Общая информация
Название TensorFlow Developer Certificate in 2021 Zero to Mastery
Тип
Размер 19.71Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[TGx]Downloaded from torrentgalaxy.to .txt 585б
0
1 24б
1.1 All course materials and links!.html 114б
1.1 All course materials and links (notebooks, code, data, slides) on GitHub.html 114б
1.1 All course materials and links (notebooks, code, data, slides) on GitHub.html 119б
1.1 All course materials and links (notebooks, code, data, slides) on GitHub.html 119б
1.1 All course materials and links (notebooks, code, data, slides) on GitHub.html 114б
1. Become An Alumni.html 944б
1. Course Outline.mp4 58.03Мб
1. Course Outline.srt 7.97Кб
1. Introduction to Computer Vision with TensorFlow.mp4 75.01Мб
1. Introduction to Computer Vision with TensorFlow.srt 15.00Кб
1. Introduction to Milestone Project 1 Food Vision Big™.mp4 42.32Мб
1. Introduction to Milestone Project 1 Food Vision Big™.srt 9.17Кб
1. Introduction to neural network classification in TensorFlow.mp4 72.81Мб
1. Introduction to neural network classification in TensorFlow.srt 12.76Кб
1. Introduction to Neural Network Regression with TensorFlow.mp4 60.06Мб
1. Introduction to Neural Network Regression with TensorFlow.srt 11.41Кб
1. Introduction to Transfer Learning in TensorFlow Part 2 Fine-tuning.mp4 61.46Мб
1. Introduction to Transfer Learning in TensorFlow Part 2 Fine-tuning.srt 9.78Кб
1. Introduction to Transfer Learning Part 3 Scaling Up.mp4 41.53Мб
1. Introduction to Transfer Learning Part 3 Scaling Up.srt 10.12Кб
1. More Videos Coming Soon!.html 41б
1. More Videos Coming Soon!.html 41б
1. More Videos Coming Soon!.html 41б
1. More Videos Coming Soon!.html 41б
1. More Videos Coming Soon!.html 41б
1. Quick Note Upcoming Videos.html 706б
1. Quick Note Upcoming Videos.html 706б
1. Quick Note Upcoming Videos.html 706б
1. Quick Note Upcoming Videos.html 706б
1. Special Bonus Lecture.html 3.65Кб
1. What is and why use transfer learning.mp4 65.81Мб
1. What is and why use transfer learning.srt 15.94Кб
1. What is deep learning.mp4 34.17Мб
1. What is deep learning.srt 6.80Кб
10 124.10Кб
10.1 car-sales-missing-data.csv 287б
10.1 httpswww.mathsisfun.comdatastandard-deviation.html.html 116б
10.2 httpsjakevdp.github.ioPythonDataScienceHandbook03.00-introduction-to-pandas.html.html 146б
10. Comparing Our Model's Results.mp4 143.93Мб
10. Comparing Our Model's Results.srt 21.56Кб
10. Creating your first tensors with TensorFlow and tf.constant().mp4 134.83Мб
10. Creating your first tensors with TensorFlow and tf.constant().srt 24.75Кб
10. Downloading and preparing the data for Model 1 (1 percent of training data).mp4 97.80Мб
10. Downloading and preparing the data for Model 1 (1 percent of training data).srt 12.98Кб
10. Downloading a pretrained model to make and evaluate predictions with.mp4 78.69Мб
10. Downloading a pretrained model to make and evaluate predictions with.srt 8.91Кб
10. Evaluating a TensorFlow model part 2 (the three datasets).mp4 81.56Мб
10. Evaluating a TensorFlow model part 2 (the three datasets).srt 14.05Кб
10. Improving our non-CNN model by adding more layers.mp4 106.47Мб
10. Improving our non-CNN model by adding more layers.srt 13.98Кб
10. Make our poor classification model work for a regression dataset.mp4 123.01Мб
10. Make our poor classification model work for a regression dataset.srt 16.33Кб
10. Manipulating Arrays 2.mp4 67.91Мб
10. Manipulating Arrays 2.srt 12.01Кб
10. Manipulating Data.mp4 105.00Мб
10. Manipulating Data.srt 18.56Кб
10. Modelling - Picking the Model.mp4 23.24Мб
10. Modelling - Picking the Model.srt 6.23Кб
10. Section Review.mp4 5.56Мб
10. Section Review.srt 2.20Кб
10. Turning on mixed precision training with TensorFlow.mp4 107.71Мб
10. Turning on mixed precision training with TensorFlow.srt 13.89Кб
100 434.51Кб
101 627.72Кб
102 774.58Кб
103 904.34Кб
104 1003.84Кб
105 1016.05Кб
106 1.55Мб
107 1.85Мб
108 337.61Кб
109 624.83Кб
11 916.43Кб
11.1 httpswww.mathsisfun.comdatastandard-deviation.html.html 116б
11.1 pandas-anatomy-of-a-dataframe.png 333.24Кб
11. Breaking our CNN model down part 1 Becoming one with the data.mp4 90.92Мб
11. Breaking our CNN model down part 1 Becoming one with the data.srt 13.00Кб
11. Building a data augmentation layer to use inside our model.mp4 117.46Мб
11. Building a data augmentation layer to use inside our model.srt 16.15Кб
11. Creating a feature extraction model capable of using mixed precision training.mp4 107.92Мб
11. Creating a feature extraction model capable of using mixed precision training.srt 17.41Кб
11. Creating tensors with TensorFlow and tf.Variable().mp4 70.85Мб
11. Creating tensors with TensorFlow and tf.Variable().srt 9.90Кб
11. Evaluating a TensorFlow model part 3 (getting a model summary).mp4 192.79Мб
11. Evaluating a TensorFlow model part 3 (getting a model summary).srt 21.53Кб
11. Making predictions with our trained model on 25,250 test samples.mp4 115.59Мб
11. Making predictions with our trained model on 25,250 test samples.srt 16.24Кб
11. Manipulating Data 2.mp4 86.56Мб
11. Manipulating Data 2.srt 14.82Кб
11. Modelling - Tuning.mp4 15.98Мб
11. Modelling - Tuning.srt 5.09Кб
11. Non-linearity part 1 Straight lines and non-straight lines.mp4 95.62Мб
11. Non-linearity part 1 Straight lines and non-straight lines.srt 13.79Кб
11. Standard Deviation and Variance.mp4 51.13Мб
11. Standard Deviation and Variance.srt 9.81Кб
11. TensorFlow Transfer Learning Part 1 challenge, exercises & extra-curriculum.html 2.44Кб
110 799.17Кб
111 1.43Мб
112 1.44Мб
113 20.02Кб
114 716.66Кб
115 1.71Мб
116 1.82Мб
117 208.46Кб
118 448.05Кб
119 1.33Мб
12 935.47Кб
12.1 Pandas video notes.html 185б
12.2 Pandas video code.html 191б
12. Breaking our CNN model down part 2 Preparing to load our data.mp4 109.48Мб
12. Breaking our CNN model down part 2 Preparing to load our data.srt 16.51Кб
12. Checking to see if our model is using mixed precision training layer by layer.mp4 87.67Мб
12. Checking to see if our model is using mixed precision training layer by layer.srt 10.27Кб
12. Creating random tensors with TensorFlow.mp4 88.45Мб
12. Creating random tensors with TensorFlow.srt 13.03Кб
12. Evaluating a TensorFlow model part 4 (visualising a model's layers).mp4 70.28Мб
12. Evaluating a TensorFlow model part 4 (visualising a model's layers).srt 9.23Кб
12. Manipulating Data 3.mp4 91.07Мб
12. Manipulating Data 3.srt 14.00Кб
12. Modelling - Comparison.mp4 44.86Мб
12. Modelling - Comparison.srt 13.32Кб
12. Non-linearity part 2 Building our first neural network with non-linearity.mp4 59.00Мб
12. Non-linearity part 2 Building our first neural network with non-linearity.srt 7.58Кб
12. Reshape and Transpose.mp4 53.57Мб
12. Reshape and Transpose.srt 9.68Кб
12. Unravelling our test dataset for comparing ground truth labels to predictions.mp4 43.81Мб
12. Unravelling our test dataset for comparing ground truth labels to predictions.srt 7.72Кб
12. Visualising what happens when images pass through our data augmentation layer.mp4 119.36Мб
12. Visualising what happens when images pass through our data augmentation layer.srt 14.40Кб
120 1.38Мб
121 1.59Мб
122 1.03Мб
123 1.12Мб
124 1.31Мб
125 62.78Кб
126 945.69Кб
127 1.35Мб
128 1.79Мб
129 291.54Кб
13 1.05Мб
13.1 httpswww.mathsisfun.comalgebramatrix-multiplying.html.html 119б
13. Assignment Pandas Practice.html 2.05Кб
13. Breaking our CNN model down part 3 Loading our data with ImageDataGenerator.mp4 103.42Мб
13. Breaking our CNN model down part 3 Loading our data with ImageDataGenerator.srt 13.45Кб
13. Building Model 1 (with a data augmentation layer and 1% of training data).mp4 152.95Мб
13. Building Model 1 (with a data augmentation layer and 1% of training data).srt 22.42Кб
13. Confirming our model's predictions are in the same order as the test labels.mp4 50.54Мб
13. Confirming our model's predictions are in the same order as the test labels.srt 6.77Кб
13. Dot Product vs Element Wise.mp4 83.80Мб
13. Dot Product vs Element Wise.srt 15.89Кб
13. Evaluating a TensorFlow model part 5 (visualising a model's predictions).mp4 78.88Мб
13. Evaluating a TensorFlow model part 5 (visualising a model's predictions).srt 11.92Кб
13. Non-linearity part 3 Upgrading our non-linear model with more layers.mp4 123.24Мб
13. Non-linearity part 3 Upgrading our non-linear model with more layers.srt 14.34Кб
13. Overfitting and Underfitting Definitions.html 1.97Кб
13. Shuffling the order of tensors.mp4 89.86Мб
13. Shuffling the order of tensors.srt 12.63Кб
13. Training and evaluating a feature extraction model (Food Vision Big™).mp4 89.02Мб
13. Training and evaluating a feature extraction model (Food Vision Big™).srt 14.12Кб
130 358.95Кб
131 1009.77Кб
132 675.31Кб
133 1.06Мб
134 1.19Мб
135 1.28Мб
136 1.71Мб
137 626.59Кб
138 1.15Мб
139 1.34Мб
14 389.08Кб
14.1 Course Notes.html 108б
14.2 httpscolab.research.google.com.html 95б
14. Breaking our CNN model down part 4 Building a baseline CNN model.mp4 85.30Мб
14. Breaking our CNN model down part 4 Building a baseline CNN model.srt 11.22Кб
14. Building Model 2 (with a data augmentation layer and 10% of training data).mp4 159.77Мб
14. Building Model 2 (with a data augmentation layer and 10% of training data).srt 23.45Кб
14. Creating a confusion matrix for our model's 101 different classes.mp4 156.60Мб
14. Creating a confusion matrix for our model's 101 different classes.srt 17.49Кб
14. Creating tensors from NumPy arrays.mp4 101.34Мб
14. Creating tensors from NumPy arrays.srt 15.03Кб
14. Evaluating a TensorFlow model part 6 (common regression evaluation metrics).mp4 70.37Мб
14. Evaluating a TensorFlow model part 6 (common regression evaluation metrics).srt 11.16Кб
14. Exercise Nut Butter Store Sales.mp4 91.27Мб
14. Exercise Nut Butter Store Sales.srt 17.41Кб
14. Experimentation.mp4 21.30Мб
14. Experimentation.srt 5.09Кб
14. How To Download The Course Assignments.mp4 66.79Мб
14. How To Download The Course Assignments.srt 11.24Кб
14. Introducing your Milestone Project 1 challenge build a model to beat DeepFood.mp4 89.12Мб
14. Introducing your Milestone Project 1 challenge build a model to beat DeepFood.srt 11.24Кб
14. Non-linearity part 4 Modelling our non-linear data once and for all.mp4 96.62Мб
14. Non-linearity part 4 Modelling our non-linear data once and for all.srt 11.99Кб
140 1.63Мб
141 1.72Мб
142 1.85Мб
143 621.97Кб
144 739.32Кб
145 855.64Кб
146 858.98Кб
147 1.01Мб
148 1.85Мб
149 92.68Кб
15 1.39Мб
15.1 CNN Explainer website.html 102б
15. Breaking our CNN model down part 5 Looking inside a Conv2D layer.mp4 186.04Мб
15. Breaking our CNN model down part 5 Looking inside a Conv2D layer.srt 22.79Кб
15. Comparison Operators.mp4 26.38Мб
15. Comparison Operators.srt 5.22Кб
15. Creating a ModelCheckpoint to save our model's weights during training.mp4 68.99Мб
15. Creating a ModelCheckpoint to save our model's weights during training.srt 10.72Кб
15. Evaluating a TensorFlow regression model part 7 (mean absolute error).mp4 56.09Мб
15. Evaluating a TensorFlow regression model part 7 (mean absolute error).srt 8.10Кб
15. Evaluating every individual class in our dataset.mp4 131.77Мб
15. Evaluating every individual class in our dataset.srt 19.30Кб
15. Getting information from your tensors (tensor attributes).mp4 87.39Мб
15. Getting information from your tensors (tensor attributes).srt 16.96Кб
15. Milestone Project 1 Food Vision Big™, exercises and extra-curriculum.html 2.32Кб
15. Non-linearity part 5 Replicating non-linear activation functions from scratch.mp4 146.61Мб
15. Non-linearity part 5 Replicating non-linear activation functions from scratch.srt 18.28Кб
15. Tools We Will Use.mp4 27.34Мб
15. Tools We Will Use.srt 6.08Кб
150 304.50Кб
151 1.06Мб
152 1.16Мб
153 1.21Мб
154 1.77Мб
155 1.92Мб
156 199.20Кб
157 302.71Кб
158 323.97Кб
159 186.67Кб
16 69.27Кб
16. Breaking our CNN model down part 6 Compiling and fitting our baseline CNN.mp4 77.08Мб
16. Breaking our CNN model down part 6 Compiling and fitting our baseline CNN.srt 9.86Кб
16. Evaluating a TensorFlow regression model part 7 (mean square error).mp4 32.31Мб
16. Evaluating a TensorFlow regression model part 7 (mean square error).srt 3.88Кб
16. Fitting and evaluating Model 2 (and saving its weights using ModelCheckpoint).mp4 68.15Мб
16. Fitting and evaluating Model 2 (and saving its weights using ModelCheckpoint).srt 9.85Кб
16. Getting great results in less time by tweaking the learning rate.mp4 136.78Мб
16. Getting great results in less time by tweaking the learning rate.srt 19.38Кб
16. Indexing and expanding tensors.mp4 86.57Мб
16. Indexing and expanding tensors.srt 16.96Кб
16. Optional Elements of AI.html 975б
16. Plotting our model's F1-scores for each separate class.mp4 77.94Мб
16. Plotting our model's F1-scores for each separate class.srt 10.69Кб
16. Sorting Arrays.mp4 32.82Мб
16. Sorting Arrays.srt 8.95Кб
160 584.98Кб
161 1.33Мб
162 1.68Мб
163 1.88Мб
164 1.91Мб
165 549.24Кб
166 1.21Мб
167 1.54Мб
168 1.94Мб
169 279.38Кб
17 498.79Кб
17.1 numpy-images.zip 7.27Мб
17.2 NumPy Video code.html 190б
17.3 Section Notes.html 184б
17. Breaking our CNN model down part 7 Evaluating our CNN's training curves.mp4 106.20Мб
17. Breaking our CNN model down part 7 Evaluating our CNN's training curves.srt 17.08Кб
17. Creating a function to load and prepare images for making predictions.mp4 109.54Мб
17. Creating a function to load and prepare images for making predictions.srt 15.79Кб
17. Loading and comparing saved weights to our existing trained Model 2.mp4 62.67Мб
17. Loading and comparing saved weights to our existing trained Model 2.srt 9.65Кб
17. Manipulating tensors with basic operations.mp4 45.22Мб
17. Manipulating tensors with basic operations.srt 6.95Кб
17. Setting up TensorFlow modelling experiments part 1 (start with a simple model).mp4 127.26Мб
17. Setting up TensorFlow modelling experiments part 1 (start with a simple model).srt 17.44Кб
17. Turn Images Into NumPy Arrays.mp4 85.98Мб
17. Turn Images Into NumPy Arrays.srt 10.60Кб
17. Using the TensorFlow History object to plot a model's loss curves.mp4 62.12Мб
17. Using the TensorFlow History object to plot a model's loss curves.srt 8.38Кб
170 352.02Кб
171 718.95Кб
172 1021.53Кб
173 1.00Мб
174 1.97Мб
175 441.00Кб
176 600.43Кб
177 1.32Мб
178 1.91Мб
179 76.55Кб
18 1.20Мб
18. Assignment NumPy Practice.html 2.17Кб
18. Breaking our CNN model down part 8 Reducing overfitting with Max Pooling.mp4 130.44Мб
18. Breaking our CNN model down part 8 Reducing overfitting with Max Pooling.srt 19.25Кб
18. Making predictions on our test images and evaluating them.mp4 171.68Мб
18. Making predictions on our test images and evaluating them.srt 23.48Кб
18. Matrix multiplication with tensors part 1.mp4 100.85Мб
18. Matrix multiplication with tensors part 1.srt 15.22Кб
18. Preparing Model 3 (our first fine-tuned model).mp4 198.23Мб
18. Preparing Model 3 (our first fine-tuned model).srt 25.90Кб
18. Setting up TensorFlow modelling experiments part 2 (increasing complexity).mp4 95.63Мб
18. Setting up TensorFlow modelling experiments part 2 (increasing complexity).srt 15.86Кб
18. Using callbacks to find a model's ideal learning rate.mp4 155.88Мб
18. Using callbacks to find a model's ideal learning rate.srt 24.87Кб
180 436.54Кб
181 940.68Кб
182 50.42Кб
183 511.79Кб
184 888.74Кб
185 1016.88Кб
186 1.29Мб
187 1.46Мб
188 1.66Мб
189 1.35Мб
19 1.81Мб
19. Breaking our CNN model down part 9 Reducing overfitting with data augmentation.mp4 66.08Мб
19. Breaking our CNN model down part 9 Reducing overfitting with data augmentation.srt 9.39Кб
19. Comparing and tracking your TensorFlow modelling experiments.mp4 92.25Мб
19. Comparing and tracking your TensorFlow modelling experiments.srt 13.18Кб
19. Discussing the benefits of finding your model's most wrong predictions.mp4 59.30Мб
19. Discussing the benefits of finding your model's most wrong predictions.srt 9.41Кб
19. Fitting and evaluating Model 3 (our first fine-tuned model).mp4 69.16Мб
19. Fitting and evaluating Model 3 (our first fine-tuned model).srt 10.61Кб
19. Matrix multiplication with tensors part 2.mp4 107.79Мб
19. Matrix multiplication with tensors part 2.srt 17.35Кб
19. Optional Extra NumPy resources.html 1.02Кб
19. Training and evaluating a model with an ideal learning rate.mp4 89.01Мб
19. Training and evaluating a model with an ideal learning rate.srt 11.87Кб
190 180.74Кб
191 401.52Кб
192 796.25Кб
193 1.14Мб
194 195.35Кб
195 259.55Кб
196 722.88Кб
197 1.44Мб
198 1.68Мб
199 1.79Мб
2 1.26Мб
2. Downloading and preparing data for our first transfer learning model.mp4 132.67Мб
2. Downloading and preparing data for our first transfer learning model.srt 18.11Кб
2. Example classification problems (and their inputs and outputs).mp4 50.71Мб
2. Example classification problems (and their inputs and outputs).srt 9.89Кб
2. Getting helper functions ready and downloading data to model.mp4 131.54Мб
2. Getting helper functions ready and downloading data to model.srt 17.73Кб
2. Importing a script full of helper functions (and saving lots of space).mp4 89.39Мб
2. Importing a script full of helper functions (and saving lots of space).srt 9.77Кб
2. Inputs and outputs of a neural network regression model.mp4 57.57Мб
2. Inputs and outputs of a neural network regression model.srt 13.12Кб
2. Introduction to Convolutional Neural Networks (CNNs) with TensorFlow.mp4 76.65Мб
2. Introduction to Convolutional Neural Networks (CNNs) with TensorFlow.srt 12.11Кб
2. Join Our Online Classroom!.html 2.43Кб
2. LinkedIn Endorsements.html 2.05Кб
2. Making sure we have access to the right GPU for mixed precision training.mp4 88.15Мб
2. Making sure we have access to the right GPU for mixed precision training.srt 14.06Кб
2. Section Overview.mp4 13.36Мб
2. Section Overview.mp4 13.34Мб
2. Section Overview.mp4 10.87Мб
2. Section Overview.srt 4.79Кб
2. Section Overview.srt 3.69Кб
2. Section Overview.srt 3.24Кб
2. What is Machine Learning.mp4 28.31Мб
2. What is Machine Learning.srt 8.95Кб
2. Why use deep learning.mp4 62.32Мб
2. Why use deep learning.srt 14.19Кб
20 1.22Мб
20. Breaking our CNN model down part 10 Visualizing our augmented data.mp4 157.62Мб
20. Breaking our CNN model down part 10 Visualizing our augmented data.srt 21.55Кб
20. Comparing our model's results before and after fine-tuning.mp4 84.18Мб
20. Comparing our model's results before and after fine-tuning.srt 13.82Кб
20. How to save a TensorFlow model.mp4 92.29Мб
20. How to save a TensorFlow model.srt 11.39Кб
20. Introducing more classification evaluation methods.mp4 42.21Мб
20. Introducing more classification evaluation methods.srt 8.87Кб
20. Matrix multiplication with tensors part 3.mp4 80.62Мб
20. Matrix multiplication with tensors part 3.srt 13.27Кб
20. Writing code to uncover our model's most wrong predictions.mp4 109.60Мб
20. Writing code to uncover our model's most wrong predictions.srt 17.03Кб
200 480.33Кб
201 975.06Кб
202 1.39Мб
203 1.44Мб
204 1.48Мб
205 113.15Кб
206 1.85Мб
207 1.22Мб
208 1.83Мб
209 1.93Мб
21 382.00Кб
21. Breaking our CNN model down part 11 Training a CNN model on augmented data.mp4 94.06Мб
21. Breaking our CNN model down part 11 Training a CNN model on augmented data.srt 13.58Кб
21. Changing the datatype of tensors.mp4 71.39Мб
21. Changing the datatype of tensors.srt 8.64Кб
21. Downloading and preparing data for our biggest experiment yet (Model 4).mp4 56.68Мб
21. Downloading and preparing data for our biggest experiment yet (Model 4).srt 8.97Кб
21. Finding the accuracy of our classification model.mp4 34.07Мб
21. Finding the accuracy of our classification model.srt 5.63Кб
21. How to load and use a saved TensorFlow model.mp4 104.37Мб
21. How to load and use a saved TensorFlow model.srt 12.81Кб
21. Plotting and visualising the samples our model got most wrong.mp4 125.49Мб
21. Plotting and visualising the samples our model got most wrong.srt 15.45Кб
210 1.18Мб
211 1.69Мб
212 926.97Кб
213 1.51Мб
214 1.80Мб
215 631.48Кб
216 703.09Кб
217 1.69Мб
218 432.18Кб
219 463.15Кб
22 1.17Мб
22. (Optional) How to save and download files from Google Colab.mp4 67.70Мб
22. (Optional) How to save and download files from Google Colab.srt 7.79Кб
22. Breaking our CNN model down part 12 Discovering the power of shuffling data.mp4 103.86Мб
22. Breaking our CNN model down part 12 Discovering the power of shuffling data.srt 14.30Кб
22. Creating our first confusion matrix (to see where our model is getting confused).mp4 65.70Мб
22. Creating our first confusion matrix (to see where our model is getting confused).srt 11.54Кб
22. Making predictions on and plotting our own custom images.mp4 108.30Мб
22. Making predictions on and plotting our own custom images.srt 14.61Кб
22. Preparing our final modelling experiment (Model 4).mp4 96.42Мб
22. Preparing our final modelling experiment (Model 4).srt 14.88Кб
22. Tensor aggregation (finding the min, max, mean & more).mp4 89.58Мб
22. Tensor aggregation (finding the min, max, mean & more).srt 12.88Кб
220 549.52Кб
221 679.13Кб
222 1.14Мб
223 1.23Мб
224 1.55Мб
225 1.62Мб
226 1.82Мб
227 498.26Кб
228 559.37Кб
229 773.93Кб
23 1.06Мб
23. Breaking our CNN model down part 13 Exploring options to improve our model.mp4 50.34Мб
23. Breaking our CNN model down part 13 Exploring options to improve our model.srt 7.53Кб
23. Fine-tuning Model 4 on 100% of the training data and evaluating its results.mp4 96.84Мб
23. Fine-tuning Model 4 on 100% of the training data and evaluating its results.srt 14.85Кб
23. Making our confusion matrix prettier.mp4 114.12Мб
23. Making our confusion matrix prettier.srt 18.28Кб
23. Putting together what we've learned part 1 (preparing a dataset).mp4 143.51Мб
23. Putting together what we've learned part 1 (preparing a dataset).srt 18.70Кб
23. Tensor troubleshooting example (updating tensor datatypes).mp4 69.39Мб
23. Tensor troubleshooting example (updating tensor datatypes).srt 6.63Кб
23. Transfer Learning in TensorFlow Part 3 challenge, exercises and extra-curriculum.html 2.28Кб
230 1.19Мб
231 90.71Кб
232 713.90Кб
233 339.93Кб
234 579.58Кб
235 261.51Кб
236 16.26Кб
237 132.05Кб
238 660.13Кб
239 674.87Кб
24 1.16Мб
24. Comparing our modelling experiment results in TensorBoard.mp4 95.75Мб
24. Comparing our modelling experiment results in TensorBoard.srt 15.74Кб
24. Downloading a custom image to make predictions on.mp4 53.08Мб
24. Downloading a custom image to make predictions on.srt 6.93Кб
24. Finding the positional minimum and maximum of a tensor (argmin and argmax).mp4 96.50Мб
24. Finding the positional minimum and maximum of a tensor (argmin and argmax).srt 12.38Кб
24. Putting things together with multi-class classification part 1 Getting the data.mp4 87.22Мб
24. Putting things together with multi-class classification part 1 Getting the data.srt 13.77Кб
24. Putting together what we've learned part 2 (building a regression model).mp4 121.38Мб
24. Putting together what we've learned part 2 (building a regression model).srt 17.95Кб
240 623.51Кб
241 1.13Мб
242 748.12Кб
25 1.33Мб
25. How to view and delete previous TensorBoard experiments.mp4 21.91Мб
25. How to view and delete previous TensorBoard experiments.srt 2.81Кб
25. Multi-class classification part 2 Becoming one with the data.mp4 48.65Мб
25. Multi-class classification part 2 Becoming one with the data.srt 9.99Кб
25. Putting together what we've learned part 3 (improving our regression model).mp4 155.11Мб
25. Putting together what we've learned part 3 (improving our regression model).srt 18.80Кб
25. Squeezing a tensor (removing all 1-dimension axes).mp4 30.20Мб
25. Squeezing a tensor (removing all 1-dimension axes).srt 3.84Кб
25. Writing a helper function to load and preprocessing custom images.mp4 105.15Мб
25. Writing a helper function to load and preprocessing custom images.srt 13.73Кб
26 1.76Мб
26. Making a prediction on a custom image with our trained CNN.mp4 99.90Мб
26. Making a prediction on a custom image with our trained CNN.srt 15.46Кб
26. Multi-class classification part 3 Building a multi-class classification model.mp4 142.80Мб
26. Multi-class classification part 3 Building a multi-class classification model.srt 21.13Кб
26. One-hot encoding tensors.mp4 59.73Мб
26. One-hot encoding tensors.srt 7.98Кб
26. Preprocessing data with feature scaling part 1 (what is feature scaling).mp4 92.51Мб
26. Preprocessing data with feature scaling part 1 (what is feature scaling).srt 13.88Кб
26. Transfer Learning in TensorFlow Part 2 challenge, exercises and extra-curriculum.html 2.64Кб
27 1.81Мб
27. Multi-class classification part 4 Improving performance with normalisation.mp4 113.41Мб
27. Multi-class classification part 4 Improving performance with normalisation.srt 16.21Кб
27. Multi-class CNN's part 1 Becoming one with the data.mp4 140.19Мб
27. Multi-class CNN's part 1 Becoming one with the data.srt 22.69Кб
27. Preprocessing data with feature scaling part 2 (normalising our data).mp4 97.18Мб
27. Preprocessing data with feature scaling part 2 (normalising our data).srt 13.93Кб
27. Trying out more tensor math operations.mp4 55.93Мб
27. Trying out more tensor math operations.srt 6.23Кб
28 1.82Мб
28. Exploring TensorFlow and NumPy's compatibility.mp4 43.75Мб
28. Exploring TensorFlow and NumPy's compatibility.srt 7.11Кб
28. Multi-class classification part 5 Comparing normalised and non-normalised data.mp4 26.77Мб
28. Multi-class classification part 5 Comparing normalised and non-normalised data.srt 5.44Кб
28. Multi-class CNN's part 2 Preparing our data (turning it into tensors).mp4 72.72Мб
28. Multi-class CNN's part 2 Preparing our data (turning it into tensors).srt 9.95Кб
28. Preprocessing data with feature scaling part 3 (fitting a model on scaled data).mp4 75.72Мб
28. Preprocessing data with feature scaling part 3 (fitting a model on scaled data).srt 10.97Кб
29 232.10Кб
29. Making sure our tensor operations run really fast on GPUs.mp4 110.91Мб
29. Making sure our tensor operations run really fast on GPUs.srt 14.45Кб
29. Multi-class classification part 6 Finding the ideal learning rate.mp4 73.34Мб
29. Multi-class classification part 6 Finding the ideal learning rate.srt 14.91Кб
29. Multi-class CNN's part 3 Building a multi-class CNN model.mp4 89.24Мб
29. Multi-class CNN's part 3 Building a multi-class CNN model.srt 10.65Кб
29. TensorFlow Regression challenge, exercises & extra-curriculum.html 1.98Кб
3 198.20Кб
3.1 httpsnumpy.orgdoc.html 83б
3.2 NumPy Video code.html 190б
3.3 NumPy Notes.html 184б
3. AIMachine LearningData Science.mp4 19.67Мб
3. AIMachine LearningData Science.srt 6.45Кб
3. Anatomy and architecture of a neural network regression model.mp4 59.00Мб
3. Anatomy and architecture of a neural network regression model.srt 12.25Кб
3. Downloading and turning our images into a TensorFlow BatchDataset.mp4 173.60Мб
3. Downloading and turning our images into a TensorFlow BatchDataset.srt 22.01Кб
3. Downloading an image dataset for our first Food Vision model.mp4 72.94Мб
3. Downloading an image dataset for our first Food Vision model.srt 10.31Кб
3. Downloading Workbooks and Assignments.html 967б
3. Exercise Meet The Community.html 2.83Кб
3. Getting helper functions ready.mp4 31.09Мб
3. Getting helper functions ready.srt 3.94Кб
3. Input and output tensors of classification problems.mp4 51.01Мб
3. Input and output tensors of classification problems.srt 8.85Кб
3. Introducing Callbacks in TensorFlow and making a callback to track our models.mp4 94.89Мб
3. Introducing Callbacks in TensorFlow and making a callback to track our models.srt 14.26Кб
3. Introducing Our Framework.mp4 11.39Мб
3. Introducing Our Framework.srt 3.70Кб
3. NumPy Introduction.mp4 26.86Мб
3. NumPy Introduction.srt 7.60Кб
3. Outlining the model we're going to build and building a ModelCheckpoint callback.mp4 40.61Мб
3. Outlining the model we're going to build and building a ModelCheckpoint callback.srt 7.41Кб
3. TensorFlow Certificate.html 385б
3. What are neural networks.mp4 63.43Мб
3. What are neural networks.srt 14.70Кб
30 467.04Кб
30. Multi-class classification part 7 Evaluating our model.mp4 119.14Мб
30. Multi-class classification part 7 Evaluating our model.srt 16.96Кб
30. Multi-class CNN's part 4 Fitting a multi-class CNN model to the data.mp4 59.66Мб
30. Multi-class CNN's part 4 Fitting a multi-class CNN model to the data.srt 8.96Кб
30. TensorFlow Fundamentals challenge, exercises & extra-curriculum.html 1.95Кб
31 1.56Мб
31. Multi-class classification part 8 Creating a confusion matrix.mp4 40.52Мб
31. Multi-class classification part 8 Creating a confusion matrix.srt 6.67Кб
31. Multi-class CNN's part 5 Evaluating our multi-class CNN model.mp4 41.05Мб
31. Multi-class CNN's part 5 Evaluating our multi-class CNN model.srt 6.79Кб
31. Python + Machine Learning Monthly.html 796б
32 178.64Кб
32. LinkedIn Endorsements.html 2.05Кб
32. Multi-class classification part 9 Visualising random model predictions.mp4 65.68Мб
32. Multi-class classification part 9 Visualising random model predictions.srt 13.52Кб
32. Multi-class CNN's part 6 Trying to fix overfitting by removing layers.mp4 129.83Мб
32. Multi-class CNN's part 6 Trying to fix overfitting by removing layers.srt 16.43Кб
33 42.12Кб
33. Multi-class CNN's part 7 Trying to fix overfitting with data augmentation.mp4 121.02Мб
33. Multi-class CNN's part 7 Trying to fix overfitting with data augmentation.srt 16.32Кб
33. What patterns is our model learning.mp4 127.96Мб
33. What patterns is our model learning.srt 20.83Кб
34 756.96Кб
34. Multi-class CNN's part 8 Things you could do to improve your CNN model.mp4 43.29Мб
34. Multi-class CNN's part 8 Things you could do to improve your CNN model.srt 6.18Кб
34. TensorFlow classification challenge, exercises & extra-curriculum.html 2.48Кб
35 523.70Кб
35. Multi-class CNN's part 9 Making predictions with our model on custom images.mp4 118.98Мб
35. Multi-class CNN's part 9 Making predictions with our model on custom images.srt 11.90Кб
36 722.23Кб
36. Saving and loading our trained CNN model.mp4 69.28Мб
36. Saving and loading our trained CNN model.srt 9.07Кб
37 781.82Кб
37. TensorFlow computer vision and CNNs challenge, exercises & extra-curriculum.html 2.51Кб
38 1011.34Кб
39 638.66Кб
4 410.84Кб
4.1 10 Minutes to pandas.html 127б
4.1 6 Step Guide.html 147б
4.1 httpsteachablemachine.withgoogle.com.html 101б
4.1 Zero to Mastery TensorFlow Deep Learning on GitHub.html 114б
4.2 Intro to pandas code.html 191б
4.3 Intro to pandas notes.html 185б
4. 6 Step Machine Learning Framework.mp4 23.45Мб
4. 6 Step Machine Learning Framework.srt 6.86Кб
4. All Course Resources + Notebooks.html 1.97Кб
4. Becoming One With Data.mp4 45.61Мб
4. Becoming One With Data.srt 6.72Кб
4. Course Review.html 176б
4. Creating a data augmentation layer to use with our model.mp4 40.56Мб
4. Creating a data augmentation layer to use with our model.srt 6.25Кб
4. Creating sample regression data (so we can model it).mp4 90.16Мб
4. Creating sample regression data (so we can model it).srt 16.12Кб
4. Discussing the four (actually five) modelling experiments we're running.mp4 15.87Мб
4. Discussing the four (actually five) modelling experiments we're running.srt 3.58Кб
4. Exercise Machine Learning Playground.mp4 42.56Мб
4. Exercise Machine Learning Playground.srt 8.13Кб
4. Exploring the TensorFlow Hub website for pretrained models.mp4 102.96Мб
4. Exploring the TensorFlow Hub website for pretrained models.srt 14.67Кб
4. Introduction to TensorFlow Datasets (TFDS).mp4 116.84Мб
4. Introduction to TensorFlow Datasets (TFDS).srt 17.62Кб
4. Pandas Introduction.mp4 27.46Мб
4. Pandas Introduction.srt 6.91Кб
4. Quick Note Correction In Next Video.html 1.25Кб
4. Typical architecture of neural network classification models with TensorFlow.mp4 112.73Мб
4. Typical architecture of neural network classification models with TensorFlow.srt 14.61Кб
4. What is deep learning already being used for.mp4 76.21Мб
4. What is deep learning already being used for.srt 13.48Кб
40 1007.62Кб
41 656.03Кб
42 883.01Кб
43 1.02Мб
44 557.29Кб
45 1.16Мб
46 1.29Мб
47 415.21Кб
48 1.06Мб
49 1.88Мб
5 329.22Кб
5.1 pandas-anatomy-of-a-dataframe.png 333.24Кб
5. Becoming One With Data Part 2.mp4 104.59Мб
5. Becoming One With Data Part 2.srt 16.06Кб
5. Building and compiling a TensorFlow Hub feature extraction model.mp4 135.63Мб
5. Building and compiling a TensorFlow Hub feature extraction model.srt 18.91Кб
5. Comparing the TensorFlow Keras Sequential API versus the Functional API.mp4 26.45Мб
5. Comparing the TensorFlow Keras Sequential API versus the Functional API.srt 4.03Кб
5. Creating a headless EfficientNetB0 model with data augmentation built in.mp4 80.41Мб
5. Creating a headless EfficientNetB0 model with data augmentation built in.srt 13.45Кб
5. Creating and viewing classification data to model.mp4 106.08Мб
5. Creating and viewing classification data to model.srt 14.39Кб
5. Exploring and becoming one with the data (Food101 from TensorFlow Datasets).mp4 116.71Мб
5. Exploring and becoming one with the data (Food101 from TensorFlow Datasets).srt 22.34Кб
5. How Did We Get Here.mp4 30.49Мб
5. How Did We Get Here.srt 7.34Кб
5. NumPy DataTypes and Attributes.mp4 78.97Мб
5. NumPy DataTypes and Attributes.srt 20.04Кб
5. Series, Data Frames and CSVs.mp4 95.43Мб
5. Series, Data Frames and CSVs.srt 18.45Кб
5. The Final Challenge.html 176б
5. The major steps in modelling with TensorFlow.mp4 181.81Мб
5. The major steps in modelling with TensorFlow.srt 25.74Кб
5. Types of Machine Learning Problems.mp4 60.46Мб
5. Types of Machine Learning Problems.srt 14.46Кб
5. What is and why use TensorFlow.mp4 69.16Мб
5. What is and why use TensorFlow.srt 11.74Кб
50 607.14Кб
51 1.27Мб
52 1.09Мб
53 1.43Мб
54 410.75Кб
55 468.42Кб
56 529.67Кб
57 1.70Мб
58 78.12Кб
59 217.52Кб
6 1.45Мб
6.1 httpsml-playground.com#.html 88б
6. Becoming One With Data Part 3.mp4 39.89Мб
6. Becoming One With Data Part 3.srt 6.54Кб
6. Blowing our previous models out of the water with transfer learning.mp4 99.46Мб
6. Blowing our previous models out of the water with transfer learning.srt 13.66Кб
6. Checking the input and output shapes of our classification data.mp4 38.15Мб
6. Checking the input and output shapes of our classification data.srt 6.57Кб
6. Creating a preprocessing function to prepare our data for modelling.mp4 132.19Мб
6. Creating a preprocessing function to prepare our data for modelling.srt 18.84Кб
6. Creating NumPy Arrays.mp4 66.84Мб
6. Creating NumPy Arrays.srt 12.45Кб
6. Creating our first model with the TensorFlow Keras Functional API.mp4 132.18Мб
6. Creating our first model with the TensorFlow Keras Functional API.srt 15.84Кб
6. Data from URLs.html 1.09Кб
6. Exercise YouTube Recommendation Engine.mp4 19.43Мб
6. Exercise YouTube Recommendation Engine.srt 5.61Кб
6. Fitting and evaluating our biggest transfer learning model yet.mp4 70.15Мб
6. Fitting and evaluating our biggest transfer learning model yet.srt 11.43Кб
6. Steps in improving a model with TensorFlow part 1.mp4 45.82Мб
6. Steps in improving a model with TensorFlow part 1.srt 7.62Кб
6. Types of Data.mp4 29.31Мб
6. Types of Data.srt 6.48Кб
6. What is a Tensor.mp4 27.58Мб
6. What is a Tensor.srt 4.99Кб
60 299.35Кб
61 1.51Мб
62 1.53Мб
63 1.80Мб
64 1.92Мб
65 68.21Кб
66 871.47Кб
67 1.00Мб
68 1.41Мб
69 1.63Мб
7 231.26Кб
7. Batching and preparing our datasets (to make them run fast).mp4 132.24Мб
7. Batching and preparing our datasets (to make them run fast).srt 19.22Кб
7. Building an end to end CNN Model.mp4 155.09Мб
7. Building an end to end CNN Model.srt 26.00Кб
7. Building a not very good classification model with TensorFlow.mp4 125.29Мб
7. Building a not very good classification model with TensorFlow.srt 16.03Кб
7. Compiling and fitting our first Functional API model.mp4 132.84Мб
7. Compiling and fitting our first Functional API model.srt 15.76Кб
7. Describing Data with Pandas.mp4 75.65Мб
7. Describing Data with Pandas.srt 14.22Кб
7. NumPy Random Seed.mp4 51.95Мб
7. NumPy Random Seed.srt 10.44Кб
7. Plotting the loss curves of our ResNet feature extraction model.mp4 62.09Мб
7. Plotting the loss curves of our ResNet feature extraction model.srt 10.81Кб
7. Steps in improving a model with TensorFlow part 2.mp4 90.23Мб
7. Steps in improving a model with TensorFlow part 2.srt 13.12Кб
7. Types of Evaluation.mp4 17.74Мб
7. Types of Evaluation.srt 4.56Кб
7. Types of Machine Learning.mp4 22.81Мб
7. Types of Machine Learning.srt 5.51Кб
7. Unfreezing some layers in our base model to prepare for fine-tuning.mp4 100.07Мб
7. Unfreezing some layers in our base model to prepare for fine-tuning.srt 16.60Кб
7. What we're going to cover throughout the course.mp4 29.38Мб
7. What we're going to cover throughout the course.srt 7.23Кб
70 141.06Кб
71 592.13Кб
72 1.04Мб
73 680.11Кб
74 1.15Мб
75 1.44Мб
76 1.93Мб
77 101.61Кб
78 551.93Кб
79 205.27Кб
8 390.43Кб
8.1 car-sales.csv 369б
8. Are You Getting It Yet.html 160б
8. Building and training a pre-trained EfficientNet model on our data.mp4 105.93Мб
8. Building and training a pre-trained EfficientNet model on our data.srt 14.27Кб
8. Exploring what happens when we batch and prefetch our data.mp4 63.82Мб
8. Exploring what happens when we batch and prefetch our data.srt 9.41Кб
8. Features In Data.mp4 36.78Мб
8. Features In Data.srt 6.88Кб
8. Fine-tuning our feature extraction model and evaluating its performance.mp4 66.23Мб
8. Fine-tuning our feature extraction model and evaluating its performance.srt 11.87Кб
8. Getting a feature vector from our trained model.mp4 147.62Мб
8. Getting a feature vector from our trained model.srt 17.74Кб
8. How to approach this course.mp4 26.18Мб
8. How to approach this course.srt 8.24Кб
8. Selecting and Viewing Data with Pandas.mp4 72.29Мб
8. Selecting and Viewing Data with Pandas.srt 15.22Кб
8. Steps in improving a model with TensorFlow part 3.mp4 132.94Мб
8. Steps in improving a model with TensorFlow part 3.srt 16.84Кб
8. Trying to improve our not very good classification model.mp4 84.29Мб
8. Trying to improve our not very good classification model.srt 12.67Кб
8. Using a GPU to run our CNN model 5x faster.mp4 114.94Мб
8. Using a GPU to run our CNN model 5x faster.srt 13.05Кб
8. Viewing Arrays and Matrices.mp4 70.66Мб
8. Viewing Arrays and Matrices.srt 13.86Кб
80 835.74Кб
81 1.16Мб
82 1.38Мб
83 1.50Мб
84 1.58Мб
85 256.63Кб
86 379.02Кб
87 393.55Кб
88 585.56Кб
89 1.11Мб
9 1.40Мб
9.1 httpswww.mathsisfun.comdatastandard-deviation.html.html 116б
9. Creating a function to view our model's not so good predictions.mp4 160.55Мб
9. Creating a function to view our model's not so good predictions.srt 18.99Кб
9. Creating modelling callbacks for our feature extraction model.mp4 60.79Мб
9. Creating modelling callbacks for our feature extraction model.srt 9.84Кб
9. Different Types of Transfer Learning.mp4 110.57Мб
9. Different Types of Transfer Learning.srt 15.67Кб
9. Drilling into the concept of a feature vector (a learned representation).mp4 51.50Мб
9. Drilling into the concept of a feature vector (a learned representation).srt 5.39Кб
9. Evaluating a TensorFlow model part 1 (visualise, visualise, visualise).mp4 66.94Мб
9. Evaluating a TensorFlow model part 1 (visualise, visualise, visualise).srt 9.77Кб
9. Manipulating Arrays.mp4 80.67Мб
9. Manipulating Arrays.srt 17.14Кб
9. Modelling - Splitting Data.mp4 27.55Мб
9. Modelling - Splitting Data.srt 7.79Кб
9. Need A Refresher.html 942б
9. Saving and loading our trained model.mp4 57.41Мб
9. Saving and loading our trained model.srt 8.98Кб
9. Selecting and Viewing Data with Pandas Part 2.mp4 106.49Мб
9. Selecting and Viewing Data with Pandas Part 2.srt 18.95Кб
9. Trying a non-CNN model on our image data.mp4 100.56Мб
9. Trying a non-CNN model on our image data.srt 11.63Кб
9. What Is Machine Learning Round 2.mp4 25.51Мб
9. What Is Machine Learning Round 2.srt 6.25Кб
90 1.94Мб
91 1.49Мб
92 1.71Мб
93 1.75Мб
94 750.67Кб
95 951.41Кб
96 1.08Мб
97 1.77Мб
98 1.84Мб
99 141.64Кб
TutsNode.com.txt 61б
Статистика распространения по странам
США (US) 2
Россия (RU) 1
Швейцария (CH) 1
Румыния (RO) 1
Нидерланды (NL) 1
Аргентина (AR) 1
Всего 7
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент