srt 12.41Кб
8. Using a Random Forest Classifier for Machine Learning-Based Trading.mp4 33.02Мб
8. Using a Random Forest Classifier for Machine Learning-Based Trading.srt 5.54Кб
8. Visualizing Random Portfolios and Monte Carlo Simulation (pt 2).mp4 88.72Мб
8. Visualizing Random Portfolios and Monte Carlo Simulation (pt 2).srt 18.36Кб
9. Adjusted Close, Stock Splits, and Dividends.mp4 47.36Мб
9. Adjusted Close, Stock Splits, and Dividends.srt 16.21Кб
9. Algorithmic Trading Section Summary.mp4 29.94Мб
9. Algorithmic Trading Section Summary.srt 7.56Кб
9. Maximum and Minimum Portfolio Return.mp4 32.65Мб
9. Maximum and Minimum Portfolio Return.srt 12.46Кб
9. Simple Exponential Smoothing for Forecasting (Theory).mp4 36.31Мб
9. Simple Exponential Smoothing for Forecasting (Theory).srt 13.89Кб
9. Solving the Bellman Equation with Reinforcement Learning (pt 2).mp4 57.19Мб
9. Solving the Bellman Equation with Reinforcement Learning (pt 2).srt 14.78Кб
Статистика распространения по странам
Египет (EG) 1
США (US) 1
Италия (IT) 1
Колумбия (CO) 1
Всего 4
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент