Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
01 - The Course Overview.mp4 |
14.93Мб |
02 - Python Basic Syntax and Block Structure.mp4 |
22.54Мб |
03 - Built-in Data Structures and Comprehensions.mp4 |
17.79Мб |
04 - First-Class Functions and Classes.mp4 |
12.33Мб |
05 - Extensive Standard Library.mp4 |
31.14Мб |
06 - New in Python 3.5.mp4 |
21.01Мб |
07 - Downloading and Installing Python.mp4 |
15.34Мб |
08 - Using the Command-Line and the Interactive Shell.mp4 |
7.10Мб |
09 - Installing Packages with pip.mp4 |
11.04Мб |
100 - Compressing an Image Using Vector Quantization.mp4 |
16.33Мб |
101 - Building a Mean Shift Clustering.mp4 |
11.26Мб |
102 - Grouping Data Using Agglomerative Clustering.mp4 |
13.54Мб |
103 - Evaluating the Performance of Clustering Algorithms.mp4 |
12.74Мб |
104 - Automatically Estimating the Number of Clusters Using DBSCAN.mp4 |
14.94Мб |
105 - Finding Patterns in Stock Market Data.mp4 |
11.34Мб |
106 - Building a Customer Segmentation Model.mp4 |
9.78Мб |
107 - Building Function Composition for Data Processing.mp4 |
13.67Мб |
108 - Building Machine Learning Pipelines.mp4 |
15.17Мб |
109 - Finding the Nearest Neighbors.mp4 |
8.05Мб |
10 - Finding Packages in the Python Package Index.mp4 |
21.78Мб |
110 - Constructing a k-nearest Neighbors Classifier.mp4 |
19.77Мб |
111 - Constructing a k-nearest Neighbors Regressor.mp4 |
9.75Мб |
112 - Computing the Euclidean Distance Score.mp4 |
9.21Мб |
113 - Computing the Pearson Correlation Score.mp4 |
8.32Мб |
114 - Finding Similar Users in a Dataset.mp4 |
6.89Мб |
115 - Generating Movie Recommendations.mp4 |
10.20Мб |
116 - Preprocessing Data Using Tokenization.mp4 |
12.67Мб |
117 - Stemming Text Data.mp4 |
8.77Мб |
118 - Converting Text to Its Base Form Using Lemmatization.mp4 |
8.25Мб |
119 - Dividing Text Using Chunking.mp4 |
7.42Мб |
11 - Creating an Empty Package.mp4 |
11.59Мб |
120 - Building a Bag-of-Words Model.mp4 |
11.71Мб |
121 - Building a Text Classifier.mp4 |
17.97Мб |
122 - Identifying the Gender.mp4 |
10.00Мб |
123 - Analyzing the Sentiment of a Sentence.mp4 |
14.39Мб |
124 - Identifying Patterns in Text Using Topic Modelling.mp4 |
19.76Мб |
125 - Reading and Plotting Audio Data.mp4 |
9.35Мб |
126 - Transforming Audio Signals into the Frequency Domain.mp4 |
9.32Мб |
127 - Generating Audio Signals with Custom Parameters.mp4 |
7.64Мб |
128 - Synthesizing Music.mp4 |
9.81Мб |
129 - Extracting Frequency Domain Features.mp4 |
8.13Мб |
12 - Adding Modules to the Package.mp4 |
7.99Мб |
130 - Building Hidden Markov Models.mp4 |
9.60Мб |
131 - Building a Speech Recognizer.mp4 |
12.94Мб |
132 - Transforming Data into the Time Series Format.mp4 |
13.23Мб |
133 - Slicing Time Series Data.mp4 |
5.32Мб |
134 - Operating on Time Series Data.mp4 |
6.79Мб |
135 - Extracting Statistics from Time Series.mp4 |
10.76Мб |
136 - Building Hidden Markov Models for Sequential Data.mp4 |
17.70Мб |
137 - Building Conditional Random Fields for Sequential Text Data.mp4 |
19.05Мб |
138 - Analyzing Stock Market Data with Hidden Markov Models.mp4 |
11.84Мб |
139 - Operating on Images Using OpenCV-Python.mp4 |
16.06Мб |
13 - Importing One of the Package's Modules from Another.mp4 |
9.29Мб |
140 - Detecting Edges.mp4 |
13.63Мб |
141 - Histogram Equalization.mp4 |
11.46Мб |
142 - Detecting Corners and SIFT Feature Points.mp4 |
16.86Мб |
143 - Building a Star Feature Detector.mp4 |
7.35Мб |
144 - Creating Features Using Visual Codebook and Vector Quantization.mp4 |
19.96Мб |
145 - Training an Image Classifier Using Extremely Random Forests.mp4 |
11.41Мб |
146 - Building an object recognizer.mp4 |
7.72Мб |
147 - Capturing and Processing Video from a Webcam.mp4 |
6.95Мб |
148 - Building a Face Detector using Haar Cascades.mp4 |
11.01Мб |
149 - Building Eye and Nose Detectors.mp4 |
8.23Мб |
14 - Adding Static Data Files to the Package.mp4 |
4.54Мб |
150 - Performing Principal Component Analysis.mp4 |
7.98Мб |
151 - Performing Kernel Principal Component Analysis.mp4 |
8.42Мб |
152 - Performing Blind Source Separation.mp4 |
10.05Мб |
153 - Building a Face Recognizer Using a Local Binary Patterns Histogram.mp4 |
20.53Мб |
154 - Building a Perceptron.mp4 |
9.19Мб |
155 - Building a Single-Layer Neural Network.mp4 |
5.93Мб |
156 - Building a deep neural network.mp4 |
9.15Мб |
157 - Creating a Vector Quantizer.mp4 |
8.36Мб |
158 - Building a Recurrent Neural Network for Sequential Data Analysis.mp4 |
10.18Мб |
159 - Visualizing the Characters in an Optical Character Recognition Database.mp4 |
5.17Мб |
15 - PEP 8 and Writing Readable Code.mp4 |
23.79Мб |
160 - Building an Optical Character Recognizer Using Neural Networks.mp4 |
10.37Мб |
161 - Plotting 3D Scatter plots.mp4 |
8.03Мб |
162 - Plotting Bubble Plots.mp4 |
3.66Мб |
163 - Animating Bubble Plots.mp4 |
9.43Мб |
164 - Drawing Pie Charts.mp4 |
5.57Мб |
165 - Plotting Date-Formatted Time Series Data.mp4 |
5.96Мб |
166 - Plotting Histograms.mp4 |
3.67Мб |
167 - Visualizing Heat Maps.mp4 |
4.00Мб |
168 - Animating Dynamic Signals.mp4 |
6.79Мб |
169 - The Course Overview.mp4 |
17.84Мб |
16 - Using Version Control.mp4 |
16.75Мб |
170 - What Is Deep Learning.mp4 |
7.37Мб |
171 - Open Source Libraries for Deep Learning.mp4 |
21.33Мб |
172 - Deep Learning Hello World! Classifying the MNIST Data.mp4 |
34.69Мб |
173 - Introduction to Backpropagation.mp4 |
9.32Мб |
174 - Understanding Deep Learning with Theano.mp4 |
19.26Мб |
175 - Optimizing a Simple Model in Pure Theano.mp4 |
33.58Мб |
176 - Keras Behind the Scenes.mp4 |
24.43Мб |
177 - Fully Connected or Dense Layers.mp4 |
21.89Мб |
178 - Convolutional and Pooling Layers.mp4 |
25.35Мб |
179 - Large Scale Datasets, ImageNet, and Very Deep Neural Networks.mp4 |
20.32Мб |
17 - Using venv to Create a Stable and Isolated Work Area.mp4 |
8.15Мб |
180 - Loading Pre-trained Models with Theano.mp4 |
23.52Мб |
181 - Reusing Pre-trained Models in New Applications.mp4 |
31.83Мб |
182 - Theano for Loops – the scan Module.mp4 |
19.47Мб |
183 - Recurrent Layers.mp4 |
24.84Мб |
184 - Recurrent Versus Convolutional Layers.mp4 |
6.58Мб |
185 - Recurrent Networks –Training a Sentiment Analysis Model for Text.mp4 |
29.72Мб |
186 - Bonus Challenge – Automatic Image Captioning.mp4 |
21.25Мб |
187 - Captioning TensorFlow – Google's Machine Learning Library.mp4 |
21.61Мб |
18 - Getting the Most Out of docstrings 1 - PEP 257 and docutils.mp4 |
38.58Мб |
19 - Getting the Most Out of docstrings 2 - doctest.mp4 |
7.42Мб |
20 - Making a Package Executable via python -m.mp4 |
9.19Мб |
21 - Handling Command-Line Arguments with argparse.mp4 |
12.23Мб |
22 - Interacting with the User.mp4 |
8.64Мб |
23 - Executing Other Programs with Subprocess.mp4 |
45.53Мб |
24 - Using Shell Scripts or Batch Files to Run Our Programs.mp4 |
4.62Мб |
25 - Using concurrent.futures.mp4 |
46.73Мб |
26 - Using Multiprocessing.mp4 |
21.90Мб |
27 - Understanding Why This Isn't Like Parallel Processing.mp4 |
17.40Мб |
28 - Using the asyncio Event Loop and Coroutine Scheduler.mp4 |
13.35Мб |
29 - Waiting for Data to Become Available.mp4 |
6.66Мб |
30 - Synchronizing Multiple Tasks.mp4 |
13.32Мб |
31 - Communicating Across the Network.mp4 |
11.34Мб |
32 - Using Function Decorators.mp4 |
12.98Мб |
33 - Function Annotations.mp4 |
13.61Мб |
34 - Class Decorators.mp4 |
11.44Мб |
35 - Metaclasses.mp4 |
9.83Мб |
36 - Context Managers.mp4 |
11.35Мб |
37 - Descriptors.mp4 |
19.63Мб |
38 - Understanding the Principles of Unit Testing.mp4 |
8.50Мб |
39 - Using the unittest Package.mp4 |
17.13Мб |
40 - Using unittest.mock.mp4 |
10.55Мб |
41 - Using unittest's Test Discovery.mp4 |
9.72Мб |
42 - Using Nose for Unified Test Discover and Reporting.mp4 |
11.00Мб |
43 - What Does Reactive Programming Mean.mp4 |
4.82Мб |
44 - Building a Simple Reactive Programming Framework.mp4 |
14.64Мб |
45 - Using the Reactive Extensions for Python (RxPY).mp4 |
33.64Мб |
46 - Microservices and the Advantages of Process Isolation.mp4 |
8.20Мб |
47 - Building a High-Level Microservice with Flask.mp4 |
24.79Мб |
48 - Building a Low-Level Microservice with nameko.mp4 |
12.78Мб |
49 - Advantages and Disadvantages of Compiled Code.mp4 |
10.42Мб |
50 - Accessing a Dynamic Library Using ctypes.mp4 |
14.92Мб |
51 - Interfacing with C Code Using Cython.mp4 |
27.33Мб |
52 - The Course Overview.mp4 |
9.69Мб |
53 - Brief Introduction to Data Mining.mp4 |
8.59Мб |
54 - Data Mining Basic Concepts and Applications.mp4 |
14.24Мб |
55 - Why Python.mp4 |
5.22Мб |
56 - Basics of Python.mp4 |
9.58Мб |
57 - Installing IPython.mp4 |
3.88Мб |
58 - Installing the Numpy Library.mp4 |
8.80Мб |
59 - Installing the pandas Library.mp4 |
14.97Мб |
60 - Installing Matplotlib.mp4 |
11.96Мб |
61 - Installing scikit-learn.mp4 |
3.75Мб |
62 - Data Cleaning.mp4 |
9.19Мб |
63 - Data Preprocessing Techniques.mp4 |
8.41Мб |
64 - Linear Regression Basic Model Approach.mp4 |
14.03Мб |
65 - Evaluating Regression Models.mp4 |
9.14Мб |
66 - Basic Regression Model Implementation to Predict House Prices.mp4 |
35.83Мб |
67 - Regression Model Implementation to Predict Television Show Viewers.mp4 |
40.35Мб |
68 - Logistic Regression.mp4 |
6.92Мб |
69 - K – Nearest Neighbors Classifier.mp4 |
8.89Мб |
70 - Support Vector Machine.mp4 |
9.40Мб |
71 - Logistic Regression Model Implementation.mp4 |
47.17Мб |
72 - K – Nearest Neighbor Classifier Implementation.mp4 |
38.31Мб |
73 - Preprocessing Data Using Different Techniques.mp4 |
26.46Мб |
74 - Label Encoding.mp4 |
10.54Мб |
75 - Building a Linear Regressor.mp4 |
19.66Мб |
76 - Regression Accuracy and Model Persistence.mp4 |
17.50Мб |
77 - Building a Ridge Regressor.mp4 |
12.30Мб |
78 - Building a Polynomial Regressor.mp4 |
11.43Мб |
79 - Estimating housing prices.mp4 |
16.90Мб |
80 - Computing relative importance of features.mp4 |
7.58Мб |
81 - Estimating bicycle demand distribution.mp4 |
17.97Мб |
82 - Building a Simple Classifier.mp4 |
12.21Мб |
83 - Building a Logistic Regression Classifier.mp4 |
20.20Мб |
84 - Building a Naive Bayes’ Classifier.mp4 |
8.74Мб |
85 - Splitting the Dataset for Training and Testing.mp4 |
6.14Мб |
86 - Evaluating the Accuracy Using Cross-Validation.mp4 |
8.21Мб |
87 - Visualizing the Confusion Matrix and Extracting the Performance Report.mp4 |
15.79Мб |
88 - Evaluating Cars based on Their Characteristics.mp4 |
23.16Мб |
89 - Extracting Validation Curves.mp4 |
14.08Мб |
90 - Extracting Learning Curves.mp4 |
7.31Мб |
91 - Extracting the Income Bracket.mp4 |
15.04Мб |
92 - Building a Linear Classifier Using Support Vector Machine.mp4 |
20.20Мб |
93 - Building Nonlinear Classifier Using SVMs.mp4 |
8.00Мб |
94 - Tackling Class Imbalance.mp4 |
13.30Мб |
95 - Extracting Confidence Measurements.mp4 |
12.01Мб |
96 - Finding Optimal Hyper-Parameters.mp4 |
10.42Мб |
97 - Building an Event Predictor.mp4 |
16.95Мб |
98 - Estimating Traffic.mp4 |
10.82Мб |
99 - Clustering Data Using the k-means Algorithm.mp4 |
13.45Мб |
Data Mining with Python- Implementing Classification and Regression.zip |
16.77Кб |
Deep Learning with Python [Video].zip |
590.78Кб |
Mastering Python - Second Edition [Video].zip |
35.83Кб |
Python Machine Learning Solutions [Video].zip |
57.83Мб |