Общая информация
Название [FreeCourseSite.com] Udemy - A deep understanding of deep learning (with Python intro)
Тип
Размер 21.10Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[CourseClub.ME].url 122б
[FCS Forum].url 133б
[FreeCourseSite.com].url 127б
[GigaCourse.Com].url 49б
001 Anatomy of a torch dataset and dataloader.en.srt 26.46Кб
001 Anatomy of a torch dataset and dataloader.mp4 135.84Мб
001 Bonus content.html 4.45Кб
001 Convolution_ concepts.en.srt 32.50Кб
001 Convolution_ concepts.mp4 98.06Мб
001 Downloading and using the code.en.srt 9.41Кб
001 Downloading and using the code.mp4 45.65Мб
001 Explanation of weight matrix sizes.en.srt 17.18Кб
001 Explanation of weight matrix sizes.mp4 68.98Мб
001 GAN_ What, why, and how.en.srt 23.51Кб
001 GAN_ What, why, and how.mp4 89.74Мб
001 How to learn from the Python tutorial.en.srt 4.83Кб
001 How to learn from the Python tutorial.mp4 21.97Мб
001 How to learn from this course.mp4 54.97Мб
001 How to learn topic _X_ in deep learning_.en.srt 12.32Кб
001 How to learn topic _X_ in deep learning_.mp4 42.03Мб
001 If-else statements.en.srt 21.71Кб
001 If-else statements.mp4 66.80Мб
001 Indexing.en.srt 18.10Кб
001 Indexing.mp4 51.07Мб
001 Inputs and outputs.en.srt 10.56Кб
001 Inputs and outputs.mp4 29.49Мб
001 Introduction to this section.en.srt 2.90Кб
001 Introduction to this section.mp4 11.12Мб
001 Overview of gradient descent.en.srt 20.89Кб
001 Overview of gradient descent.mp4 68.44Мб
001 Printing and string interpolation.en.srt 24.33Кб
001 Printing and string interpolation.mp4 94.83Мб
001 Project 1_ A gratuitously complex adding machine.en.srt 10.75Кб
001 Project 1_ A gratuitously complex adding machine.mp4 48.55Мб
001 Project 1_ Import and classify CIFAR10.en.srt 10.56Кб
001 Project 1_ Import and classify CIFAR10.mp4 48.36Мб
001 Regularization_ Concept and methods.en.srt 19.02Кб
001 Regularization_ Concept and methods.mp4 80.05Мб
001 Should you watch the Python tutorial_.en.srt 6.14Кб
001 Should you watch the Python tutorial_.mp4 23.77Мб
001 The canonical CNN architecture.en.srt 15.68Кб
001 The canonical CNN architecture.mp4 55.83Мб
001 The perceptron and ANN architecture.en.srt 26.80Кб
001 The perceptron and ANN architecture.mp4 83.64Мб
001 Transfer learning_ What, why, and when_.en.srt 24.76Кб
001 Transfer learning_ What, why, and when_.mp4 96.61Мб
001 Two perspectives of the world.en.srt 10.32Кб
001 Two perspectives of the world.mp4 40.01Мб
001 What are _metaparameters__.en.srt 7.35Кб
001 What are _metaparameters__.mp4 32.70Мб
001 What are autoencoders and what do they do_.en.srt 16.93Кб
001 What are autoencoders and what do they do_.mp4 49.04Мб
001 What are fully-connected and feedforward networks_.en.srt 6.94Кб
001 What are fully-connected and feedforward networks_.mp4 25.53Мб
001 What is a GPU and why use it_.en.srt 22.47Кб
001 What is a GPU and why use it_.mp4 88.73Мб
001 What is an artificial neural network_.en.srt 21.30Кб
001 What is an artificial neural network_.mp4 65.38Мб
001 What is overfitting and is it as bad as they say_.en.srt 18.32Кб
001 What is overfitting and is it as bad as they say_.mp4 73.13Мб
001 What is style transfer and how does it work_.en.srt 6.35Кб
001 What is style transfer and how does it work_.mp4 40.57Мб
001 Will AI save us or destroy us_.en.srt 14.36Кб
001 Will AI save us or destroy us_.mp4 65.92Мб
002 Accuracy, precision, recall, F1.en.srt 18.08Кб
002 Accuracy, precision, recall, F1.mp4 72.57Мб
002 A geometric view of ANNs.en.srt 19.37Кб
002 A geometric view of ANNs.mp4 70.88Мб
002 A surprising demo of weight initializations.en.srt 23.89Кб
002 A surprising demo of weight initializations.mp4 121.57Мб
002 CNN to classify MNIST digits.en.srt 38.02Кб
002 CNN to classify MNIST digits.mp4 200.33Мб
002 Cross-validation.en.srt 24.96Кб
002 Cross-validation.mp4 88.19Мб
002 Data size and network size.en.srt 23.39Кб
002 Data size and network size.mp4 135.67Мб
002 Denoising MNIST.en.srt 22.79Кб
002 Denoising MNIST.mp4 118.53Мб
002 Example case studies.en.srt 9.15Кб
002 Example case studies.mp4 52.92Мб
002 Feature maps and convolution kernels.en.srt 13.96Кб
002 Feature maps and convolution kernels.mp4 70.41Мб
002 How models _learn_.en.srt 18.75Кб
002 How models _learn_.mp4 72.79Мб
002 How to read academic DL papers.en.srt 25.43Кб
002 How to read academic DL papers.mp4 141.85Мб
002 If-else statements, part 2.en.srt 22.90Кб
002 If-else statements, part 2.mp4 91.12Мб
002 Implementation.en.srt 14.81Кб
002 Implementation.mp4 76.60Мб
002 Linear GAN with MNIST.en.srt 31.99Кб
002 Linear GAN with MNIST.mp4 169.90Мб
002 My policy on code-sharing.en.srt 2.52Кб
002 My policy on code-sharing.mp4 10.24Мб
002 Plotting dots and lines.en.srt 17.70Кб
002 Plotting dots and lines.mp4 53.87Мб
002 Project 1_ My solution.en.srt 16.97Кб
002 Project 1_ My solution.en.srt 17.15Кб
002 Project 1_ My solution.mp4 99.75Мб
002 Project 1_ My solution.mp4 118.60Мб
002 Python libraries (numpy).en.srt 20.01Кб
002 Python libraries (numpy).mp4 63.39Мб
002 Slicing.en.srt 17.97Кб
002 Slicing.mp4 48.45Мб
002 Spectral theories in mathematics.en.srt 13.58Кб
002 Spectral theories in mathematics.mp4 51.06Мб
002 The _wine quality_ dataset.en.srt 25.71Кб
002 The _wine quality_ dataset.mp4 143.50Мб
002 The Gram matrix (feature activation covariance).en.srt 16.79Кб
002 The Gram matrix (feature activation covariance).mp4 66.49Мб
002 The MNIST dataset.en.srt 18.71Кб
002 The MNIST dataset.mp4 101.46Мб
002 train() and eval() modes.en.srt 10.19Кб
002 train() and eval() modes.mp4 38.34Мб
002 Transfer learning_ MNIST -_ FMNIST.en.srt 14.58Кб
002 Transfer learning_ MNIST -_ FMNIST.mp4 90.35Мб
002 Using Udemy like a pro.en.srt 12.34Кб
002 Using Udemy like a pro.mp4 54.37Мб
002 Variables.en.srt 27.29Кб
002 Variables.mp4 77.58Мб
002 What about local minima_.en.srt 17.17Кб
002 What about local minima_.mp4 67.08Мб
003 ANN math part 1 (forward prop).en.srt 17.39Кб
003 ANN math part 1 (forward prop).mp4 57.90Мб
003 APRF in code.en.srt 9.38Кб
003 APRF in code.mp4 51.79Мб
003 CNN on shifted MNIST.en.srt 12.12Кб
003 CNN on shifted MNIST.mp4 58.34Мб
003 CodeChallenge_ How many units_.en.srt 28.86Кб
003 CodeChallenge_ How many units_.mp4 135.38Мб
003 CodeChallenge_ letters to numbers.en.srt 20.54Кб
003 CodeChallenge_ letters to numbers.mp4 118.74Мб
003 CodeChallenge_ Linear GAN with FMNIST.en.srt 13.88Кб
003 CodeChallenge_ Linear GAN with FMNIST.mp4 62.73Мб
003 CodeChallenge_ Minibatch size in the wine dataset.en.srt 23.05Кб
003 CodeChallenge_ Minibatch size in the wine dataset.mp4 118.79Мб
003 CodeChallenge_ Run an experiment on the GPU.en.srt 9.81Кб
003 CodeChallenge_ Run an experiment on the GPU.mp4 52.99Мб
003 CodeChallenge_ unbalanced data.en.srt 29.32Кб
003 CodeChallenge_ unbalanced data.mp4 166.26Мб
003 Convolution in code.en.srt 30.53Кб
003 Convolution in code.mp4 173.10Мб
003 Dropout regularization.en.srt 31.17Кб
003 Dropout regularization.mp4 136.03Мб
003 DUDL_PythonCode.zip 700.80Кб
003 FFN to classify digits.en.srt 32.91Кб
003 FFN to classify digits.mp4 161.85Мб
003 For loops.en.srt 25.24Кб
003 For loops.mp4 87.13Мб
003 Generalization.en.srt 8.82Кб
003 Generalization.mp4 32.44Мб
003 Gradient descent in 1D.en.srt 24.75Кб
003 Gradient descent in 1D.mp4 119.29Мб
003 Math and printing.en.srt 26.80Кб
003 Math and printing.mp4 78.50Мб
003 Project 2_ CIFAR-autoencoder.en.srt 7.00Кб
003 Project 2_ CIFAR-autoencoder.mp4 33.37Мб
003 Project 2_ Predicting heart disease.en.srt 10.99Кб
003 Project 2_ Predicting heart disease.mp4 50.61Мб
003 Python libraries (pandas).en.srt 20.30Кб
003 Python libraries (pandas).mp4 81.19Мб
003 Some other possible ethical scenarios.en.srt 15.20Кб
003 Some other possible ethical scenarios.mp4 66.25Мб
003 Subplot geometry.en.srt 23.14Кб
003 Subplot geometry.mp4 86.78Мб
003 Terms and datatypes in math and computers.en.srt 10.68Кб
003 Terms and datatypes in math and computers.mp4 38.08Мб
003 Theory_ Why and how to initialize weights.en.srt 18.23Кб
003 Theory_ Why and how to initialize weights.mp4 79.41Мб
003 The role of DL in science and knowledge.en.srt 23.31Кб
003 The role of DL in science and knowledge.mp4 121.55Мб
003 The style transfer algorithm.en.srt 15.10Кб
003 The style transfer algorithm.mp4 67.31Мб
004 AEs for occlusion.en.srt 25.42Кб
004 AEs for occlusion.mp4 138.20Мб
004 ANN math part 2 (errors, loss, cost).en.srt 13.89Кб
004 ANN math part 2 (errors, loss, cost).mp4 48.47Мб
004 APRF example 1_ wine quality.en.srt 19.25Кб
004 APRF example 1_ wine quality.mp4 107.35Мб
004 Classify Gaussian blurs.en.srt 34.26Кб
004 Classify Gaussian blurs.mp4 185.14Мб
004 CNN GAN with Gaussians.en.srt 22.13Кб
004 CNN GAN with Gaussians.mp4 135.70Мб
004 CodeChallenge_ Binarized MNIST images.en.srt 7.37Кб
004 CodeChallenge_ Binarized MNIST images.mp4 40.78Мб
004 CodeChallenge_ unfortunate starting value.en.srt 16.00Кб
004 CodeChallenge_ unfortunate starting value.mp4 77.09Мб
004 CodeChallenge_ Weight variance inits.en.srt 18.42Кб
004 CodeChallenge_ Weight variance inits.mp4 103.96Мб
004 Converting reality to numbers.en.srt 9.57Кб
004 Converting reality to numbers.mp4 33.21Мб
004 Convolution parameters (stride, padding).en.srt 18.09Кб
004 Convolution parameters (stride, padding).mp4 66.93Мб
004 Cross-validation -- manual separation.en.srt 18.59Кб
004 Cross-validation -- manual separation.mp4 98.30Мб
004 Data normalization.en.srt 19.68Кб
004 Data normalization.mp4 59.81Мб
004 Dropout regularization in practice.en.srt 33.37Кб
004 Dropout regularization in practice.mp4 183.23Мб
004 Enumerate and zip.en.srt 16.03Кб
004 Enumerate and zip.mp4 58.59Мб
004 Famous CNN architectures.en.srt 8.70Кб
004 Famous CNN architectures.mp4 41.28Мб
004 Getting help on functions.en.srt 11.05Кб
004 Getting help on functions.mp4 48.60Мб
004 Lists (1 of 2).en.srt 20.48Кб
004 Lists (1 of 2).mp4 55.04Мб
004 Making the graphs look nicer.en.srt 26.98Кб
004 Making the graphs look nicer.mp4 107.66Мб
004 Project 2_ My solution.en.srt 27.78Кб
004 Project 2_ My solution.mp4 155.73Мб
004 Project 3_ FMNIST.en.srt 5.11Кб
004 Project 3_ FMNIST.mp4 26.45Мб
004 Running experiments to understand DL.en.srt 19.22Кб
004 Running experiments to understand DL.mp4 74.84Мб
004 Transferring the screaming bathtub.en.srt 32.28Кб
004 Transferring the screaming bathtub.mp4 216.82Мб
004 What to do about unbalanced designs_.mp4 54.21Мб
004 Will deep learning take our jobs_.en.srt 14.90Кб
004 Will deep learning take our jobs_.mp4 75.14Мб
005 Accountability and making ethical AI.en.srt 16.71Кб
005 Accountability and making ethical AI.mp4 70.06Мб
005 ANN math part 3 (backprop).en.srt 15.23Кб
005 ANN math part 3 (backprop).mp4 52.89Мб
005 APRF example 2_ MNIST.en.srt 17.17Кб
005 APRF example 2_ MNIST.mp4 98.62Мб
005 Are artificial _neurons_ like biological neurons_.en.srt 24.16Кб
005 Are artificial _neurons_ like biological neurons_.mp4 114.65Мб
005 CodeChallenge_ Data normalization.en.srt 24.48Кб
005 CodeChallenge_ Data normalization.mp4 96.25Мб
005 CodeChallenge_ Gaussians with fewer layers.en.srt 8.94Кб
005 CodeChallenge_ Gaussians with fewer layers.mp4 53.06Мб
005 CodeChallenge_ Style transfer with AlexNet.en.srt 10.47Кб
005 CodeChallenge_ Style transfer with AlexNet.mp4 53.47Мб
005 Continue.en.srt 10.09Кб
005 Continue.mp4 33.03Мб
005 Creating functions.en.srt 30.89Кб
005 Creating functions.mp4 88.43Мб
005 Cross-validation -- scikitlearn.en.srt 30.46Кб
005 Cross-validation -- scikitlearn.mp4 142.88Мб
005 Data oversampling in MNIST.en.srt 24.16Кб
005 Data oversampling in MNIST.mp4 122.59Мб
005 Dropout example 2.en.srt 9.18Кб
005 Dropout example 2.mp4 53.87Мб
005 Examine feature map activations.en.srt 40.51Кб
005 Examine feature map activations.mp4 260.56Мб
005 Gradient descent in 2D.en.srt 21.35Кб
005 Gradient descent in 2D.mp4 95.90Мб
005 Lists (2 of 2).en.srt 14.58Кб
005 Lists (2 of 2).mp4 46.69Мб
005 Project 3_ FFN for missing data interpolation.en.srt 14.38Кб
005 Project 3_ FFN for missing data interpolation.mp4 45.39Мб
005 Project 4_ Psychometric functions in CNNs.en.srt 16.88Кб
005 Project 4_ Psychometric functions in CNNs.mp4 76.27Мб
005 Seaborn.en.srt 15.73Кб
005 Seaborn.mp4 59.72Мб
005 The Conv2 class in PyTorch.en.srt 18.90Кб
005 The Conv2 class in PyTorch.mp4 100.19Мб
005 The importance of data normalization.en.srt 13.75Кб
005 The importance of data normalization.mp4 64.65Мб
005 The latent code of MNIST.en.srt 31.66Кб
005 The latent code of MNIST.mp4 161.81Мб
005 Transfer learning with ResNet-18.en.srt 24.59Кб
005 Transfer learning with ResNet-18.mp4 148.46Мб
005 Vector and matrix transpose.en.srt 10.01Кб
005 Vector and matrix transpose.mp4 37.66Мб
005 Xavier and Kaiming initializations.en.srt 22.52Кб
005 Xavier and Kaiming initializations.mp4 134.08Мб
006 ANN for regression.en.srt 35.85Кб
006 ANN for regression.mp4 135.50Мб
006 Autoencoder with tied weights.en.srt 34.83Кб
006 Autoencoder with tied weights.mp4 177.74Мб
006 Batch normalization.en.srt 18.66Кб
006 Batch normalization.mp4 76.81Мб
006 CNN GAN with FMNIST.en.srt 9.23Кб
006 CNN GAN with FMNIST.mp4 54.58Мб
006 CodeChallenge_ 2D gradient ascent.en.srt 7.53Кб
006 CodeChallenge_ 2D gradient ascent.mp4 39.36Мб
006 CodeChallenge_ Choose the parameters.en.srt 10.12Кб
006 CodeChallenge_ Choose the parameters.mp4 58.71Мб
006 CodeChallenge_ MNIST with unequal groups.en.srt 12.70Кб
006 CodeChallenge_ MNIST with unequal groups.mp4 62.37Мб
006 CodeChallenge_ Softcode internal parameters.en.srt 25.03Кб
006 CodeChallenge_ Softcode internal parameters.mp4 120.10Мб
006 CodeChallenge_ VGG-16.en.srt 5.05Кб
006 CodeChallenge_ VGG-16.mp4 20.28Мб
006 CodeChallenge_ Xavier vs. Kaiming.en.srt 24.65Кб
006 CodeChallenge_ Xavier vs. Kaiming.mp4 126.50Мб
006 Cross-validation -- DataLoader.en.srt 28.57Кб
006 Cross-validation -- DataLoader.mp4 172.32Мб
006 Data noise augmentation (with devset+test).en.srt 18.62Кб
006 Data noise augmentation (with devset+test).mp4 106.09Мб
006 Distributions of weights pre- and post-learning.en.srt 22.05Кб
006 Distributions of weights pre- and post-learning.mp4 116.26Мб
006 Global and local variable scopes.en.srt 19.67Кб
006 Global and local variable scopes.mp4 65.96Мб
006 Images.en.srt 25.75Кб
006 Images.mp4 93.56Мб
006 Initializing variables.en.srt 25.61Кб
006 Initializing variables.mp4 91.05Мб
006 OMG it's the dot product!.en.srt 13.95Кб
006 OMG it's the dot product!.mp4 50.11Мб
006 Project 3_ My solution.en.srt 11.88Кб
006 Project 3_ My solution.mp4 75.48Мб
006 Tuples.en.srt 12.04Кб
006 Tuples.mp4 35.75Мб
006 Weight regularization (L1_L2)_ math.en.srt 27.07Кб
006 Weight regularization (L1_L2)_ math.mp4 85.41Мб
007 Batch normalization in practice.en.srt 11.05Кб
007 Batch normalization in practice.mp4 61.76Мб
007 Booleans.en.srt 27.78Кб
007 Booleans.mp4 76.83Мб
007 CodeChallenge_ CNN GAN with CIFAR.en.srt 11.65Кб
007 CodeChallenge_ CNN GAN with CIFAR.mp4 60.77Мб
007 CodeChallenge_ How wide the FC_.en.srt 16.49Кб
007 CodeChallenge_ How wide the FC_.mp4 94.08Мб
007 CodeChallenge_ Identically random weights.en.srt 17.92Кб
007 CodeChallenge_ Identically random weights.mp4 88.17Мб
007 CodeChallenge_ manipulate regression slopes.en.srt 28.31Кб
007 CodeChallenge_ manipulate regression slopes.mp4 139.12Мб
007 CodeChallenge_ MNIST and breadth vs. depth.en.srt 17.73Кб
007 CodeChallenge_ MNIST and breadth vs. depth.mp4 95.21Мб
007 Computation time.en.srt 14.26Кб
007 Computation time.mp4 81.73Мб
007 Copies and referents of variables.en.srt 7.24Кб
007 Copies and referents of variables.mp4 23.78Мб
007 Data feature augmentation.en.srt 28.32Кб
007 Data feature augmentation.mp4 158.27Мб
007 Export plots in low and high resolution.en.srt 11.37Кб
007 Export plots in low and high resolution.mp4 43.57Мб
007 L2 regularization in practice.en.srt 18.97Кб
007 L2 regularization in practice.mp4 110.47Мб
007 Matrix multiplication.en.srt 20.60Кб
007 Matrix multiplication.mp4 85.67Мб
007 Parametric experiments on g.d.en.srt 27.15Кб
007 Parametric experiments on g.d.mp4 135.61Мб
007 Pretraining with autoencoders.en.srt 28.75Кб
007 Pretraining with autoencoders.mp4 156.58Мб
007 Single-line loops (list comprehension).en.srt 21.74Кб
007 Single-line loops (list comprehension).mp4 75.14Мб
007 Splitting data into train, devset, test.en.srt 13.82Кб
007 Splitting data into train, devset, test.mp4 79.21Мб
007 Transpose convolution.en.srt 19.91Кб
007 Transpose convolution.mp4 92.89Мб
008 ANN for classifying qwerties.en.srt 34.00Кб
008 ANN for classifying qwerties.mp4 151.12Мб
008 Better performance in test than train_.en.srt 11.95Кб
008 Better performance in test than train_.mp4 44.83Мб
008 CIFAR10 with autoencoder-pretrained model.en.srt 25.89Кб
008 CIFAR10 with autoencoder-pretrained model.mp4 153.34Мб
008 Classes and object-oriented programming.en.srt 26.60Кб
008 Classes and object-oriented programming.mp4 108.18Мб
008 CodeChallenge_ Batch-normalize the qwerties.en.srt 7.52Кб
008 CodeChallenge_ Batch-normalize the qwerties.mp4 41.43Мб
008 CodeChallenge_ fixed vs. dynamic learning rate.en.srt 23.05Кб
008 CodeChallenge_ fixed vs. dynamic learning rate.mp4 114.56Мб
008 CodeChallenge_ Optimizers and MNIST.en.srt 9.92Кб
008 CodeChallenge_ Optimizers and MNIST.mp4 46.26Мб
008 Cross-validation on regression.en.srt 11.99Кб
008 Cross-validation on regression.mp4 60.35Мб
008 Dictionaries.en.srt 17.06Кб
008 Dictionaries.mp4 50.67Мб
008 Do autoencoders clean Gaussians_.en.srt 24.39Кб
008 Do autoencoders clean Gaussians_.mp4 147.88Мб
008 Freezing weights during learning.en.srt 19.25Кб
008 Freezing weights during learning.mp4 93.15Мб
008 Getting data into colab.en.srt 8.85Кб
008 Getting data into colab.mp4 43.75Мб
008 L1 regularization in practice.en.srt 17.44Кб
008 L1 regularization in practice.mp4 99.44Мб
008 Max_mean pooling.en.srt 26.69Кб
008 Max_mean pooling.mp4 89.07Мб
008 Softmax.en.srt 27.76Кб
008 Softmax.mp4 95.96Мб
008 while loops.en.srt 27.94Кб
008 while loops.mp4 91.10Мб
009 Activation functions.en.srt 26.49Кб
009 Activation functions.mp4 97.03Мб
009 Broadcasting in numpy.en.srt 21.34Кб
009 Broadcasting in numpy.mp4 71.05Мб
009 CodeChallenge_ AEs and occluded Gaussians.en.srt 14.03Кб
009 CodeChallenge_ AEs and occluded Gaussians.mp4 89.45Мб
009 Learning rates comparison.en.srt 36.24Кб
009 Learning rates comparison.mp4 168.64Мб
009 Learning-related changes in weights.en.srt 32.77Кб
009 Learning-related changes in weights.mp4 146.78Мб
009 Logarithms.en.srt 11.47Кб
009 Logarithms.mp4 43.88Мб
009 Pooling in PyTorch.en.srt 19.63Кб
009 Pooling in PyTorch.mp4 81.02Мб
009 Save and load trained models.en.srt 8.95Кб
009 Save and load trained models.mp4 55.71Мб
009 Scrambled MNIST.en.srt 11.24Кб
009 Scrambled MNIST.mp4 60.17Мб
009 Training in mini-batches.en.srt 16.88Кб
009 Training in mini-batches.mp4 62.12Мб
009 Vanishing and exploding gradients.en.srt 9.06Кб
009 Vanishing and exploding gradients.mp4 30.24Мб
010 Activation functions in PyTorch.en.srt 16.95Кб
010 Activation functions in PyTorch.mp4 91.46Мб
010 Batch training in action.en.srt 15.65Кб
010 Batch training in action.mp4 89.10Мб
010 CodeChallenge_ Custom loss functions.en.srt 29.89Кб
010 CodeChallenge_ Custom loss functions.mp4 132.89Мб
010 Entropy and cross-entropy.mp4 106.00Мб
010 Function error checking and handling.en.srt 25.36Кб
010 Function error checking and handling.mp4 99.87Мб
010 Multilayer ANN.en.srt 29.40Кб
010 Multilayer ANN.mp4 144.70Мб
010 Save the best-performing model.en.srt 21.98Кб
010 Save the best-performing model.mp4 126.50Мб
010 Shifted MNIST.en.srt 16.47Кб
010 Shifted MNIST.mp4 77.91Мб
010 Tangent_ Notebook revision history.en.srt 2.76Кб
010 Tangent_ Notebook revision history.mp4 22.18Мб
010 To pool or to stride_.en.srt 14.28Кб
010 To pool or to stride_.mp4 55.51Мб
010 Use default inits or apply your own_.en.srt 6.34Кб
010 Use default inits or apply your own_.mp4 28.05Мб
011 Activation functions comparison.en.srt 13.59Кб
011 Activation functions comparison.mp4 73.90Мб
011 CodeChallenge_ The mystery of the missing 7.en.srt 15.78Кб
011 CodeChallenge_ The mystery of the missing 7.mp4 74.25Мб
011 Discover the Gaussian parameters.en.srt 23.25Кб
011 Discover the Gaussian parameters.mp4 136.65Мб
011 Image transforms.en.srt 23.92Кб
011 Image transforms.mp4 129.90Мб
011 Linear solutions to linear problems.en.srt 12.17Кб
011 Linear solutions to linear problems.mp4 50.37Мб
011 Min_max and argmin_argmax.en.srt 18.16Кб
011 Min_max and argmin_argmax.mp4 88.21Мб
011 The importance of equal batch sizes.en.srt 9.47Кб
011 The importance of equal batch sizes.mp4 60.11Мб
011 Where to find online datasets.en.srt 8.19Кб
011 Where to find online datasets.mp4 41.70Мб
012 CodeChallenge_ Compare relu variants.en.srt 11.29Кб
012 CodeChallenge_ Compare relu variants.mp4 63.97Мб
012 CodeChallenge_ Effects of mini-batch size.en.srt 18.09Кб
012 CodeChallenge_ Effects of mini-batch size.mp4 95.42Мб
012 Creating and using custom DataLoaders.en.srt 26.50Кб
012 Creating and using custom DataLoaders.mp4 139.53Мб
012 Mean and variance.en.srt 22.48Кб
012 Mean and variance.mp4 80.57Мб
012 The EMNIST dataset (letter recognition).en.srt 36.14Кб
012 The EMNIST dataset (letter recognition).mp4 201.31Мб
012 Universal approximation theorem.en.srt 11.70Кб
012 Universal approximation theorem.mp4 49.18Мб
012 Why multilayer linear models don't exist.en.srt 9.21Кб
012 Why multilayer linear models don't exist.mp4 26.46Мб
013 CodeChallenge_ Predict sugar.en.srt 24.98Кб
013 CodeChallenge_ Predict sugar.mp4 122.10Мб
013 Dropout in CNNs.en.srt 14.17Кб
013 Dropout in CNNs.mp4 82.73Мб
013 Multi-output ANN (iris dataset).en.srt 37.47Кб
013 Multi-output ANN (iris dataset).mp4 186.77Мб
013 Random sampling and sampling variability.en.srt 16.36Кб
013 Random sampling and sampling variability.mp4 85.42Мб
014 CodeChallenge_ How low can you go_.en.srt 9.95Кб
014 CodeChallenge_ How low can you go_.mp4 55.36Мб
014 CodeChallenge_ more qwerties!.en.srt 17.79Кб
014 CodeChallenge_ more qwerties!.mp4 95.10Мб
014 Loss functions.en.srt 24.18Кб
014 Loss functions.mp4 90.30Мб
014 Reproducible randomness via seeding.en.srt 11.76Кб
014 Reproducible randomness via seeding.mp4 69.70Мб
015 CodeChallenge_ Varying number of channels.en.srt 19.61Кб
015 CodeChallenge_ Varying number of channels.mp4 92.37Мб
015 Comparing the number of hidden units.en.srt 14.62Кб
015 Comparing the number of hidden units.mp4 71.15Мб
015 Loss functions in PyTorch.en.srt 26.87Кб
015 Loss functions in PyTorch.mp4 138.10Мб
015 The t-test.en.srt 19.38Кб
015 The t-test.mp4 81.36Мб
016 Depth vs. breadth_ number of parameters.en.srt 25.73Кб
016 Depth vs. breadth_ number of parameters.mp4 132.07Мб
016 Derivatives_ intuition and polynomials.en.srt 24.42Кб
016 Derivatives_ intuition and polynomials.mp4 80.30Мб
016 More practice with multioutput ANNs.en.srt 20.32Кб
016 More practice with multioutput ANNs.mp4 99.80Мб
016 So many possibilities! How to create a CNN_.en.srt 6.51Кб
016 So many possibilities! How to create a CNN_.mp4 21.04Мб
017 Defining models using sequential vs. class.en.srt 19.17Кб
017 Defining models using sequential vs. class.mp4 89.48Мб
017 Derivatives find minima.en.srt 12.19Кб
017 Derivatives find minima.mp4 45.47Мб
017 Optimizers (minibatch, momentum).mp4 98.07Мб
018 Derivatives_ product and chain rules.en.srt 13.53Кб
018 Derivatives_ product and chain rules.mp4 55.63Мб
018 Model depth vs. breadth.en.srt 30.90Кб
018 Model depth vs. breadth.mp4 158.91Мб
018 SGD with momentum.en.srt 11.58Кб
018 SGD with momentum.mp4 62.10Мб
019 CodeChallenge_ convert sequential to class.en.srt 9.73Кб
019 CodeChallenge_ convert sequential to class.mp4 51.44Мб
019 Optimizers (RMSprop, Adam).en.srt 22.06Кб
019 Optimizers (RMSprop, Adam).mp4 76.73Мб
020 Diversity of ANN visual representations.html 1.40Кб
020 Optimizers comparison.en.srt 14.64Кб
020 Optimizers comparison.mp4 86.88Мб
021 CodeChallenge_ Optimizers and... something.en.srt 9.36Кб
021 CodeChallenge_ Optimizers and... something.mp4 49.77Мб
021 Reflection_ Are DL models understandable yet_.en.srt 12.37Кб
021 Reflection_ Are DL models understandable yet_.mp4 58.59Мб
022 CodeChallenge_ Adam with L2 regularization.en.srt 10.30Кб
022 CodeChallenge_ Adam with L2 regularization.mp4 53.00Мб
023 Learning rate decay.en.srt 17.91Кб
023 Learning rate decay.mp4 96.90Мб
024 How to pick the right metaparameters.en.srt 16.65Кб
024 How to pick the right metaparameters.mp4 61.74Мб
Статистика распространения по странам
Всего 0
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент