Общая информация
Название machlearning-001
Тип
Размер 5.26Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
01_Bayesian_Methods.mp4 20.48Мб
01_Class_Information.mp4 25.27Мб
01_Clustering_and_Dimensionality_Reduction.mp4 34.03Мб
01_Decision_Trees.mp4 41.30Мб
01_Learning_Theory.mp4 12.80Мб
01_Model_Ensembles.mp4 13.35Мб
01_Reverse-Engineering_the_Brain.mp4 52.70Мб
01_Rules_vs._Decision_Trees.mp4 67.21Мб
01_Support_Vector_Machines.mp4 30.82Мб
01_The_K-Nearest_Neighbor_Algorithm.mp4 69.21Мб
02_Bagging.mp4 38.00Мб
02_Bayes_Theorem_and_MAP_Hypotheses.mp4 102.33Мб
02_K-Means_Clustering.mp4 44.37Мб
02_Learning_a_Set_of_Rules.mp4 50.41Мб
02_Neural_Network_Driving_a_Car.mp4 46.67Мб
02_No_Free_Lunch_Theorems.mp4 59.89Мб
02_Perceptrons_as_Instance-Based_Learning.mp4 51.77Мб
02_Theoretical_Guarantees_on_k-NN.mp4 43.24Мб
02_What_Can_a_Decision_Tree_Represent.mp4 27.24Мб
02_What_Is_Machine_Learning.mp4 38.85Мб
03_Applications_of_Machine_Learning.mp4 39.90Мб
03_Basic_Probability_Formulas.mp4 24.03Мб
03_Boosting-_The_Basics.mp4 34.22Мб
03_Distance-Weighted_k-NN.mp4 12.05Мб
03_Estimating_Probabilities_from_Small_Samples.mp4 36.45Мб
03_Growing_a_Decision_Tree.mp4 27.13Мб
03_How_Neurons_Work.mp4 34.52Мб
03_Kernels.mp4 67.50Мб
03_Mixture_Models.mp4 53.02Мб
03_Practical_Consequences_of_No_Free_Lunch.mp4 34.98Мб
04_Accuracy_and_Information_Gain.mp4 86.19Мб
04_Bias_and_Variance.mp4 77.17Мб
04_Boosting-_The_Details.mp4 49.38Мб
04_Key_Elements_of_Machine_Learning.mp4 76.56Мб
04_Learning_Rules_for_Multiple_Classes.mp4 22.69Мб
04_Learning_SVMs.mp4 64.76Мб
04_MAP_Learning.mp4 57.72Мб
04_Mixtures_of_Gaussians.mp4 20.75Мб
04_The_Curse_of_Dimensionality.mp4 58.65Мб
04_The_Perceptron.mp4 50.93Мб
05_Bias-Variance_Decomposition_for_Squared_Loss.mp4 15.85Мб
05_Constrained_Optimization.mp4 75.23Мб
05_EM_Algorithm_for_Mixtures_of_Gaussians.mp4 43.26Мб
05_Error-Correcting_Output_Coding.mp4 39.36Мб
05_Feature_Selection_and_Weighting.mp4 47.79Мб
05_First-Order_Rules.mp4 45.12Мб
05_Learning_a_Real-Valued_Function.mp4 43.55Мб
05_Learning_with_Non-Boolean_Features.mp4 25.36Мб
05_Perceptron_Training.mp4 48.61Мб
05_Types_of_Learning.mp4 61.34Мб
06_Bayes_Optimal_Classifier_and_Gibbs_Classifier.mp4 40.40Мб
06_General_Bias-Variance_Decomposition.mp4 43.90Мб
06_Gradient_Descent.mp4 36.77Мб
06_Learning_First-Order_Rules_Using_FOIL.mp4 97.29Мб
06_Machine_Learning_in_Practice.mp4 46.47Мб
06_Mixture_Models_vs._K-Means_vs._Bayesian_Networks.mp4 27.96Мб
06_Optimization_with_Inequality_Constraints.mp4 52.86Мб
06_Reducing_the_Computational_Cost_of_k-NN.mp4 44.76Мб
06_Stacking.mp4 42.27Мб
06_The_Parity_Problem.mp4 19.14Мб
07_Avoiding_Overfitting_in_k-NN.mp4 26.17Мб
07_Bias-Variance_Decomposition_for_Zero-One_Loss.mp4 25.60Мб
07_Gradient_Descent_Continued.mp4 37.40Мб
07_Hierarchical_Clustering.mp4 19.67Мб
07_Induction_as_Inverted_Deduction.mp4 74.55Мб
07_Learning_with_Many-Valued_Attributes.mp4 22.52Мб
07_The_Naive_Bayes_Classifier.mp4 102.43Мб
07_The_SMO_Algorithm.mp4 24.18Мб
07_What_Is_Inductive_Learning.mp4 14.93Мб
08_Bias_and_Variance_for_Other_Loss_Functions.mp4 15.83Мб
08_Gradient_Descent_vs._Perceptron_Training.mp4 24.72Мб
08_Handling_Noisy_Data_in_SVMs.mp4 55.10Мб
08_Inverting_Propositional_Resolution.mp4 63.90Мб
08_Learning_with_Missing_Values.mp4 37.86Мб
08_Locally_Weighted_Regression.mp4 20.03Мб
08_Principal_Components_Analysis.mp4 58.25Мб
08_Text_Classification.mp4 42.98Мб
08_When_Should_You_Use_Inductive_Learning.mp4 27.91Мб
09_Bayesian_Networks.mp4 93.07Мб
09_Generalization_Bounds_for_SVMs.mp4 41.28Мб
09_Inverting_First-Order_Resolution.mp4 86.69Мб
09_Multidimensional_Scaling.mp4 28.35Мб
09_PAC_Learning.mp4 40.03Мб
09_Radial_Basis_Function_Networks.mp4 13.34Мб
09_Stochastic_Gradient_Descent.mp4 18.20Мб
09_The_Essence_of_Inductive_Learning.mp4 99.08Мб
09_The_Overfitting_Problem.mp4 48.33Мб
10_A_Framework_for_Studying_Inductive_Learning.mp4 94.53Мб
10_Case-Based_Reasoning.mp4 16.04Мб
10_Decision_Tree_Pruning.mp4 79.50Мб
10_How_Many_Examples_Are_Enough.mp4 54.99Мб
10_Inference_in_Bayesian_Networks.mp4 15.43Мб
10_Multilayer_Perceptrons.mp4 61.83Мб
10_Nonlinear_Dimensionality_Reduction.mp4 45.61Мб
11_Backpropagation.mp4 81.95Мб
11_Bayesian_Network_Review.mp4 16.45Мб
11_Examples_and_Definition_of_PAC_Learning.mp4 17.34Мб
11_Lazy_vs._Eager_Learning.mp4 11.32Мб
11_Post-Pruning_Trees_to_Rules.mp4 94.41Мб
12_Agnostic_Learning.mp4 45.76Мб
12_Collaborative_Filtering.mp4 70.53Мб
12_Issues_in_Backpropagation.mp4 100.65Мб
12_Learning_Bayesian_Networks.mp4 15.38Мб
12_Scaling_Up_Decision_Tree_Learning.mp4 27.95Мб
13_Learning_Hidden_Layer_Representations.mp4 57.15Мб
13_The_EM_Algorithm.mp4 53.92Мб
13_VC_Dimension.mp4 39.97Мб
14_Example_of_EM.mp4 55.26Мб
14_Expressiveness_of_Neural_Networks.mp4 29.44Мб
14_VC_Dimension_of_Hyperplanes.mp4 39.28Мб
15_Avoiding_Overfitting_in_Neural_Networks.mp4 37.83Мб
15_Learning_Bayesian_Network_Structure.mp4 71.49Мб
15_Sample_Complexity_from_VC_Dimension.mp4 7.72Мб
16_The_Structural_EM_Algorithm.mp4 286.36Мб
entered_login.html 1.31Мб
Статистика распространения по странам
США (US) 7
Франция (FR) 3
Великобритания (GB) 2
Южная Корея (KR) 2
Венгрия (HU) 1
Китай (CN) 1
Чешская Республика (CZ) 1
Россия (RU) 1
Бразилия (BR) 1
Всего 19
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент