Общая информация
Название Deep Learning with TensorFlow 2.0
Тип
Размер 1.88Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[TGx]Downloaded from torrentgalaxy.to .txt 585б
001 Meet your instructors and why you should study machine learning_.en.srt 10.53Кб
001 Meet your instructors and why you should study machine learning_.mp4 105.78Мб
002 What does the course cover_.en.srt 6.45Кб
002 What does the course cover_.mp4 16.35Мб
003 Download All Resources and Important FAQ.html 1.75Кб
004 Course-Notes-Section-2.pdf 927.67Кб
004 Introduction to neural networks.en.srt 6.16Кб
004 Introduction to neural networks.mp4 13.55Мб
005 Course-Notes-Section-2.pdf 927.67Кб
005 Training the model.en.srt 4.47Кб
005 Training the model.mp4 8.81Мб
006 Course-Notes-Section-2.pdf 927.67Кб
006 Types of machine learning.en.srt 5.47Кб
006 Types of machine learning.mp4 12.20Мб
007 Course-Notes-Section-2.pdf 927.67Кб
007 The linear model.en.srt 4.07Кб
007 The linear model.mp4 9.12Мб
008 Need Help with Linear Algebra_.html 1.69Кб
009 Course-Notes-Section-2.pdf 927.67Кб
009 The linear model. Multiple inputs.en.srt 3.21Кб
009 The linear model. Multiple inputs.mp4 7.49Мб
010 Course-Notes-Section-2.pdf 927.67Кб
010 The linear model. Multiple inputs and multiple outputs.en.srt 5.67Кб
010 The linear model. Multiple inputs and multiple outputs.mp4 38.28Мб
011 Course-Notes-Section-2.pdf 927.67Кб
011 Graphical representation.en.srt 2.80Кб
011 Graphical representation.mp4 6.34Мб
012 Course-Notes-Section-2.pdf 927.67Кб
012 The objective function.en.srt 2.11Кб
012 The objective function.mp4 5.71Мб
013 Course-Notes-Section-2.pdf 927.67Кб
013 L2-norm loss.en.srt 2.91Кб
013 L2-norm loss.mp4 7.26Мб
014 Course-Notes-Section-2.pdf 927.67Кб
014 Cross-entropy loss.en.srt 5.55Кб
014 Cross-entropy loss.mp4 11.35Мб
015 Course-Notes-Section-2.pdf 927.67Кб
015 GD-function-example.xlsx 42.33Кб
015 One parameter gradient descent.en.srt 8.79Кб
015 One parameter gradient descent.mp4 17.76Мб
016 Course-Notes-Section-2.pdf 927.67Кб
016 N-parameter gradient descent.en.srt 7.81Кб
016 N-parameter gradient descent.mp4 39.45Мб
017 Setting up the environment - An introduction - Do not skip, please!.en.srt 1.44Кб
017 Setting up the environment - An introduction - Do not skip, please!.mp4 5.95Мб
018 Why Python and why Jupyter_.en.srt 6.53Кб
018 Why Python and why Jupyter_.mp4 32.06Мб
019 Installing Anaconda.en.srt 4.76Кб
019 Installing Anaconda.mp4 28.38Мб
020 The Jupyter dashboard - part 1.en.srt 3.27Кб
020 The Jupyter dashboard - part 1.mp4 8.70Мб
021 The Jupyter dashboard - part 2.en.srt 7.04Кб
021 The Jupyter dashboard - part 2.mp4 18.80Мб
022 Jupyter Shortcuts.html 1.20Кб
022 Shortcuts-for-Jupyter.pdf 619.17Кб
023 Installing TensorFlow 2.en.srt 6.63Кб
023 Installing TensorFlow 2.mp4 38.72Мб
024 Installing packages - exercise.html 1.08Кб
025 Installing packages - solution.html 1.14Кб
026 Minimal example - part 1.en.srt 4.69Кб
026 Minimal example - part 1.mp4 6.53Мб
027 Minimal example - part 2.en.srt 7.13Кб
027 Minimal example - part 2.mp4 10.70Мб
028 Minimal example - part 3.en.srt 4.63Кб
028 Minimal example - part 3.mp4 9.76Мб
029 Minimal example - part 4.en.srt 11.29Кб
029 Minimal example - part 4.mp4 20.80Мб
030 Minimal example - Exercises.html 2.45Кб
031 TensorFlow outline.en.srt 5.44Кб
031 TensorFlow outline.mp4 33.53Мб
032 TensorFlow 2 intro.en.srt 3.77Кб
032 TensorFlow 2 intro.mp4 21.98Мб
033 A Note on Coding in TensorFlow.en.srt 1.41Кб
033 A Note on Coding in TensorFlow.mp4 6.76Мб
034 Types of file formats in TensorFlow and data handling.en.srt 3.65Кб
034 Types of file formats in TensorFlow and data handling.mp4 16.40Мб
035 Model layout - inputs, outputs, targets, weights, biases, optimizer and loss.en.srt 8.13Кб
035 Model layout - inputs, outputs, targets, weights, biases, optimizer and loss.mp4 34.68Мб
036 Interpreting the result and extracting the weights and bias.en.srt 6.44Кб
036 Interpreting the result and extracting the weights and bias.mp4 30.26Мб
037 Cutomizing your model.en.srt 4.27Кб
037 Cutomizing your model.mp4 22.90Мб
038 Minimal example with TensorFlow - Exercises.html 2.25Кб
039 Course-Notes-Section-6.pdf 936.42Кб
039 Layers.en.srt 2.51Кб
039 Layers.mp4 4.73Мб
040 Course-Notes-Section-6.pdf 936.42Кб
040 What is a deep net_.en.srt 3.41Кб
040 What is a deep net_.mp4 6.72Мб
041 Understanding deep nets in depth.en.srt 6.93Кб
041 Understanding deep nets in depth.mp4 13.40Мб
042 Why do we need non-linearities_.en.srt 3.96Кб
042 Why do we need non-linearities_.mp4 8.95Мб
043 Activation functions.en.srt 5.38Кб
043 Activation functions.mp4 8.73Мб
044 Softmax activation.en.srt 4.48Кб
044 Softmax activation.mp4 7.37Мб
045 Backpropagation.en.srt 4.56Кб
045 Backpropagation.mp4 11.05Мб
046 Backpropagation - visual representation.en.srt 4.18Кб
046 Backpropagation - visual representation.mp4 6.84Мб
047 Backpropagation. A peek into the Mathematics of Optimization.html 1.43Кб
047 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf 182.38Кб
048 Underfitting and overfitting.en.srt 5.82Кб
048 Underfitting and overfitting.mp4 11.05Мб
049 Underfitting and overfitting - classification.en.srt 2.81Кб
049 Underfitting and overfitting - classification.mp4 6.76Мб
050 Training and validation.en.srt 5.06Кб
050 Training and validation.mp4 9.23Мб
051 Training, validation, and test.en.srt 3.71Кб
051 Training, validation, and test.mp4 7.44Мб
052 N-fold cross validation.en.srt 4.38Кб
052 N-fold cross validation.mp4 6.98Мб
053 Early stopping.en.srt 7.12Кб
053 Early stopping.mp4 9.43Мб
054 Initialization - Introduction.en.srt 3.68Кб
054 Initialization - Introduction.mp4 8.03Мб
055 Types of simple initializations.en.srt 3.81Кб
055 Types of simple initializations.mp4 5.61Мб
056 Xavier initialization.en.srt 3.86Кб
056 Xavier initialization.mp4 5.82Мб
057 Stochastic gradient descent.en.srt 5.09Кб
057 Stochastic gradient descent.mp4 9.38Мб
058 Gradient descent pitfalls.en.srt 2.93Кб
058 Gradient descent pitfalls.mp4 4.30Мб
059 Momentum.en.srt 3.66Кб
059 Momentum.mp4 6.10Мб
060 Learning rate schedules.en.srt 6.21Кб
060 Learning rate schedules.mp4 10.30Мб
061 Learning rate schedules. A picture.en.srt 2.25Кб
061 Learning rate schedules. A picture.mp4 3.14Мб
062 Adaptive learning rate schedules.en.srt 5.42Кб
062 Adaptive learning rate schedules.mp4 8.86Мб
063 Adaptive moment estimation.en.srt 3.47Кб
063 Adaptive moment estimation.mp4 7.77Мб
064 Preprocessing introduction.en.srt 4.00Кб
064 Preprocessing introduction.mp4 8.42Мб
065 Basic preprocessing.en.srt 1.73Кб
065 Basic preprocessing.mp4 3.65Мб
066 Standardization.en.srt 6.19Кб
066 Standardization.mp4 8.32Мб
067 Dealing with categorical data.en.srt 2.89Кб
067 Dealing with categorical data.mp4 6.07Мб
068 One-hot and binary encoding.en.srt 4.96Кб
068 One-hot and binary encoding.mp4 6.24Мб
069 The dataset.en.srt 3.72Кб
069 The dataset.mp4 13.37Мб
070 How to tackle the MNIST.en.srt 3.64Кб
070 How to tackle the MNIST.mp4 18.67Мб
071 Importing the relevant packages and load the data.en.srt 3.20Кб
071 Importing the relevant packages and load the data.mp4 16.32Мб
072 Preprocess the data - create a validation dataset and scale the data.en.srt 6.50Кб
072 Preprocess the data - create a validation dataset and scale the data.mp4 29.05Мб
073 Preprocess the data - scale the test data.html 997б
074 Preprocess the data - shuffle and batch the data.en.srt 9.61Кб
074 Preprocess the data - shuffle and batch the data.mp4 41.54Мб
075 Preprocess the data - shuffle and batch the data.html 1004б
076 Outline the model.en.srt 7.49Кб
076 Outline the model.mp4 28.24Мб
077 Select the loss and the optimizer.en.srt 3.14Кб
077 Select the loss and the optimizer.mp4 13.89Мб
078 Learning.en.srt 8.27Кб
078 Learning.mp4 40.95Мб
079 MNIST - exercises.html 2.86Кб
080 MNIST - solutions.html 3.00Кб
081 Testing the model.en.srt 6.26Кб
081 Testing the model.mp4 29.54Мб
082 Audiobooks-data.csv 625.21Кб
082 Exploring the dataset and identifying predictors.en.srt 11.08Кб
082 Exploring the dataset and identifying predictors.mp4 66.26Мб
083 Outlining the business case solution.en.srt 2.08Кб
083 Outlining the business case solution.mp4 7.31Мб
084 Balancing the dataset.en.srt 4.67Кб
084 Balancing the dataset.mp4 30.44Мб
085 Audiobooks-data.csv 625.21Кб
085 Preprocessing the data.en.srt 12.71Кб
085 Preprocessing the data.mp4 84.29Мб
086 Audiobooks-data.csv 625.21Кб
086 Preprocessing exercise.html 1.27Кб
087 Load the preprocessed data.en.srt 4.89Кб
087 Load the preprocessed data.mp4 17.56Мб
088 Load the preprocessed data - Exercise.html 991б
089 Learning and interpreting the result.en.srt 6.53Кб
089 Learning and interpreting the result.mp4 31.15Мб
090 Setting an early stopping mechanism.en.srt 8.11Кб
090 Setting an early stopping mechanism.mp4 49.81Мб
091 Setting an early stopping mechanism - Exercise.html 1.09Кб
092 Testing the model.en.srt 2.12Кб
092 Testing the model.mp4 10.80Мб
093 Final exercise.html 1.30Кб
094 What is a Matrix_.en.srt 4.51Кб
094 What is a Matrix_.mp4 33.59Мб
095 Scalars and Vectors.en.srt 3.93Кб
095 Scalars and Vectors.mp4 33.84Мб
096 Linear Algebra and Geometry.en.srt 4.27Кб
096 Linear Algebra and Geometry.mp4 49.79Мб
097 Scalars, Vectors and Matrices in Python.en.srt 6.38Кб
097 Scalars, Vectors and Matrices in Python.mp4 26.66Мб
098 Tensors.en.srt 3.75Кб
098 Tensors.mp4 22.51Мб
099 Addition and Subtraction of Matrices.en.srt 4.22Кб
099 Addition and Subtraction of Matrices.mp4 32.60Мб
100 Errors when Adding Matrices.en.srt 2.67Кб
100 Errors when Adding Matrices.mp4 11.16Мб
101 Transpose of a Matrix.en.srt 5.58Кб
101 Transpose of a Matrix.mp4 38.08Мб
102 Dot Product of Vectors.en.srt 4.45Кб
102 Dot Product of Vectors.mp4 23.98Мб
103 Dot Product of Matrices.en.srt 9.92Кб
103 Dot Product of Matrices.mp4 49.38Мб
104 Why is Linear Algebra Useful_.en.srt 12.24Кб
104 Why is Linear Algebra Useful_.mp4 144.33Мб
105 See how much you have learned.en.srt 5.40Кб
105 See how much you have learned.mp4 13.95Мб
106 What’s further out there in the machine and deep learning world.en.srt 2.64Кб
106 What’s further out there in the machine and deep learning world.mp4 6.26Мб
107 An overview of CNNs.en.srt 6.72Кб
107 An overview of CNNs.mp4 10.92Мб
108 How DeepMind uses deep learning.html 2.24Кб
109 An overview of RNNs.en.srt 3.74Кб
109 An overview of RNNs.mp4 4.86Мб
110 An overview of non-NN approaches.en.srt 5.33Кб
110 An overview of non-NN approaches.mp4 7.84Мб
111 Bonus lecture_ Next steps.html 3.87Кб
external-assets-links.txt 1.74Кб
external-assets-links.txt 1.42Кб
external-assets-links.txt 2.63Кб
external-assets-links.txt 1.47Кб
external-assets-links.txt 1.08Кб
TutsNode.com.txt 63б
Статистика распространения по странам
Китай (CN) 1
Великобритания (GB) 1
США (US) 1
Индонезия (ID) 1
Тайланд (TH) 1
Бразилия (BR) 1
Всего 6
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент