|
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
| [TGx]Downloaded from torrentgalaxy.to .txt |
585б |
| 0 |
14б |
| 01__resources.html |
5.46Кб |
| 01_actor-critic-with-softmax-policies.en.srt |
5.99Кб |
| 01_actor-critic-with-softmax-policies.en.txt |
3.71Кб |
| 01_actor-critic-with-softmax-policies.mp4 |
16.53Мб |
| 01_agent-architecture-meeting-with-martha-overview-of-design-choices.en.srt |
10.80Кб |
| 01_agent-architecture-meeting-with-martha-overview-of-design-choices.en.txt |
5.78Кб |
| 01_agent-architecture-meeting-with-martha-overview-of-design-choices.mp4 |
15.62Мб |
| 01_average-reward-a-new-way-of-formulating-control-problems.en.srt |
15.17Кб |
| 01_average-reward-a-new-way-of-formulating-control-problems.en.txt |
9.43Кб |
| 01_average-reward-a-new-way-of-formulating-control-problems.mp4 |
19.08Мб |
| 01_bellman-equation-derivation.en.srt |
9.64Кб |
| 01_bellman-equation-derivation.en.txt |
5.14Кб |
| 01_bellman-equation-derivation.mp4 |
17.03Мб |
| 01_congratulations.en.srt |
6.34Кб |
| 01_congratulations.en.srt |
3.34Кб |
| 01_congratulations.en.txt |
3.39Кб |
| 01_congratulations.en.txt |
2.09Кб |
| 01_congratulations.mp4 |
11.18Мб |
| 01_congratulations.mp4 |
4.36Мб |
| 01_congratulations-course-4-preview.en.srt |
4.22Кб |
| 01_congratulations-course-4-preview.en.txt |
2.27Кб |
| 01_congratulations-course-4-preview.mp4 |
22.11Мб |
| 01_continuing-tasks.en.srt |
7.64Кб |
| 01_continuing-tasks.en.txt |
3.99Кб |
| 01_continuing-tasks.mp4 |
12.67Мб |
| 01_course-3-introduction.en.srt |
8.91Кб |
| 01_course-3-introduction.en.txt |
4.67Кб |
| 01_course-3-introduction.mp4 |
16.33Мб |
| 01_course-4-introduction.en.srt |
4.24Кб |
| 01_course-4-introduction.en.txt |
2.29Кб |
| 01_course-4-introduction.mp4 |
22.11Мб |
| 01_course-introduction.en.srt |
4.00Кб |
| 01_course-introduction.en.txt |
2.12Кб |
| 01_course-introduction.mp4 |
11.27Мб |
| 01_dynamic-programming_quiz.html |
157.49Кб |
| 01_epsilon-soft-policies.en.srt |
7.55Кб |
| 01_epsilon-soft-policies.en.txt |
4.77Кб |
| 01_epsilon-soft-policies.mp4 |
12.69Мб |
| 01_estimating-the-policy-gradient.en.srt |
7.48Кб |
| 01_estimating-the-policy-gradient.en.txt |
4.63Кб |
| 01_estimating-the-policy-gradient.mp4 |
13.63Мб |
| 01_expected-sarsa.en.srt |
4.52Кб |
| 01_expected-sarsa.en.txt |
2.80Кб |
| 01_expected-sarsa.mp4 |
6.26Мб |
| 01_exploration-under-function-approximation.en.srt |
6.53Кб |
| 01_exploration-under-function-approximation.en.txt |
3.48Кб |
| 01_exploration-under-function-approximation.mp4 |
11.05Мб |
| 01_flexibility-of-the-policy-iteration-framework.en.srt |
7.08Кб |
| 01_flexibility-of-the-policy-iteration-framework.en.txt |
3.80Кб |
| 01_flexibility-of-the-policy-iteration-framework.mp4 |
12.44Мб |
| 01_gradient-descent-for-training-neural-networks.en.srt |
13.98Кб |
| 01_gradient-descent-for-training-neural-networks.en.txt |
7.45Кб |
| 01_gradient-descent-for-training-neural-networks.mp4 |
15.53Мб |
| 01_initial-project-meeting-with-martha-formalizing-the-problem.en.srt |
6.76Кб |
| 01_initial-project-meeting-with-martha-formalizing-the-problem.en.txt |
4.22Кб |
| 01_initial-project-meeting-with-martha-formalizing-the-problem.mp4 |
13.25Мб |
| 01_learning-action-values.en.srt |
6.98Кб |
| 01_learning-action-values.en.txt |
3.80Кб |
| 01_learning-action-values.mp4 |
14.22Мб |
| 01_lets-review-comparing-td-and-monte-carlo.en.srt |
8.10Кб |
| 01_lets-review-comparing-td-and-monte-carlo.en.txt |
4.28Кб |
| 01_lets-review-comparing-td-and-monte-carlo.mp4 |
9.81Мб |
| 01_lets-review-expected-sarsa.en.srt |
4.52Кб |
| 01_lets-review-expected-sarsa.en.txt |
2.80Кб |
| 01_lets-review-expected-sarsa.mp4 |
6.26Мб |
| 01_lets-review-markov-decision-processes.en.srt |
9.62Кб |
| 01_lets-review-markov-decision-processes.en.txt |
5.18Кб |
| 01_lets-review-markov-decision-processes.mp4 |
12.36Мб |
| 01_lets-review-non-linear-approximation-with-neural-networks.en.srt |
6.10Кб |
| 01_lets-review-non-linear-approximation-with-neural-networks.en.txt |
3.85Кб |
| 01_lets-review-non-linear-approximation-with-neural-networks.mp4 |
9.59Мб |
| 01_lets-review-optimization-strategies-for-nns.en.srt |
8.41Кб |
| 01_lets-review-optimization-strategies-for-nns.en.txt |
4.52Кб |
| 01_lets-review-optimization-strategies-for-nns.mp4 |
14.28Мб |
| 01_mdps_quiz.html |
11.79Кб |
| 01_meeting-with-adam-getting-the-agent-details-right.en.srt |
7.09Кб |
| 01_meeting-with-adam-getting-the-agent-details-right.en.txt |
4.41Кб |
| 01_meeting-with-adam-getting-the-agent-details-right.mp4 |
12.60Мб |
| 01_meeting-with-adam-parameter-studies-in-rl.en.srt |
8.08Кб |
| 01_meeting-with-adam-parameter-studies-in-rl.en.txt |
5.07Кб |
| 01_meeting-with-adam-parameter-studies-in-rl.mp4 |
11.49Мб |
| 01_meeting-with-martha-discussing-your-results.en.srt |
3.90Кб |
| 01_meeting-with-martha-discussing-your-results.en.txt |
2.42Кб |
| 01_meeting-with-martha-discussing-your-results.mp4 |
10.95Мб |
| 01_meeting-with-niko-choosing-the-learning-algorithm.en.srt |
4.56Кб |
| 01_meeting-with-niko-choosing-the-learning-algorithm.en.txt |
2.84Кб |
| 01_meeting-with-niko-choosing-the-learning-algorithm.mp4 |
7.88Мб |
| 01_module-1-learning-objectives_instructions.html |
2.80Кб |
| 01_module-1-learning-objectives_instructions.html |
3.97Кб |
| 01_module-1-learning-objectives_instructions.html |
3.02Кб |
| 01_module-2-learning-objectives_instructions.html |
2.39Кб |
| 01_module-2-learning-objectives_instructions.html |
3.09Кб |
| 01_module-2-learning-objectives_instructions.html |
1.73Кб |
| 01_module-3-learning-objectives_instructions.html |
3.20Кб |
| 01_module-3-learning-objectives_instructions.html |
2.21Кб |
| 01_module-3-learning-objectives_instructions.html |
2.84Кб |
| 01_module-4-learning-objectives_instructions.html |
3.00Кб |
| 01_module-4-learning-objectives_instructions.html |
3.53Кб |
| 01_module-4-learning-objectives_instructions.html |
2.87Кб |
| 01_optimal-policies.en.srt |
12.16Кб |
| 01_optimal-policies.en.txt |
6.42Кб |
| 01_optimal-policies.mp4 |
18.46Мб |
| 01_policy-improvement.en.srt |
6.52Кб |
| 01_policy-improvement.en.txt |
3.51Кб |
| 01_policy-improvement.mp4 |
9.99Мб |
| 01_practice-value-functions-and-bellman-equations_quiz.html |
7.98Кб |
| 01_random-tabular-q-planning.en.srt |
5.38Кб |
| 01_random-tabular-q-planning.en.txt |
2.93Кб |
| 01_random-tabular-q-planning.mp4 |
7.83Мб |
| 01_semi-gradient-td-for-policy-evaluation.en.srt |
4.57Кб |
| 01_semi-gradient-td-for-policy-evaluation.en.txt |
2.86Кб |
| 01_semi-gradient-td-for-policy-evaluation.mp4 |
15.35Мб |
| 01_sequential-decision-making_quiz.html |
210.30Кб |
| 01_specialization-introduction.en.srt |
4.92Кб |
| 01_specialization-introduction.en.txt |
2.63Кб |
| 01_specialization-introduction.mp4 |
18.26Мб |
| 01_the-advantages-of-temporal-difference-learning.en.srt |
8.16Кб |
| 01_the-advantages-of-temporal-difference-learning.en.txt |
4.30Кб |
| 01_the-advantages-of-temporal-difference-learning.mp4 |
9.10Мб |
| 01_the-dyna-architecture.en.srt |
6.93Кб |
| 01_the-dyna-architecture.en.txt |
4.28Кб |
| 01_the-dyna-architecture.mp4 |
9.59Мб |
| 01_the-goal-of-reinforcement-learning.en.srt |
4.90Кб |
| 01_the-goal-of-reinforcement-learning.en.txt |
2.62Кб |
| 01_the-goal-of-reinforcement-learning.mp4 |
8.02Мб |
| 01_the-linear-td-update.en.srt |
6.28Кб |
| 01_the-linear-td-update.en.txt |
3.30Кб |
| 01_the-linear-td-update.mp4 |
9.90Мб |
| 01_the-objective-for-learning-policies.en.srt |
8.91Кб |
| 01_the-objective-for-learning-policies.en.txt |
4.75Кб |
| 01_the-objective-for-learning-policies.mp4 |
13.35Мб |
| 01_the-value-error-objective.en.srt |
6.24Кб |
| 01_the-value-error-objective.en.txt |
3.43Кб |
| 01_the-value-error-objective.mp4 |
10.86Мб |
| 01_using-monte-carlo-for-action-values.en.srt |
4.73Кб |
| 01_using-monte-carlo-for-action-values.en.txt |
2.51Кб |
| 01_using-monte-carlo-for-action-values.mp4 |
6.47Мб |
| 01_what-if-the-model-is-inaccurate.en.srt |
7.00Кб |
| 01_what-if-the-model-is-inaccurate.en.txt |
3.76Кб |
| 01_what-if-the-model-is-inaccurate.mp4 |
7.69Мб |
| 01_what-is-a-neural-network.en.srt |
5.50Кб |
| 01_what-is-a-neural-network.en.txt |
2.96Кб |
| 01_what-is-a-neural-network.mp4 |
7.03Мб |
| 01_what-is-q-learning.en.srt |
4.95Кб |
| 01_what-is-q-learning.en.txt |
2.60Кб |
| 01_what-is-q-learning.mp4 |
7.84Мб |
| 01_what-is-the-trade-off.en.srt |
12.17Кб |
| 01_what-is-the-trade-off.en.txt |
6.57Кб |
| 01_what-is-the-trade-off.mp4 |
21.58Мб |
| 01_why-does-off-policy-learning-matter.en.srt |
5.93Кб |
| 01_why-does-off-policy-learning-matter.en.txt |
3.82Кб |
| 01_why-does-off-policy-learning-matter.mp4 |
14.39Мб |
| 02_actor-critic-algorithm.en.srt |
9.18Кб |
| 02_actor-critic-algorithm.en.txt |
4.91Кб |
| 02_actor-critic-algorithm.mp4 |
14.07Мб |
| 02 andy-barto-on-what-are-eligibility-traces-and-why-are-they-so-named en srt |
12.50Кб |
| 02 andy-barto-on-what-are-eligibility-traces-and-why-are-they-so-named en txt |
6.62Кб |
| 02_andy-barto-on-what-are-eligibility-traces-and-why-are-they-so-named.mp4 |
38.51Мб |
| 02_bandits-and-exploration-exploitation_instructions.html |
1.13Кб |
| 02_comparing-td-and-monte-carlo.en.srt |
8.10Кб |
| 02_comparing-td-and-monte-carlo.en.txt |
4.28Кб |
| 02_comparing-td-and-monte-carlo.mp4 |
9.81Мб |
| 02_comparing-td-and-monte-carlo-with-state-aggregation.en.srt |
6.85Кб |
| 02_comparing-td-and-monte-carlo-with-state-aggregation.en.txt |
3.61Кб |
| 02_comparing-td-and-monte-carlo-with-state-aggregation.mp4 |
11.54Мб |
| 02_course-introduction.en.srt |
10.43Кб |
| 02_course-introduction.en.txt |
5.62Кб |
| 02_course-introduction.mp4 |
32.39Мб |
| 02_course-wrap-up.en.srt |
2.95Кб |
| 02_course-wrap-up.en.txt |
1.83Кб |
| 02_course-wrap-up.mp4 |
7.76Мб |
| 02_demonstration-with-actor-critic.en.srt |
10.86Кб |
| 02_demonstration-with-actor-critic.en.txt |
5.87Кб |
| 02_demonstration-with-actor-critic.mp4 |
28.82Мб |
| 02_drew-bagnell-on-system-id-optimal-control.en.srt |
10.52Кб |
| 02_drew-bagnell-on-system-id-optimal-control.en.txt |
6.76Кб |
| 02_drew-bagnell-on-system-id-optimal-control.mp4 |
31.29Мб |
| 02_efficiency-of-dynamic-programming.en.srt |
7.72Кб |
| 02_efficiency-of-dynamic-programming.en.txt |
4.84Кб |
| 02_efficiency-of-dynamic-programming.mp4 |
14.03Мб |
| 02_estimating-action-values-incrementally.en.srt |
8.05Кб |
| 02_estimating-action-values-incrementally.en.txt |
4.30Кб |
| 02_estimating-action-values-incrementally.mp4 |
19.40Мб |
| 02_examples-of-episodic-and-continuing-tasks.en.srt |
4.66Кб |
| 02_examples-of-episodic-and-continuing-tasks.en.txt |
2.52Кб |
| 02_examples-of-episodic-and-continuing-tasks.mp4 |
9.14Мб |
| 02_expected-sarsa-in-the-cliff-world.en.srt |
3.73Кб |
| 02_expected-sarsa-in-the-cliff-world.en.txt |
2.31Кб |
| 02_expected-sarsa-in-the-cliff-world.mp4 |
5.69Мб |
| 02_graded-assignment-describe-three-mdps_peer_assignment_instructions.html |
2.33Кб |
| 02_graded-value-functions-and-bellman-equations_exam.html |
31.06Кб |
| 02_importance-sampling.en.srt |
6.58Кб |
| 02_importance-sampling.en.txt |
3.47Кб |
| 02_importance-sampling.mp4 |
7.41Мб |
| 02_in-depth-with-changing-environments.en.srt |
9.22Кб |
| 02_in-depth-with-changing-environments.en.txt |
4.92Кб |
| 02_in-depth-with-changing-environments.mp4 |
11.94Мб |
| 02_introducing-gradient-descent.en.srt |
9.91Кб |
| 02_introducing-gradient-descent.en.txt |
6.15Кб |
| 02_introducing-gradient-descent.mp4 |
15.10Мб |
| 02_joelle-pineau-about-rl-that-matters.en.srt |
13.67Кб |
| 02_joelle-pineau-about-rl-that-matters.en.txt |
8.75Кб |
| 02_joelle-pineau-about-rl-that-matters.mp4 |
29.50Мб |
| 02_lets-review-examples-of-episodic-and-continuing-tasks.en.srt |
4.66Кб |
| 02_lets-review-examples-of-episodic-and-continuing-tasks.en.txt |
2.52Кб |
| 02_lets-review-examples-of-episodic-and-continuing-tasks.mp4 |
9.14Мб |
| 02_lets-review-expected-sarsa-with-function-approximation.en.srt |
3.93Кб |
| 02_lets-review-expected-sarsa-with-function-approximation.en.txt |
2.08Кб |
| 02_lets-review-expected-sarsa-with-function-approximation.mp4 |
7.63Мб |
| 02_lets-review-what-is-q-learning.en.srt |
4.95Кб |
| 02_lets-review-what-is-q-learning.en.txt |
2.60Кб |
| 02_lets-review-what-is-q-learning.mp4 |
7.84Мб |
| 02_meet-your-instructors.en.srt |
13.43Кб |
| 02_meet-your-instructors.en.srt |
13.43Кб |
| 02_meet-your-instructors.en.srt |
13.43Кб |
| 02_meet-your-instructors.en.txt |
8.62Кб |
| 02_meet-your-instructors.en.txt |
8.62Кб |
| 02_meet-your-instructors.en.txt |
8.62Кб |
| 02_meet-your-instructors.mp4 |
43.87Мб |
| 02_meet-your-instructors.mp4 |
43.87Мб |
| 02_meet-your-instructors.mp4 |
43.87Мб |
| 02_michael-littman-the-reward-hypothesis.en.srt |
18.48Кб |
| 02_michael-littman-the-reward-hypothesis.en.txt |
11.58Кб |
| 02_michael-littman-the-reward-hypothesis.mp4 |
84.01Мб |
| 02_non-linear-approximation-with-neural-networks.en.srt |
6.10Кб |
| 02_non-linear-approximation-with-neural-networks.en.txt |
3.85Кб |
| 02_non-linear-approximation-with-neural-networks.mp4 |
9.59Мб |
| 02_optimal-policies-with-dynamic-programming_instructions.html |
1.13Кб |
| 02_optimal-value-functions.en.srt |
8.34Кб |
| 02_optimal-value-functions.en.txt |
4.51Кб |
| 02_optimal-value-functions.mp4 |
10.19Мб |
| 02_optimistic-initial-values.en.srt |
8.50Кб |
| 02_optimistic-initial-values.en.txt |
5.36Кб |
| 02_optimistic-initial-values.mp4 |
13.13Мб |
| 02_optimization-strategies-for-nns.en.srt |
8.41Кб |
| 02_optimization-strategies-for-nns.en.txt |
4.52Кб |
| 02_optimization-strategies-for-nns.mp4 |
14.28Мб |
| 02_policy-iteration.en.srt |
13.33Кб |
| 02_policy-iteration.en.txt |
7.12Кб |
| 02_policy-iteration.mp4 |
17.86Мб |
| 02_q-learning-in-the-windy-grid-world.en.srt |
5.78Кб |
| 02_q-learning-in-the-windy-grid-world.en.txt |
3.03Кб |
| 02_q-learning-in-the-windy-grid-world.mp4 |
7.24Мб |
| 02_satinder-singh-on-intrinsic-rewards.en.srt |
20.96Кб |
| 02_satinder-singh-on-intrinsic-rewards.en.txt |
10.98Кб |
| 02_satinder-singh-on-intrinsic-rewards.mp4 |
26.91Мб |
| 02_the-dyna-algorithm.en.srt |
7.81Кб |
| 02_the-dyna-algorithm.en.txt |
4.16Кб |
| 02_the-dyna-algorithm.mp4 |
11.24Мб |
| 02_the-policy-gradient-theorem.en.srt |
9.28Кб |
| 02_the-policy-gradient-theorem.en.txt |
4.91Кб |
| 02_the-policy-gradient-theorem.mp4 |
9.31Мб |
| 02_the-true-objective-for-td.en.srt |
8.23Кб |
| 02_the-true-objective-for-td.en.txt |
4.31Кб |
| 02_the-true-objective-for-td.mp4 |
13.66Мб |
| 02_using-monte-carlo-methods-for-generalized-policy-iteration.en.srt |
4.02Кб |
| 02_using-monte-carlo-methods-for-generalized-policy-iteration.en.txt |
2.11Кб |
| 02_using-monte-carlo-methods-for-generalized-policy-iteration.mp4 |
5.17Мб |
| 02_weekly-reading_instructions.html |
1.16Кб |
| 02_weekly-reading_instructions.html |
1.17Кб |
| 02_weekly-reading_instructions.html |
1.16Кб |
| 02_weekly-reading_instructions.html |
1.17Кб |
| 02_weekly-reading_instructions.html |
1.19Кб |
| 02_weekly-reading_instructions.html |
1.17Кб |
| 02_weekly-reading_instructions.html |
1.17Кб |
| 02_weekly-reading_instructions.html |
1.16Кб |
| 02_weekly-reading_RLbook2018.pdf |
85.28Мб |
| 02_weekly-reading_RLbook2018.pdf |
85.28Мб |
| 02_weekly-reading_RLbook2018.pdf |
85.28Мб |
| 02_weekly-reading_RLbook2018.pdf |
85.28Мб |
| 02_weekly-reading_RLbook2018.pdf |
85.28Мб |
| 02_weekly-reading_RLbook2018.pdf |
85.28Мб |
| 02_weekly-reading_RLbook2018.pdf |
85.28Мб |
| 02_weekly-reading_RLbook2018.pdf |
85.28Мб |
| 02_weekly-reading-on-policy-control-with-approximation_instructions.html |
1.27Кб |
| 02_weekly-reading-on-policy-control-with-approximation_RLbook2018.pdf |
85.28Мб |
| 02_weekly-reading-on-policy-prediction-with-approximation_instructions.html |
1.17Кб |
| 02_weekly-reading-on-policy-prediction-with-approximation_RLbook2018.pdf |
85.28Мб |
| 02 weekly-reading-on-policy-prediction-with-approximation-ii instructions html |
1.24Кб |
| 02_weekly-reading-on-policy-prediction-with-approximation-ii_RLbook2018.pdf |
85.28Мб |
| 02_weekly-reading-policy-gradient-methods_instructions.html |
1.17Кб |
| 02_weekly-reading-policy-gradient-methods_RLbook2018.pdf |
85.28Мб |
| 02_why-bellman-equations.en.srt |
6.99Кб |
| 02_why-bellman-equations.en.txt |
4.41Кб |
| 02_why-bellman-equations.mp4 |
11.87Мб |
| 03_andy-barto-and-rich-sutton-more-on-the-history-of-rl.en.srt |
15.92Кб |
| 03_andy-barto-and-rich-sutton-more-on-the-history-of-rl.en.txt |
8.07Кб |
| 03_andy-barto-and-rich-sutton-more-on-the-history-of-rl.mp4 |
80.21Мб |
| 03_coarse-coding.en.srt |
4.86Кб |
| 03_coarse-coding.en.txt |
3.01Кб |
| 03_coarse-coding.mp4 |
9.59Мб |
| 03_david-silver-on-deep-learning-rl-ai.en.srt |
14.71Кб |
| 03_david-silver-on-deep-learning-rl-ai.en.txt |
9.52Кб |
| 03_david-silver-on-deep-learning-rl-ai.mp4 |
41.41Мб |
| 03_deep-neural-networks.en.srt |
5.88Кб |
| 03_deep-neural-networks.en.txt |
3.17Кб |
| 03_deep-neural-networks.mp4 |
15.33Мб |
| 03 doina-precup-building-knowledge-for-ai-agents-with-reinforcement-learning en srt |
11.34Кб |
| 03 doina-precup-building-knowledge-for-ai-agents-with-reinforcement-learning en txt |
6.08Кб |
| 03 doina-precup-building-knowledge-for-ai-agents-with-reinforcement-learning mp4 |
55.29Мб |
| 03_drew-bagnell-self-driving-robotics-and-model-based-rl.en.srt |
10.32Кб |
| 03_drew-bagnell-self-driving-robotics-and-model-based-rl.en.txt |
6.66Кб |
| 03_drew-bagnell-self-driving-robotics-and-model-based-rl.mp4 |
35.21Мб |
| 03_dyna-q-learning-in-a-simple-maze.en.srt |
6.90Кб |
| 03_dyna-q-learning-in-a-simple-maze.en.txt |
4.19Кб |
| 03_dyna-q-learning-in-a-simple-maze.mp4 |
10.76Мб |
| 03_episodic-sarsa-with-function-approximation.en.srt |
6.23Кб |
| 03_episodic-sarsa-with-function-approximation.en.txt |
3.85Кб |
| 03_episodic-sarsa-with-function-approximation.mp4 |
18.05Мб |
| 03_gaussian-policies-for-continuous-actions.en.srt |
12.82Кб |
| 03_gaussian-policies-for-continuous-actions.en.txt |
6.94Кб |
| 03_gaussian-policies-for-continuous-actions.mp4 |
19.95Мб |
| 03_generality-of-expected-sarsa.en.srt |
2.88Кб |
| 03_generality-of-expected-sarsa.en.txt |
1.52Кб |
| 03_generality-of-expected-sarsa.mp4 |
5.21Мб |
| 03_gradient-monte-for-policy-evaluation.en.srt |
9.31Кб |
| 03_gradient-monte-for-policy-evaluation.en.txt |
4.90Кб |
| 03_gradient-monte-for-policy-evaluation.mp4 |
15.24Мб |
| 03_how-is-q-learning-off-policy.en.srt |
7.23Кб |
| 03_how-is-q-learning-off-policy.en.txt |
3.99Кб |
| 03_how-is-q-learning-off-policy.mp4 |
9.96Мб |
| 03_learning-policies-directly.en.srt |
10.17Кб |
| 03_learning-policies-directly.en.txt |
5.42Кб |
| 03_learning-policies-directly.mp4 |
17.10Мб |
| 03 lets-review-average-reward-a-new-way-of-formulating-control-problems en srt |
15.17Кб |
| 03 lets-review-average-reward-a-new-way-of-formulating-control-problems en txt |
9.43Кб |
| 03_lets-review-average-reward-a-new-way-of-formulating-control-problems.mp4 |
19.08Мб |
| 03_lets-review-dyna-q-learning-in-a-simple-maze.en.srt |
6.90Кб |
| 03_lets-review-dyna-q-learning-in-a-simple-maze.en.txt |
4.19Кб |
| 03_lets-review-dyna-q-learning-in-a-simple-maze.mp4 |
10.76Мб |
| 03_markov-decision-processes.en.srt |
9.62Кб |
| 03_markov-decision-processes.en.txt |
5.18Кб |
| 03_markov-decision-processes.mp4 |
12.36Мб |
| 03_meet-your-instructors.en.srt |
15.89Кб |
| 03_meet-your-instructors.en.txt |
8.41Кб |
| 03_meet-your-instructors.mp4 |
43.87Мб |
| 03_moving-to-parameterized-functions.en.srt |
10.44Кб |
| 03_moving-to-parameterized-functions.en.txt |
5.59Кб |
| 03_moving-to-parameterized-functions.mp4 |
24.38Мб |
| 03_off-policy-monte-carlo-prediction.en.srt |
7.80Кб |
| 03_off-policy-monte-carlo-prediction.en.txt |
4.15Кб |
| 03_off-policy-monte-carlo-prediction.mp4 |
12.52Мб |
| 03_policy-evaluation-vs-control.en.srt |
6.66Кб |
| 03_policy-evaluation-vs-control.en.txt |
4.18Кб |
| 03_policy-evaluation-vs-control.mp4 |
13.32Мб |
| 03_read-me-pre-requisites-and-learning-objectives_instructions.html |
3.19Кб |
| 03 read-me-pre-requisites-and-learning-objectives Prediction and Control with Function Approximation Learning Objectives pdf |
59.93Кб |
| 03_reinforcement-learning-textbook_instructions.html |
2.19Кб |
| 03_reinforcement-learning-textbook_instructions.html |
2.19Кб |
| 03_reinforcement-learning-textbook_RLbook2018.pdf |
85.28Мб |
| 03_reinforcement-learning-textbook_RLbook2018.pdf |
85.28Мб |
| 03_sarsa-gpi-with-td.en.srt |
6.11Кб |
| 03_sarsa-gpi-with-td.en.txt |
3.23Кб |
| 03_sarsa-gpi-with-td.mp4 |
7.38Мб |
| 03_sequential-decision-making-with-evaluative-feedback.en.srt |
8.71Кб |
| 03_sequential-decision-making-with-evaluative-feedback.en.txt |
4.65Кб |
| 03_sequential-decision-making-with-evaluative-feedback.mp4 |
16.27Мб |
| 03_solving-the-blackjack-example.en.srt |
6.49Кб |
| 03_solving-the-blackjack-example.en.txt |
3.42Кб |
| 03_solving-the-blackjack-example.mp4 |
13.91Мб |
| 03_specialization-wrap-up.en.srt |
5.41Кб |
| 03_specialization-wrap-up.en.txt |
3.39Кб |
| 03_specialization-wrap-up.mp4 |
18.62Мб |
| 03_specifying-policies.en.srt |
7.52Кб |
| 03_specifying-policies.en.txt |
4.01Кб |
| 03_specifying-policies.mp4 |
14.99Мб |
| 03_susan-murphy-on-rl-in-mobile-health.en.srt |
10.39Кб |
| 03_susan-murphy-on-rl-in-mobile-health.en.txt |
6.32Кб |
| 03_susan-murphy-on-rl-in-mobile-health.mp4 |
27.63Мб |
| 03_upper-confidence-bound-ucb-action-selection.en.srt |
7.54Кб |
| 03_upper-confidence-bound-ucb-action-selection.en.txt |
4.03Кб |
| 03_upper-confidence-bound-ucb-action-selection.mp4 |
11.77Мб |
| 03_using-optimal-value-functions-to-get-optimal-policies.en.srt |
10.83Кб |
| 03_using-optimal-value-functions-to-get-optimal-policies.en.txt |
6.69Кб |
| 03_using-optimal-value-functions-to-get-optimal-policies.mp4 |
16.73Мб |
| 03 warren-powell-approximate-dynamic-programming-for-fleet-management-short en srt |
12.06Кб |
| 03 warren-powell-approximate-dynamic-programming-for-fleet-management-short en txt |
7.52Кб |
| 03 warren-powell-approximate-dynamic-programming-for-fleet-management-short mp4 |
47.13Мб |
| 03_week-1-summary.en.srt |
6.69Кб |
| 03_week-1-summary.en.txt |
3.58Кб |
| 03_week-1-summary.mp4 |
16.31Мб |
| 03_week-2-summary.en.srt |
2.77Кб |
| 03_week-2-summary.en.txt |
1.46Кб |
| 03_week-2-summary.mp4 |
5.42Мб |
| 03_week-3-review.en.srt |
4.65Кб |
| 03_week-3-review.en.txt |
2.47Кб |
| 03_week-3-review.mp4 |
8.88Мб |
| 03_what-is-a-model.en.srt |
7.53Кб |
| 03_what-is-a-model.en.txt |
3.98Кб |
| 03_what-is-a-model.mp4 |
11.33Мб |
| 03_what-is-monte-carlo.en.srt |
10.50Кб |
| 03_what-is-monte-carlo.en.txt |
5.65Кб |
| 03_what-is-monte-carlo.mp4 |
14.88Мб |
| 03_what-is-temporal-difference-td-learning.en.srt |
7.77Кб |
| 03_what-is-temporal-difference-td-learning.en.txt |
4.11Кб |
| 03_what-is-temporal-difference-td-learning.mp4 |
10.31Мб |
| 04_advantages-of-policy-parameterization.en.srt |
7.66Кб |
| 04_advantages-of-policy-parameterization.en.txt |
4.72Кб |
| 04_advantages-of-policy-parameterization.mp4 |
26.06Мб |
| 04_comparing-sample-and-distribution-models.en.srt |
3.87Кб |
| 04_comparing-sample-and-distribution-models.en.txt |
2.09Кб |
| 04_comparing-sample-and-distribution-models.mp4 |
6.65Мб |
| 04_emma-brunskill-batch-reinforcement-learning.en.srt |
24.91Кб |
| 04_emma-brunskill-batch-reinforcement-learning.en.txt |
13.16Кб |
| 04_emma-brunskill-batch-reinforcement-learning.mp4 |
37.38Мб |
| 04_episodic-sarsa-in-mountain-car.en.srt |
8.68Кб |
| 04_episodic-sarsa-in-mountain-car.en.txt |
4.65Кб |
| 04_episodic-sarsa-in-mountain-car.mp4 |
15.47Мб |
| 04_examples-of-mdps.en.srt |
6.85Кб |
| 04_examples-of-mdps.en.txt |
3.70Кб |
| 04_examples-of-mdps.mp4 |
12.20Мб |
| 04_generalization-and-discrimination.en.srt |
8.69Кб |
| 04_generalization-and-discrimination.en.txt |
4.63Кб |
| 04_generalization-and-discrimination.mp4 |
12.86Мб |
| 04_generalization-properties-of-coarse-coding.en.srt |
9.38Кб |
| 04_generalization-properties-of-coarse-coding.en.txt |
5.04Кб |
| 04_generalization-properties-of-coarse-coding.mp4 |
17.98Мб |
| 04_iterative-policy-evaluation.en.srt |
13.68Кб |
| 04_iterative-policy-evaluation.en.txt |
7.15Кб |
| 04_iterative-policy-evaluation.mp4 |
18.79Мб |
| 04 jonathan-langford-contextual-bandits-for-real-world-reinforcement-learning en srt |
14.04Кб |
| 04 jonathan-langford-contextual-bandits-for-real-world-reinforcement-learning en txt |
7.34Кб |
| 04 jonathan-langford-contextual-bandits-for-real-world-reinforcement-learning mp4 |
11.94Мб |
| 04_lets-review-actor-critic-algorithm.en.srt |
9.18Кб |
| 04_lets-review-actor-critic-algorithm.en.txt |
4.91Кб |
| 04_lets-review-actor-critic-algorithm.mp4 |
14.07Мб |
| 04_meeting-with-martha-in-depth-on-experience-replay.en.srt |
7.36Кб |
| 04_meeting-with-martha-in-depth-on-experience-replay.en.txt |
4.65Кб |
| 04_meeting-with-martha-in-depth-on-experience-replay.mp4 |
21.42Мб |
| 04 pre-requisites-and-learning-objectives A Complete Reinforcement Learning System Capstone Learning Objectives pdf |
56.79Кб |
| 04_pre-requisites-and-learning-objectives_instructions.html |
3.59Кб |
| 04 read-me-pre-requisites-and-learning-objectives Course 2 Sample Based Learning Methods Learning Objectives pdf |
83.14Кб |
| 04_read-me-pre-requisites-and-learning-objectives_instructions.html |
2.96Кб |
| 04_reinforcement-learning-textbook_instructions.html |
2.19Кб |
| 04_reinforcement-learning-textbook_RLbook2018.pdf |
85.28Мб |
| 04_rich-sutton-the-importance-of-td-learning.en.srt |
11.24Кб |
| 04_rich-sutton-the-importance-of-td-learning.en.txt |
5.88Кб |
| 04_rich-sutton-the-importance-of-td-learning.mp4 |
35.65Мб |
| 04_sarsa-in-the-windy-grid-world.en.srt |
3.89Кб |
| 04_sarsa-in-the-windy-grid-world.en.txt |
2.37Кб |
| 04_sarsa-in-the-windy-grid-world.mp4 |
5.85Мб |
| 04_state-aggregation-with-monte-carlo.en.srt |
10.23Кб |
| 04_state-aggregation-with-monte-carlo.en.txt |
6.24Кб |
| 04_state-aggregation-with-monte-carlo.mp4 |
20.26Мб |
| 04_using-monte-carlo-for-prediction.en.srt |
10.60Кб |
| 04_using-monte-carlo-for-prediction.en.txt |
5.61Кб |
| 04_using-monte-carlo-for-prediction.mp4 |
16.17Мб |
| 04_value-functions.en.srt |
10.34Кб |
| 04_value-functions.en.txt |
5.53Кб |
| 04_value-functions.mp4 |
21.10Мб |
| 04 warren-powell-approximate-dynamic-programming-for-fleet-management-long en srt |
40.71Кб |
| 04 warren-powell-approximate-dynamic-programming-for-fleet-management-long en txt |
21.34Кб |
| 04 warren-powell-approximate-dynamic-programming-for-fleet-management-long mp4 |
145.35Мб |
| 04_week-2-review.en.srt |
4.07Кб |
| 04_week-2-review.en.txt |
2.16Кб |
| 04_week-2-review.mp4 |
8.50Мб |
| 04_week-2-summary.en.srt |
3.13Кб |
| 04_week-2-summary.en.txt |
1.68Кб |
| 04_week-2-summary.mp4 |
7.41Мб |
| 04_week-3-summary.en.srt |
6.38Кб |
| 04_week-3-summary.en.srt |
2.65Кб |
| 04_week-3-summary.en.txt |
3.37Кб |
| 04_week-3-summary.en.txt |
1.60Кб |
| 04_week-3-summary.mp4 |
11.95Мб |
| 04_week-3-summary.mp4 |
3.68Мб |
| 04_week-4-summary.en.srt |
7.00Кб |
| 04_week-4-summary.en.srt |
2.58Кб |
| 04_week-4-summary.en.txt |
3.65Кб |
| 04_week-4-summary.en.txt |
1.36Кб |
| 04_week-4-summary.mp4 |
9.96Мб |
| 04_week-4-summary.mp4 |
4.25Мб |
| 04_your-specialization-roadmap.en.srt |
6.64Кб |
| 04_your-specialization-roadmap.en.txt |
3.46Кб |
| 04_your-specialization-roadmap.mp4 |
14.88Мб |
| 05_chapter-summary_instructions.html |
1.14Кб |
| 05_chapter-summary_instructions.html |
1.23Кб |
| 05_chapter-summary_instructions.html |
1.17Кб |
| 05_chapter-summary_RLbook2018.pdf |
85.28Мб |
| 05_chapter-summary_RLbook2018.pdf |
85.28Мб |
| 05_chapter-summary_RLbook2018.pdf |
85.28Мб |
| 05_csaba-szepesvari-on-problem-landscape.en.srt |
9.57Кб |
| 05_csaba-szepesvari-on-problem-landscape.en.txt |
6.06Кб |
| 05_csaba-szepesvari-on-problem-landscape.mp4 |
38.81Мб |
| 05_expected-sarsa-with-function-approximation.en.srt |
3.93Кб |
| 05_expected-sarsa-with-function-approximation.en.txt |
2.08Кб |
| 05_expected-sarsa-with-function-approximation.mp4 |
7.63Мб |
| 05_framing-value-estimation-as-supervised-learning.en.srt |
6.26Кб |
| 05_framing-value-estimation-as-supervised-learning.en.txt |
3.35Кб |
| 05_framing-value-estimation-as-supervised-learning.mp4 |
10.69Мб |
| 05 martin-riedmiller-on-the-collect-and-infer-framework-for-data-efficient-rl en srt |
8.17Кб |
| 05 martin-riedmiller-on-the-collect-and-infer-framework-for-data-efficient-rl en txt |
5.12Кб |
| 05 martin-riedmiller-on-the-collect-and-infer-framework-for-data-efficient-rl mp4 |
23.54Мб |
| 05_reinforcement-learning-textbook_instructions.html |
2.19Кб |
| 05_reinforcement-learning-textbook_RLbook2018.pdf |
85.28Мб |
| 05_rich-sutton-and-andy-barto-a-brief-history-of-rl.en.srt |
10.49Кб |
| 05_rich-sutton-and-andy-barto-a-brief-history-of-rl.en.txt |
5.40Кб |
| 05_rich-sutton-and-andy-barto-a-brief-history-of-rl.mp4 |
48.75Мб |
| 05_tile-coding.en.srt |
5.18Кб |
| 05_tile-coding.en.txt |
2.79Кб |
| 05_tile-coding.mp4 |
7.57Мб |
| 05_week-1-summary.en.srt |
5.60Кб |
| 05_week-1-summary.en.srt |
4.33Кб |
| 05_week-1-summary.en.txt |
2.68Кб |
| 05_week-1-summary.en.txt |
2.95Кб |
| 05_week-1-summary.mp4 |
9.59Мб |
| 05_week-1-summary.mp4 |
9.48Мб |
| 05_week-4-summary.en.srt |
4.48Кб |
| 05_week-4-summary.en.txt |
2.37Кб |
| 05_week-4-summary.mp4 |
9.61Мб |
| 06_andy-and-rich-advice-for-students.en.srt |
5.84Кб |
| 06_andy-and-rich-advice-for-students.en.txt |
3.52Кб |
| 06_andy-and-rich-advice-for-students.mp4 |
33.39Мб |
| 06_chapter-summary_instructions.html |
1.19Кб |
| 06_chapter-summary_instructions.html |
1.18Кб |
| 06_chapter-summary_instructions.html |
1.19Кб |
| 06_chapter-summary_RLbook2018.pdf |
85.28Мб |
| 06_chapter-summary_RLbook2018.pdf |
85.28Мб |
| 06_chapter-summary_RLbook2018.pdf |
85.28Мб |
| 06 read-me-pre-requisites-and-learning-objectives Fundamentals of Reinforcement Learning Learning Objectives pdf |
64.66Кб |
| 06_read-me-pre-requisites-and-learning-objectives_instructions.html |
2.63Кб |
| 06_text-book-part-1-summary_instructions.html |
1.21Кб |
| 06_text-book-part-1-summary_RLbook2018.pdf |
85.28Мб |
| 06_using-tile-coding-in-td.en.srt |
8.31Кб |
| 06_using-tile-coding-in-td.en.txt |
4.31Кб |
| 06_using-tile-coding-in-td.mp4 |
23.07Мб |
| 1 |
3б |
| 10 |
734.24Кб |
| 100 |
319.14Кб |
| 101 |
338.31Кб |
| 102 |
410.31Кб |
| 103 |
496.29Кб |
| 104 |
569.91Кб |
| 105 |
659.13Кб |
| 106 |
659.13Кб |
| 107 |
815.04Кб |
| 108 |
55.29Кб |
| 109 |
58.51Кб |
| 11 |
734.24Кб |
| 110 |
65.82Кб |
| 111 |
131.76Кб |
| 112 |
234.13Кб |
| 113 |
466.17Кб |
| 114 |
525.13Кб |
| 115 |
685.62Кб |
| 116 |
751.55Кб |
| 117 |
780.48Кб |
| 118 |
842.17Кб |
| 119 |
977.52Кб |
| 12 |
734.24Кб |
| 120 |
47.98Кб |
| 121 |
142.95Кб |
| 122 |
248.88Кб |
| 123 |
248.88Кб |
| 124 |
315.91Кб |
| 125 |
709.15Кб |
| 126 |
825.30Кб |
| 127 |
8.25Кб |
| 128 |
42.04Кб |
| 129 |
43.86Кб |
| 13 |
734.24Кб |
| 130 |
102.24Кб |
| 131 |
192.93Кб |
| 132 |
192.93Кб |
| 133 |
396.76Кб |
| 134 |
415.26Кб |
| 135 |
416.35Кб |
| 136 |
422.79Кб |
| 137 |
422.93Кб |
| 138 |
422.93Кб |
| 139 |
534.71Кб |
| 14 |
734.24Кб |
| 140 |
703.79Кб |
| 141 |
880.61Кб |
| 142 |
880.61Кб |
| 143 |
926.56Кб |
| 144 |
125.93Кб |
| 145 |
513.30Кб |
| 146 |
1004.89Кб |
| 147 |
122.88Кб |
| 148 |
166.56Кб |
| 149 |
166.56Кб |
| 15 |
734.24Кб |
| 150 |
177.78Кб |
| 151 |
246.55Кб |
| 152 |
315.86Кб |
| 153 |
379.72Кб |
| 154 |
379.72Кб |
| 155 |
442.92Кб |
| 156 |
602.73Кб |
| 157 |
607.42Кб |
| 158 |
633.69Кб |
| 159 |
779.60Кб |
| 16 |
734.24Кб |
| 160 |
997.81Кб |
| 161 |
363.22Кб |
| 162 |
544.45Кб |
| 163 |
752.70Кб |
| 164 |
752.70Кб |
| 165 |
152.05Кб |
| 166 |
318.59Кб |
| 167 |
592.56Кб |
| 168 |
805.56Кб |
| 169 |
847.62Кб |
| 17 |
734.24Кб |
| 170 |
658.17Кб |
| 171 |
764.29Кб |
| 18 |
734.24Кб |
| 19 |
734.24Кб |
| 2 |
275б |
| 20 |
734.24Кб |
| 21 |
734.24Кб |
| 22 |
734.24Кб |
| 23 |
734.24Кб |
| 24 |
1014.75Кб |
| 25 |
813.02Кб |
| 26 |
729.88Кб |
| 27 |
258.97Кб |
| 28 |
895.76Кб |
| 29 |
137.59Кб |
| 3 |
155.03Кб |
| 30 |
137.59Кб |
| 31 |
137.59Кб |
| 32 |
137.59Кб |
| 33 |
601.48Кб |
| 34 |
198.01Кб |
| 35 |
503.67Кб |
| 36 |
629.93Кб |
| 37 |
363.32Кб |
| 38 |
804.81Кб |
| 39 |
625.21Кб |
| 4 |
734.24Кб |
| 40 |
622.03Кб |
| 41 |
730.93Кб |
| 42 |
515.01Кб |
| 43 |
189.41Кб |
| 44 |
376.24Кб |
| 45 |
90.43Кб |
| 46 |
966.59Кб |
| 47 |
636.51Кб |
| 48 |
471.78Кб |
| 49 |
952.72Кб |
| 5 |
734.24Кб |
| 50 |
908.67Кб |
| 51 |
908.67Кб |
| 52 |
425.84Кб |
| 53 |
592.96Кб |
| 54 |
925.03Кб |
| 55 |
762.57Кб |
| 56 |
50.22Кб |
| 57 |
616.19Кб |
| 58 |
945.52Кб |
| 59 |
945.52Кб |
| 6 |
734.24Кб |
| 60 |
216.95Кб |
| 61 |
384.96Кб |
| 62 |
548.41Кб |
| 63 |
760.07Кб |
| 64 |
969.13Кб |
| 65 |
25.32Кб |
| 66 |
138.62Кб |
| 67 |
917.08Кб |
| 68 |
994.19Кб |
| 69 |
275.09Кб |
| 7 |
734.24Кб |
| 70 |
480.31Кб |
| 71 |
686.84Кб |
| 72 |
701.69Кб |
| 73 |
742.78Кб |
| 74 |
844.97Кб |
| 75 |
387.41Кб |
| 76 |
477.02Кб |
| 77 |
541.71Кб |
| 78 |
666.02Кб |
| 79 |
686.11Кб |
| 8 |
734.24Кб |
| 80 |
781.47Кб |
| 81 |
926.20Кб |
| 82 |
12.41Кб |
| 83 |
119.06Кб |
| 84 |
123.28Кб |
| 85 |
622.04Кб |
| 86 |
734.31Кб |
| 87 |
734.31Кб |
| 88 |
802.94Кб |
| 89 |
949.45Кб |
| 9 |
734.24Кб |
| 90 |
949.45Кб |
| 91 |
989.12Кб |
| 92 |
94.59Кб |
| 93 |
351.81Кб |
| 94 |
375.79Кб |
| 95 |
660.65Кб |
| 96 |
698.22Кб |
| 97 |
766.59Кб |
| 98 |
894.40Кб |
| 99 |
144.13Кб |
| TutsNode.net.txt |
63б |