Общая информация
Название Reinforcement Learning Specialization
Тип
Размер 4.61Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[TGx]Downloaded from torrentgalaxy.to .txt 585б
0 14б
01__resources.html 5.46Кб
01_actor-critic-with-softmax-policies.en.srt 5.99Кб
01_actor-critic-with-softmax-policies.en.txt 3.71Кб
01_actor-critic-with-softmax-policies.mp4 16.53Мб
01_agent-architecture-meeting-with-martha-overview-of-design-choices.en.srt 10.80Кб
01_agent-architecture-meeting-with-martha-overview-of-design-choices.en.txt 5.78Кб
01_agent-architecture-meeting-with-martha-overview-of-design-choices.mp4 15.62Мб
01_average-reward-a-new-way-of-formulating-control-problems.en.srt 15.17Кб
01_average-reward-a-new-way-of-formulating-control-problems.en.txt 9.43Кб
01_average-reward-a-new-way-of-formulating-control-problems.mp4 19.08Мб
01_bellman-equation-derivation.en.srt 9.64Кб
01_bellman-equation-derivation.en.txt 5.14Кб
01_bellman-equation-derivation.mp4 17.03Мб
01_congratulations.en.srt 6.34Кб
01_congratulations.en.srt 3.34Кб
01_congratulations.en.txt 3.39Кб
01_congratulations.en.txt 2.09Кб
01_congratulations.mp4 11.18Мб
01_congratulations.mp4 4.36Мб
01_congratulations-course-4-preview.en.srt 4.22Кб
01_congratulations-course-4-preview.en.txt 2.27Кб
01_congratulations-course-4-preview.mp4 22.11Мб
01_continuing-tasks.en.srt 7.64Кб
01_continuing-tasks.en.txt 3.99Кб
01_continuing-tasks.mp4 12.67Мб
01_course-3-introduction.en.srt 8.91Кб
01_course-3-introduction.en.txt 4.67Кб
01_course-3-introduction.mp4 16.33Мб
01_course-4-introduction.en.srt 4.24Кб
01_course-4-introduction.en.txt 2.29Кб
01_course-4-introduction.mp4 22.11Мб
01_course-introduction.en.srt 4.00Кб
01_course-introduction.en.txt 2.12Кб
01_course-introduction.mp4 11.27Мб
01_dynamic-programming_quiz.html 157.49Кб
01_epsilon-soft-policies.en.srt 7.55Кб
01_epsilon-soft-policies.en.txt 4.77Кб
01_epsilon-soft-policies.mp4 12.69Мб
01_estimating-the-policy-gradient.en.srt 7.48Кб
01_estimating-the-policy-gradient.en.txt 4.63Кб
01_estimating-the-policy-gradient.mp4 13.63Мб
01_expected-sarsa.en.srt 4.52Кб
01_expected-sarsa.en.txt 2.80Кб
01_expected-sarsa.mp4 6.26Мб
01_exploration-under-function-approximation.en.srt 6.53Кб
01_exploration-under-function-approximation.en.txt 3.48Кб
01_exploration-under-function-approximation.mp4 11.05Мб
01_flexibility-of-the-policy-iteration-framework.en.srt 7.08Кб
01_flexibility-of-the-policy-iteration-framework.en.txt 3.80Кб
01_flexibility-of-the-policy-iteration-framework.mp4 12.44Мб
01_gradient-descent-for-training-neural-networks.en.srt 13.98Кб
01_gradient-descent-for-training-neural-networks.en.txt 7.45Кб
01_gradient-descent-for-training-neural-networks.mp4 15.53Мб
01_initial-project-meeting-with-martha-formalizing-the-problem.en.srt 6.76Кб
01_initial-project-meeting-with-martha-formalizing-the-problem.en.txt 4.22Кб
01_initial-project-meeting-with-martha-formalizing-the-problem.mp4 13.25Мб
01_learning-action-values.en.srt 6.98Кб
01_learning-action-values.en.txt 3.80Кб
01_learning-action-values.mp4 14.22Мб
01_lets-review-comparing-td-and-monte-carlo.en.srt 8.10Кб
01_lets-review-comparing-td-and-monte-carlo.en.txt 4.28Кб
01_lets-review-comparing-td-and-monte-carlo.mp4 9.81Мб
01_lets-review-expected-sarsa.en.srt 4.52Кб
01_lets-review-expected-sarsa.en.txt 2.80Кб
01_lets-review-expected-sarsa.mp4 6.26Мб
01_lets-review-markov-decision-processes.en.srt 9.62Кб
01_lets-review-markov-decision-processes.en.txt 5.18Кб
01_lets-review-markov-decision-processes.mp4 12.36Мб
01_lets-review-non-linear-approximation-with-neural-networks.en.srt 6.10Кб
01_lets-review-non-linear-approximation-with-neural-networks.en.txt 3.85Кб
01_lets-review-non-linear-approximation-with-neural-networks.mp4 9.59Мб
01_lets-review-optimization-strategies-for-nns.en.srt 8.41Кб
01_lets-review-optimization-strategies-for-nns.en.txt 4.52Кб
01_lets-review-optimization-strategies-for-nns.mp4 14.28Мб
01_mdps_quiz.html 11.79Кб
01_meeting-with-adam-getting-the-agent-details-right.en.srt 7.09Кб
01_meeting-with-adam-getting-the-agent-details-right.en.txt 4.41Кб
01_meeting-with-adam-getting-the-agent-details-right.mp4 12.60Мб
01_meeting-with-adam-parameter-studies-in-rl.en.srt 8.08Кб
01_meeting-with-adam-parameter-studies-in-rl.en.txt 5.07Кб
01_meeting-with-adam-parameter-studies-in-rl.mp4 11.49Мб
01_meeting-with-martha-discussing-your-results.en.srt 3.90Кб
01_meeting-with-martha-discussing-your-results.en.txt 2.42Кб
01_meeting-with-martha-discussing-your-results.mp4 10.95Мб
01_meeting-with-niko-choosing-the-learning-algorithm.en.srt 4.56Кб
01_meeting-with-niko-choosing-the-learning-algorithm.en.txt 2.84Кб
01_meeting-with-niko-choosing-the-learning-algorithm.mp4 7.88Мб
01_module-1-learning-objectives_instructions.html 2.80Кб
01_module-1-learning-objectives_instructions.html 3.97Кб
01_module-1-learning-objectives_instructions.html 3.02Кб
01_module-2-learning-objectives_instructions.html 2.39Кб
01_module-2-learning-objectives_instructions.html 3.09Кб
01_module-2-learning-objectives_instructions.html 1.73Кб
01_module-3-learning-objectives_instructions.html 3.20Кб
01_module-3-learning-objectives_instructions.html 2.21Кб
01_module-3-learning-objectives_instructions.html 2.84Кб
01_module-4-learning-objectives_instructions.html 3.00Кб
01_module-4-learning-objectives_instructions.html 3.53Кб
01_module-4-learning-objectives_instructions.html 2.87Кб
01_optimal-policies.en.srt 12.16Кб
01_optimal-policies.en.txt 6.42Кб
01_optimal-policies.mp4 18.46Мб
01_policy-improvement.en.srt 6.52Кб
01_policy-improvement.en.txt 3.51Кб
01_policy-improvement.mp4 9.99Мб
01_practice-value-functions-and-bellman-equations_quiz.html 7.98Кб
01_random-tabular-q-planning.en.srt 5.38Кб
01_random-tabular-q-planning.en.txt 2.93Кб
01_random-tabular-q-planning.mp4 7.83Мб
01_semi-gradient-td-for-policy-evaluation.en.srt 4.57Кб
01_semi-gradient-td-for-policy-evaluation.en.txt 2.86Кб
01_semi-gradient-td-for-policy-evaluation.mp4 15.35Мб
01_sequential-decision-making_quiz.html 210.30Кб
01_specialization-introduction.en.srt 4.92Кб
01_specialization-introduction.en.txt 2.63Кб
01_specialization-introduction.mp4 18.26Мб
01_the-advantages-of-temporal-difference-learning.en.srt 8.16Кб
01_the-advantages-of-temporal-difference-learning.en.txt 4.30Кб
01_the-advantages-of-temporal-difference-learning.mp4 9.10Мб
01_the-dyna-architecture.en.srt 6.93Кб
01_the-dyna-architecture.en.txt 4.28Кб
01_the-dyna-architecture.mp4 9.59Мб
01_the-goal-of-reinforcement-learning.en.srt 4.90Кб
01_the-goal-of-reinforcement-learning.en.txt 2.62Кб
01_the-goal-of-reinforcement-learning.mp4 8.02Мб
01_the-linear-td-update.en.srt 6.28Кб
01_the-linear-td-update.en.txt 3.30Кб
01_the-linear-td-update.mp4 9.90Мб
01_the-objective-for-learning-policies.en.srt 8.91Кб
01_the-objective-for-learning-policies.en.txt 4.75Кб
01_the-objective-for-learning-policies.mp4 13.35Мб
01_the-value-error-objective.en.srt 6.24Кб
01_the-value-error-objective.en.txt 3.43Кб
01_the-value-error-objective.mp4 10.86Мб
01_using-monte-carlo-for-action-values.en.srt 4.73Кб
01_using-monte-carlo-for-action-values.en.txt 2.51Кб
01_using-monte-carlo-for-action-values.mp4 6.47Мб
01_what-if-the-model-is-inaccurate.en.srt 7.00Кб
01_what-if-the-model-is-inaccurate.en.txt 3.76Кб
01_what-if-the-model-is-inaccurate.mp4 7.69Мб
01_what-is-a-neural-network.en.srt 5.50Кб
01_what-is-a-neural-network.en.txt 2.96Кб
01_what-is-a-neural-network.mp4 7.03Мб
01_what-is-q-learning.en.srt 4.95Кб
01_what-is-q-learning.en.txt 2.60Кб
01_what-is-q-learning.mp4 7.84Мб
01_what-is-the-trade-off.en.srt 12.17Кб
01_what-is-the-trade-off.en.txt 6.57Кб
01_what-is-the-trade-off.mp4 21.58Мб
01_why-does-off-policy-learning-matter.en.srt 5.93Кб
01_why-does-off-policy-learning-matter.en.txt 3.82Кб
01_why-does-off-policy-learning-matter.mp4 14.39Мб
02_actor-critic-algorithm.en.srt 9.18Кб
02_actor-critic-algorithm.en.txt 4.91Кб
02_actor-critic-algorithm.mp4 14.07Мб
02 andy-barto-on-what-are-eligibility-traces-and-why-are-they-so-named en srt 12.50Кб
02 andy-barto-on-what-are-eligibility-traces-and-why-are-they-so-named en txt 6.62Кб
02_andy-barto-on-what-are-eligibility-traces-and-why-are-they-so-named.mp4 38.51Мб
02_bandits-and-exploration-exploitation_instructions.html 1.13Кб
02_comparing-td-and-monte-carlo.en.srt 8.10Кб
02_comparing-td-and-monte-carlo.en.txt 4.28Кб
02_comparing-td-and-monte-carlo.mp4 9.81Мб
02_comparing-td-and-monte-carlo-with-state-aggregation.en.srt 6.85Кб
02_comparing-td-and-monte-carlo-with-state-aggregation.en.txt 3.61Кб
02_comparing-td-and-monte-carlo-with-state-aggregation.mp4 11.54Мб
02_course-introduction.en.srt 10.43Кб
02_course-introduction.en.txt 5.62Кб
02_course-introduction.mp4 32.39Мб
02_course-wrap-up.en.srt 2.95Кб
02_course-wrap-up.en.txt 1.83Кб
02_course-wrap-up.mp4 7.76Мб
02_demonstration-with-actor-critic.en.srt 10.86Кб
02_demonstration-with-actor-critic.en.txt 5.87Кб
02_demonstration-with-actor-critic.mp4 28.82Мб
02_drew-bagnell-on-system-id-optimal-control.en.srt 10.52Кб
02_drew-bagnell-on-system-id-optimal-control.en.txt 6.76Кб
02_drew-bagnell-on-system-id-optimal-control.mp4 31.29Мб
02_efficiency-of-dynamic-programming.en.srt 7.72Кб
02_efficiency-of-dynamic-programming.en.txt 4.84Кб
02_efficiency-of-dynamic-programming.mp4 14.03Мб
02_estimating-action-values-incrementally.en.srt 8.05Кб
02_estimating-action-values-incrementally.en.txt 4.30Кб
02_estimating-action-values-incrementally.mp4 19.40Мб
02_examples-of-episodic-and-continuing-tasks.en.srt 4.66Кб
02_examples-of-episodic-and-continuing-tasks.en.txt 2.52Кб
02_examples-of-episodic-and-continuing-tasks.mp4 9.14Мб
02_expected-sarsa-in-the-cliff-world.en.srt 3.73Кб
02_expected-sarsa-in-the-cliff-world.en.txt 2.31Кб
02_expected-sarsa-in-the-cliff-world.mp4 5.69Мб
02_graded-assignment-describe-three-mdps_peer_assignment_instructions.html 2.33Кб
02_graded-value-functions-and-bellman-equations_exam.html 31.06Кб
02_importance-sampling.en.srt 6.58Кб
02_importance-sampling.en.txt 3.47Кб
02_importance-sampling.mp4 7.41Мб
02_in-depth-with-changing-environments.en.srt 9.22Кб
02_in-depth-with-changing-environments.en.txt 4.92Кб
02_in-depth-with-changing-environments.mp4 11.94Мб
02_introducing-gradient-descent.en.srt 9.91Кб
02_introducing-gradient-descent.en.txt 6.15Кб
02_introducing-gradient-descent.mp4 15.10Мб
02_joelle-pineau-about-rl-that-matters.en.srt 13.67Кб
02_joelle-pineau-about-rl-that-matters.en.txt 8.75Кб
02_joelle-pineau-about-rl-that-matters.mp4 29.50Мб
02_lets-review-examples-of-episodic-and-continuing-tasks.en.srt 4.66Кб
02_lets-review-examples-of-episodic-and-continuing-tasks.en.txt 2.52Кб
02_lets-review-examples-of-episodic-and-continuing-tasks.mp4 9.14Мб
02_lets-review-expected-sarsa-with-function-approximation.en.srt 3.93Кб
02_lets-review-expected-sarsa-with-function-approximation.en.txt 2.08Кб
02_lets-review-expected-sarsa-with-function-approximation.mp4 7.63Мб
02_lets-review-what-is-q-learning.en.srt 4.95Кб
02_lets-review-what-is-q-learning.en.txt 2.60Кб
02_lets-review-what-is-q-learning.mp4 7.84Мб
02_meet-your-instructors.en.srt 13.43Кб
02_meet-your-instructors.en.srt 13.43Кб
02_meet-your-instructors.en.srt 13.43Кб
02_meet-your-instructors.en.txt 8.62Кб
02_meet-your-instructors.en.txt 8.62Кб
02_meet-your-instructors.en.txt 8.62Кб
02_meet-your-instructors.mp4 43.87Мб
02_meet-your-instructors.mp4 43.87Мб
02_meet-your-instructors.mp4 43.87Мб
02_michael-littman-the-reward-hypothesis.en.srt 18.48Кб
02_michael-littman-the-reward-hypothesis.en.txt 11.58Кб
02_michael-littman-the-reward-hypothesis.mp4 84.01Мб
02_non-linear-approximation-with-neural-networks.en.srt 6.10Кб
02_non-linear-approximation-with-neural-networks.en.txt 3.85Кб
02_non-linear-approximation-with-neural-networks.mp4 9.59Мб
02_optimal-policies-with-dynamic-programming_instructions.html 1.13Кб
02_optimal-value-functions.en.srt 8.34Кб
02_optimal-value-functions.en.txt 4.51Кб
02_optimal-value-functions.mp4 10.19Мб
02_optimistic-initial-values.en.srt 8.50Кб
02_optimistic-initial-values.en.txt 5.36Кб
02_optimistic-initial-values.mp4 13.13Мб
02_optimization-strategies-for-nns.en.srt 8.41Кб
02_optimization-strategies-for-nns.en.txt 4.52Кб
02_optimization-strategies-for-nns.mp4 14.28Мб
02_policy-iteration.en.srt 13.33Кб
02_policy-iteration.en.txt 7.12Кб
02_policy-iteration.mp4 17.86Мб
02_q-learning-in-the-windy-grid-world.en.srt 5.78Кб
02_q-learning-in-the-windy-grid-world.en.txt 3.03Кб
02_q-learning-in-the-windy-grid-world.mp4 7.24Мб
02_satinder-singh-on-intrinsic-rewards.en.srt 20.96Кб
02_satinder-singh-on-intrinsic-rewards.en.txt 10.98Кб
02_satinder-singh-on-intrinsic-rewards.mp4 26.91Мб
02_the-dyna-algorithm.en.srt 7.81Кб
02_the-dyna-algorithm.en.txt 4.16Кб
02_the-dyna-algorithm.mp4 11.24Мб
02_the-policy-gradient-theorem.en.srt 9.28Кб
02_the-policy-gradient-theorem.en.txt 4.91Кб
02_the-policy-gradient-theorem.mp4 9.31Мб
02_the-true-objective-for-td.en.srt 8.23Кб
02_the-true-objective-for-td.en.txt 4.31Кб
02_the-true-objective-for-td.mp4 13.66Мб
02_using-monte-carlo-methods-for-generalized-policy-iteration.en.srt 4.02Кб
02_using-monte-carlo-methods-for-generalized-policy-iteration.en.txt 2.11Кб
02_using-monte-carlo-methods-for-generalized-policy-iteration.mp4 5.17Мб
02_weekly-reading_instructions.html 1.16Кб
02_weekly-reading_instructions.html 1.17Кб
02_weekly-reading_instructions.html 1.16Кб
02_weekly-reading_instructions.html 1.17Кб
02_weekly-reading_instructions.html 1.19Кб
02_weekly-reading_instructions.html 1.17Кб
02_weekly-reading_instructions.html 1.17Кб
02_weekly-reading_instructions.html 1.16Кб
02_weekly-reading_RLbook2018.pdf 85.28Мб
02_weekly-reading_RLbook2018.pdf 85.28Мб
02_weekly-reading_RLbook2018.pdf 85.28Мб
02_weekly-reading_RLbook2018.pdf 85.28Мб
02_weekly-reading_RLbook2018.pdf 85.28Мб
02_weekly-reading_RLbook2018.pdf 85.28Мб
02_weekly-reading_RLbook2018.pdf 85.28Мб
02_weekly-reading_RLbook2018.pdf 85.28Мб
02_weekly-reading-on-policy-control-with-approximation_instructions.html 1.27Кб
02_weekly-reading-on-policy-control-with-approximation_RLbook2018.pdf 85.28Мб
02_weekly-reading-on-policy-prediction-with-approximation_instructions.html 1.17Кб
02_weekly-reading-on-policy-prediction-with-approximation_RLbook2018.pdf 85.28Мб
02 weekly-reading-on-policy-prediction-with-approximation-ii instructions html 1.24Кб
02_weekly-reading-on-policy-prediction-with-approximation-ii_RLbook2018.pdf 85.28Мб
02_weekly-reading-policy-gradient-methods_instructions.html 1.17Кб
02_weekly-reading-policy-gradient-methods_RLbook2018.pdf 85.28Мб
02_why-bellman-equations.en.srt 6.99Кб
02_why-bellman-equations.en.txt 4.41Кб
02_why-bellman-equations.mp4 11.87Мб
03_andy-barto-and-rich-sutton-more-on-the-history-of-rl.en.srt 15.92Кб
03_andy-barto-and-rich-sutton-more-on-the-history-of-rl.en.txt 8.07Кб
03_andy-barto-and-rich-sutton-more-on-the-history-of-rl.mp4 80.21Мб
03_coarse-coding.en.srt 4.86Кб
03_coarse-coding.en.txt 3.01Кб
03_coarse-coding.mp4 9.59Мб
03_david-silver-on-deep-learning-rl-ai.en.srt 14.71Кб
03_david-silver-on-deep-learning-rl-ai.en.txt 9.52Кб
03_david-silver-on-deep-learning-rl-ai.mp4 41.41Мб
03_deep-neural-networks.en.srt 5.88Кб
03_deep-neural-networks.en.txt 3.17Кб
03_deep-neural-networks.mp4 15.33Мб
03 doina-precup-building-knowledge-for-ai-agents-with-reinforcement-learning en srt 11.34Кб
03 doina-precup-building-knowledge-for-ai-agents-with-reinforcement-learning en txt 6.08Кб
03 doina-precup-building-knowledge-for-ai-agents-with-reinforcement-learning mp4 55.29Мб
03_drew-bagnell-self-driving-robotics-and-model-based-rl.en.srt 10.32Кб
03_drew-bagnell-self-driving-robotics-and-model-based-rl.en.txt 6.66Кб
03_drew-bagnell-self-driving-robotics-and-model-based-rl.mp4 35.21Мб
03_dyna-q-learning-in-a-simple-maze.en.srt 6.90Кб
03_dyna-q-learning-in-a-simple-maze.en.txt 4.19Кб
03_dyna-q-learning-in-a-simple-maze.mp4 10.76Мб
03_episodic-sarsa-with-function-approximation.en.srt 6.23Кб
03_episodic-sarsa-with-function-approximation.en.txt 3.85Кб
03_episodic-sarsa-with-function-approximation.mp4 18.05Мб
03_gaussian-policies-for-continuous-actions.en.srt 12.82Кб
03_gaussian-policies-for-continuous-actions.en.txt 6.94Кб
03_gaussian-policies-for-continuous-actions.mp4 19.95Мб
03_generality-of-expected-sarsa.en.srt 2.88Кб
03_generality-of-expected-sarsa.en.txt 1.52Кб
03_generality-of-expected-sarsa.mp4 5.21Мб
03_gradient-monte-for-policy-evaluation.en.srt 9.31Кб
03_gradient-monte-for-policy-evaluation.en.txt 4.90Кб
03_gradient-monte-for-policy-evaluation.mp4 15.24Мб
03_how-is-q-learning-off-policy.en.srt 7.23Кб
03_how-is-q-learning-off-policy.en.txt 3.99Кб
03_how-is-q-learning-off-policy.mp4 9.96Мб
03_learning-policies-directly.en.srt 10.17Кб
03_learning-policies-directly.en.txt 5.42Кб
03_learning-policies-directly.mp4 17.10Мб
03 lets-review-average-reward-a-new-way-of-formulating-control-problems en srt 15.17Кб
03 lets-review-average-reward-a-new-way-of-formulating-control-problems en txt 9.43Кб
03_lets-review-average-reward-a-new-way-of-formulating-control-problems.mp4 19.08Мб
03_lets-review-dyna-q-learning-in-a-simple-maze.en.srt 6.90Кб
03_lets-review-dyna-q-learning-in-a-simple-maze.en.txt 4.19Кб
03_lets-review-dyna-q-learning-in-a-simple-maze.mp4 10.76Мб
03_markov-decision-processes.en.srt 9.62Кб
03_markov-decision-processes.en.txt 5.18Кб
03_markov-decision-processes.mp4 12.36Мб
03_meet-your-instructors.en.srt 15.89Кб
03_meet-your-instructors.en.txt 8.41Кб
03_meet-your-instructors.mp4 43.87Мб
03_moving-to-parameterized-functions.en.srt 10.44Кб
03_moving-to-parameterized-functions.en.txt 5.59Кб
03_moving-to-parameterized-functions.mp4 24.38Мб
03_off-policy-monte-carlo-prediction.en.srt 7.80Кб
03_off-policy-monte-carlo-prediction.en.txt 4.15Кб
03_off-policy-monte-carlo-prediction.mp4 12.52Мб
03_policy-evaluation-vs-control.en.srt 6.66Кб
03_policy-evaluation-vs-control.en.txt 4.18Кб
03_policy-evaluation-vs-control.mp4 13.32Мб
03_read-me-pre-requisites-and-learning-objectives_instructions.html 3.19Кб
03 read-me-pre-requisites-and-learning-objectives Prediction and Control with Function Approximation Learning Objectives pdf 59.93Кб
03_reinforcement-learning-textbook_instructions.html 2.19Кб
03_reinforcement-learning-textbook_instructions.html 2.19Кб
03_reinforcement-learning-textbook_RLbook2018.pdf 85.28Мб
03_reinforcement-learning-textbook_RLbook2018.pdf 85.28Мб
03_sarsa-gpi-with-td.en.srt 6.11Кб
03_sarsa-gpi-with-td.en.txt 3.23Кб
03_sarsa-gpi-with-td.mp4 7.38Мб
03_sequential-decision-making-with-evaluative-feedback.en.srt 8.71Кб
03_sequential-decision-making-with-evaluative-feedback.en.txt 4.65Кб
03_sequential-decision-making-with-evaluative-feedback.mp4 16.27Мб
03_solving-the-blackjack-example.en.srt 6.49Кб
03_solving-the-blackjack-example.en.txt 3.42Кб
03_solving-the-blackjack-example.mp4 13.91Мб
03_specialization-wrap-up.en.srt 5.41Кб
03_specialization-wrap-up.en.txt 3.39Кб
03_specialization-wrap-up.mp4 18.62Мб
03_specifying-policies.en.srt 7.52Кб
03_specifying-policies.en.txt 4.01Кб
03_specifying-policies.mp4 14.99Мб
03_susan-murphy-on-rl-in-mobile-health.en.srt 10.39Кб
03_susan-murphy-on-rl-in-mobile-health.en.txt 6.32Кб
03_susan-murphy-on-rl-in-mobile-health.mp4 27.63Мб
03_upper-confidence-bound-ucb-action-selection.en.srt 7.54Кб
03_upper-confidence-bound-ucb-action-selection.en.txt 4.03Кб
03_upper-confidence-bound-ucb-action-selection.mp4 11.77Мб
03_using-optimal-value-functions-to-get-optimal-policies.en.srt 10.83Кб
03_using-optimal-value-functions-to-get-optimal-policies.en.txt 6.69Кб
03_using-optimal-value-functions-to-get-optimal-policies.mp4 16.73Мб
03 warren-powell-approximate-dynamic-programming-for-fleet-management-short en srt 12.06Кб
03 warren-powell-approximate-dynamic-programming-for-fleet-management-short en txt 7.52Кб
03 warren-powell-approximate-dynamic-programming-for-fleet-management-short mp4 47.13Мб
03_week-1-summary.en.srt 6.69Кб
03_week-1-summary.en.txt 3.58Кб
03_week-1-summary.mp4 16.31Мб
03_week-2-summary.en.srt 2.77Кб
03_week-2-summary.en.txt 1.46Кб
03_week-2-summary.mp4 5.42Мб
03_week-3-review.en.srt 4.65Кб
03_week-3-review.en.txt 2.47Кб
03_week-3-review.mp4 8.88Мб
03_what-is-a-model.en.srt 7.53Кб
03_what-is-a-model.en.txt 3.98Кб
03_what-is-a-model.mp4 11.33Мб
03_what-is-monte-carlo.en.srt 10.50Кб
03_what-is-monte-carlo.en.txt 5.65Кб
03_what-is-monte-carlo.mp4 14.88Мб
03_what-is-temporal-difference-td-learning.en.srt 7.77Кб
03_what-is-temporal-difference-td-learning.en.txt 4.11Кб
03_what-is-temporal-difference-td-learning.mp4 10.31Мб
04_advantages-of-policy-parameterization.en.srt 7.66Кб
04_advantages-of-policy-parameterization.en.txt 4.72Кб
04_advantages-of-policy-parameterization.mp4 26.06Мб
04_comparing-sample-and-distribution-models.en.srt 3.87Кб
04_comparing-sample-and-distribution-models.en.txt 2.09Кб
04_comparing-sample-and-distribution-models.mp4 6.65Мб
04_emma-brunskill-batch-reinforcement-learning.en.srt 24.91Кб
04_emma-brunskill-batch-reinforcement-learning.en.txt 13.16Кб
04_emma-brunskill-batch-reinforcement-learning.mp4 37.38Мб
04_episodic-sarsa-in-mountain-car.en.srt 8.68Кб
04_episodic-sarsa-in-mountain-car.en.txt 4.65Кб
04_episodic-sarsa-in-mountain-car.mp4 15.47Мб
04_examples-of-mdps.en.srt 6.85Кб
04_examples-of-mdps.en.txt 3.70Кб
04_examples-of-mdps.mp4 12.20Мб
04_generalization-and-discrimination.en.srt 8.69Кб
04_generalization-and-discrimination.en.txt 4.63Кб
04_generalization-and-discrimination.mp4 12.86Мб
04_generalization-properties-of-coarse-coding.en.srt 9.38Кб
04_generalization-properties-of-coarse-coding.en.txt 5.04Кб
04_generalization-properties-of-coarse-coding.mp4 17.98Мб
04_iterative-policy-evaluation.en.srt 13.68Кб
04_iterative-policy-evaluation.en.txt 7.15Кб
04_iterative-policy-evaluation.mp4 18.79Мб
04 jonathan-langford-contextual-bandits-for-real-world-reinforcement-learning en srt 14.04Кб
04 jonathan-langford-contextual-bandits-for-real-world-reinforcement-learning en txt 7.34Кб
04 jonathan-langford-contextual-bandits-for-real-world-reinforcement-learning mp4 11.94Мб
04_lets-review-actor-critic-algorithm.en.srt 9.18Кб
04_lets-review-actor-critic-algorithm.en.txt 4.91Кб
04_lets-review-actor-critic-algorithm.mp4 14.07Мб
04_meeting-with-martha-in-depth-on-experience-replay.en.srt 7.36Кб
04_meeting-with-martha-in-depth-on-experience-replay.en.txt 4.65Кб
04_meeting-with-martha-in-depth-on-experience-replay.mp4 21.42Мб
04 pre-requisites-and-learning-objectives A Complete Reinforcement Learning System Capstone Learning Objectives pdf 56.79Кб
04_pre-requisites-and-learning-objectives_instructions.html 3.59Кб
04 read-me-pre-requisites-and-learning-objectives Course 2 Sample Based Learning Methods Learning Objectives pdf 83.14Кб
04_read-me-pre-requisites-and-learning-objectives_instructions.html 2.96Кб
04_reinforcement-learning-textbook_instructions.html 2.19Кб
04_reinforcement-learning-textbook_RLbook2018.pdf 85.28Мб
04_rich-sutton-the-importance-of-td-learning.en.srt 11.24Кб
04_rich-sutton-the-importance-of-td-learning.en.txt 5.88Кб
04_rich-sutton-the-importance-of-td-learning.mp4 35.65Мб
04_sarsa-in-the-windy-grid-world.en.srt 3.89Кб
04_sarsa-in-the-windy-grid-world.en.txt 2.37Кб
04_sarsa-in-the-windy-grid-world.mp4 5.85Мб
04_state-aggregation-with-monte-carlo.en.srt 10.23Кб
04_state-aggregation-with-monte-carlo.en.txt 6.24Кб
04_state-aggregation-with-monte-carlo.mp4 20.26Мб
04_using-monte-carlo-for-prediction.en.srt 10.60Кб
04_using-monte-carlo-for-prediction.en.txt 5.61Кб
04_using-monte-carlo-for-prediction.mp4 16.17Мб
04_value-functions.en.srt 10.34Кб
04_value-functions.en.txt 5.53Кб
04_value-functions.mp4 21.10Мб
04 warren-powell-approximate-dynamic-programming-for-fleet-management-long en srt 40.71Кб
04 warren-powell-approximate-dynamic-programming-for-fleet-management-long en txt 21.34Кб
04 warren-powell-approximate-dynamic-programming-for-fleet-management-long mp4 145.35Мб
04_week-2-review.en.srt 4.07Кб
04_week-2-review.en.txt 2.16Кб
04_week-2-review.mp4 8.50Мб
04_week-2-summary.en.srt 3.13Кб
04_week-2-summary.en.txt 1.68Кб
04_week-2-summary.mp4 7.41Мб
04_week-3-summary.en.srt 6.38Кб
04_week-3-summary.en.srt 2.65Кб
04_week-3-summary.en.txt 3.37Кб
04_week-3-summary.en.txt 1.60Кб
04_week-3-summary.mp4 11.95Мб
04_week-3-summary.mp4 3.68Мб
04_week-4-summary.en.srt 7.00Кб
04_week-4-summary.en.srt 2.58Кб
04_week-4-summary.en.txt 3.65Кб
04_week-4-summary.en.txt 1.36Кб
04_week-4-summary.mp4 9.96Мб
04_week-4-summary.mp4 4.25Мб
04_your-specialization-roadmap.en.srt 6.64Кб
04_your-specialization-roadmap.en.txt 3.46Кб
04_your-specialization-roadmap.mp4 14.88Мб
05_chapter-summary_instructions.html 1.14Кб
05_chapter-summary_instructions.html 1.23Кб
05_chapter-summary_instructions.html 1.17Кб
05_chapter-summary_RLbook2018.pdf 85.28Мб
05_chapter-summary_RLbook2018.pdf 85.28Мб
05_chapter-summary_RLbook2018.pdf 85.28Мб
05_csaba-szepesvari-on-problem-landscape.en.srt 9.57Кб
05_csaba-szepesvari-on-problem-landscape.en.txt 6.06Кб
05_csaba-szepesvari-on-problem-landscape.mp4 38.81Мб
05_expected-sarsa-with-function-approximation.en.srt 3.93Кб
05_expected-sarsa-with-function-approximation.en.txt 2.08Кб
05_expected-sarsa-with-function-approximation.mp4 7.63Мб
05_framing-value-estimation-as-supervised-learning.en.srt 6.26Кб
05_framing-value-estimation-as-supervised-learning.en.txt 3.35Кб
05_framing-value-estimation-as-supervised-learning.mp4 10.69Мб
05 martin-riedmiller-on-the-collect-and-infer-framework-for-data-efficient-rl en srt 8.17Кб
05 martin-riedmiller-on-the-collect-and-infer-framework-for-data-efficient-rl en txt 5.12Кб
05 martin-riedmiller-on-the-collect-and-infer-framework-for-data-efficient-rl mp4 23.54Мб
05_reinforcement-learning-textbook_instructions.html 2.19Кб
05_reinforcement-learning-textbook_RLbook2018.pdf 85.28Мб
05_rich-sutton-and-andy-barto-a-brief-history-of-rl.en.srt 10.49Кб
05_rich-sutton-and-andy-barto-a-brief-history-of-rl.en.txt 5.40Кб
05_rich-sutton-and-andy-barto-a-brief-history-of-rl.mp4 48.75Мб
05_tile-coding.en.srt 5.18Кб
05_tile-coding.en.txt 2.79Кб
05_tile-coding.mp4 7.57Мб
05_week-1-summary.en.srt 5.60Кб
05_week-1-summary.en.srt 4.33Кб
05_week-1-summary.en.txt 2.68Кб
05_week-1-summary.en.txt 2.95Кб
05_week-1-summary.mp4 9.59Мб
05_week-1-summary.mp4 9.48Мб
05_week-4-summary.en.srt 4.48Кб
05_week-4-summary.en.txt 2.37Кб
05_week-4-summary.mp4 9.61Мб
06_andy-and-rich-advice-for-students.en.srt 5.84Кб
06_andy-and-rich-advice-for-students.en.txt 3.52Кб
06_andy-and-rich-advice-for-students.mp4 33.39Мб
06_chapter-summary_instructions.html 1.19Кб
06_chapter-summary_instructions.html 1.18Кб
06_chapter-summary_instructions.html 1.19Кб
06_chapter-summary_RLbook2018.pdf 85.28Мб
06_chapter-summary_RLbook2018.pdf 85.28Мб
06_chapter-summary_RLbook2018.pdf 85.28Мб
06 read-me-pre-requisites-and-learning-objectives Fundamentals of Reinforcement Learning Learning Objectives pdf 64.66Кб
06_read-me-pre-requisites-and-learning-objectives_instructions.html 2.63Кб
06_text-book-part-1-summary_instructions.html 1.21Кб
06_text-book-part-1-summary_RLbook2018.pdf 85.28Мб
06_using-tile-coding-in-td.en.srt 8.31Кб
06_using-tile-coding-in-td.en.txt 4.31Кб
06_using-tile-coding-in-td.mp4 23.07Мб
1
10 734.24Кб
100 319.14Кб
101 338.31Кб
102 410.31Кб
103 496.29Кб
104 569.91Кб
105 659.13Кб
106 659.13Кб
107 815.04Кб
108 55.29Кб
109 58.51Кб
11 734.24Кб
110 65.82Кб
111 131.76Кб
112 234.13Кб
113 466.17Кб
114 525.13Кб
115 685.62Кб
116 751.55Кб
117 780.48Кб
118 842.17Кб
119 977.52Кб
12 734.24Кб
120 47.98Кб
121 142.95Кб
122 248.88Кб
123 248.88Кб
124 315.91Кб
125 709.15Кб
126 825.30Кб
127 8.25Кб
128 42.04Кб
129 43.86Кб
13 734.24Кб
130 102.24Кб
131 192.93Кб
132 192.93Кб
133 396.76Кб
134 415.26Кб
135 416.35Кб
136 422.79Кб
137 422.93Кб
138 422.93Кб
139 534.71Кб
14 734.24Кб
140 703.79Кб
141 880.61Кб
142 880.61Кб
143 926.56Кб
144 125.93Кб
145 513.30Кб
146 1004.89Кб
147 122.88Кб
148 166.56Кб
149 166.56Кб
15 734.24Кб
150 177.78Кб
151 246.55Кб
152 315.86Кб
153 379.72Кб
154 379.72Кб
155 442.92Кб
156 602.73Кб
157 607.42Кб
158 633.69Кб
159 779.60Кб
16 734.24Кб
160 997.81Кб
161 363.22Кб
162 544.45Кб
163 752.70Кб
164 752.70Кб
165 152.05Кб
166 318.59Кб
167 592.56Кб
168 805.56Кб
169 847.62Кб
17 734.24Кб
170 658.17Кб
171 764.29Кб
18 734.24Кб
19 734.24Кб
2 275б
20 734.24Кб
21 734.24Кб
22 734.24Кб
23 734.24Кб
24 1014.75Кб
25 813.02Кб
26 729.88Кб
27 258.97Кб
28 895.76Кб
29 137.59Кб
3 155.03Кб
30 137.59Кб
31 137.59Кб
32 137.59Кб
33 601.48Кб
34 198.01Кб
35 503.67Кб
36 629.93Кб
37 363.32Кб
38 804.81Кб
39 625.21Кб
4 734.24Кб
40 622.03Кб
41 730.93Кб
42 515.01Кб
43 189.41Кб
44 376.24Кб
45 90.43Кб
46 966.59Кб
47 636.51Кб
48 471.78Кб
49 952.72Кб
5 734.24Кб
50 908.67Кб
51 908.67Кб
52 425.84Кб
53 592.96Кб
54 925.03Кб
55 762.57Кб
56 50.22Кб
57 616.19Кб
58 945.52Кб
59 945.52Кб
6 734.24Кб
60 216.95Кб
61 384.96Кб
62 548.41Кб
63 760.07Кб
64 969.13Кб
65 25.32Кб
66 138.62Кб
67 917.08Кб
68 994.19Кб
69 275.09Кб
7 734.24Кб
70 480.31Кб
71 686.84Кб
72 701.69Кб
73 742.78Кб
74 844.97Кб
75 387.41Кб
76 477.02Кб
77 541.71Кб
78 666.02Кб
79 686.11Кб
8 734.24Кб
80 781.47Кб
81 926.20Кб
82 12.41Кб
83 119.06Кб
84 123.28Кб
85 622.04Кб
86 734.31Кб
87 734.31Кб
88 802.94Кб
89 949.45Кб
9 734.24Кб
90 949.45Кб
91 989.12Кб
92 94.59Кб
93 351.81Кб
94 375.79Кб
95 660.65Кб
96 698.22Кб
97 766.59Кб
98 894.40Кб
99 144.13Кб
TutsNode.net.txt 63б
Статистика распространения по странам
Венгрия (HU) 1
Иран (IR) 1
Вьетнам (VN) 1
США (US) 1
Польша (PL) 1
Камбоджа (KH) 1
Индия (IN) 1
Саудовская Аравия (SA) 1
Всего 8
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент