Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
[TGx]Downloaded from torrentgalaxy.to .txt |
585б |
0 |
177.41Кб |
001 Course material.html |
58б |
001 First steps in Python_en.vtt |
6.43Кб |
001 First steps in Python.mp4 |
13.67Мб |
001 Floating point numbers_en.vtt |
9.14Кб |
001 Floating point numbers.mp4 |
24.48Мб |
001 Gaussian elimination implementation I_en.vtt |
11.52Кб |
001 Gaussian elimination implementation I.mp4 |
35.67Мб |
001 Graph representation of the WWW_en.vtt |
6.51Кб |
001 Graph representation of the WWW.mp4 |
25.06Мб |
001 How to deal with differential equations_en.vtt |
9.79Кб |
001 How to deal with differential equations.mp4 |
24.50Мб |
001 How to measure the running time of algorithms_en.vtt |
12.61Кб |
001 How to measure the running time of algorithms.mp4 |
37.29Мб |
001 Integration introduction_en.vtt |
3.81Кб |
001 Integration introduction.mp4 |
10.91Мб |
001 Introduction_en.vtt |
2.44Кб |
001 Introduction.mp4 |
13.60Мб |
001 Matrix multiplication introduction_en.vtt |
5.06Кб |
001 Matrix multiplication introduction.mp4 |
12.46Мб |
001 numerical-methods.zip |
3.32Мб |
001 Portfolio optimization introduction_en.vtt |
4.03Кб |
001 Portfolio optimization introduction.mp4 |
13.13Мб |
001 Python crash course introduction.html |
441б |
001 Root of functions introduction_en.vtt |
4.06Кб |
001 Root of functions introduction.mp4 |
12.28Мб |
001 What are eigenvalues and eigenvectors_en.vtt |
5.95Кб |
001 What are eigenvalues and eigenvectors.mp4 |
14.38Мб |
001 What are functions_en.vtt |
5.22Кб |
001 What are functions.mp4 |
17.29Мб |
001 What is Gaussian elimination_en.vtt |
6.82Кб |
001 What is Gaussian elimination.mp4 |
16.82Мб |
001 What is gradient descent_en.vtt |
7.90Кб |
001 What is gradient descent.mp4 |
27.80Мб |
001 What is interpolation_en.vtt |
10.79Кб |
001 What is interpolation.mp4 |
38.72Мб |
001 What is object oriented programming (OOP)_en.vtt |
2.86Кб |
001 What is object oriented programming (OOP).mp4 |
12.50Мб |
001 What is Pandas_en.vtt |
7.88Кб |
001 What is Pandas.mp4 |
25.43Мб |
001 What is the key advantage of NumPy_en.vtt |
5.01Кб |
001 What is the key advantage of NumPy.mp4 |
17.18Мб |
001 What is the Monte-Carlo method_en.vtt |
8.15Кб |
001 What is the Monte-Carlo method.mp4 |
30.11Мб |
002 Bisection method introduction_en.vtt |
4.78Кб |
002 Bisection method introduction.mp4 |
10.17Мб |
002 Class and objects basics_en.vtt |
3.25Кб |
002 Class and objects basics.mp4 |
10.48Мб |
002 Crawling the web with breadth-first search_en.vtt |
8.30Кб |
002 Crawling the web with breadth-first search.mp4 |
25.88Мб |
002 Creating and updating arrays_en.vtt |
8.47Кб |
002 Creating and updating arrays.mp4 |
33.76Мб |
002 Data structures introduction_en.vtt |
3.98Кб |
002 Data structures introduction.mp4 |
13.84Мб |
002 Defining functions_en.vtt |
6.14Кб |
002 Defining functions.mp4 |
18.85Мб |
002 Eigenvalues and eigenvectors implementation_en.vtt |
3.51Кб |
002 Eigenvalues and eigenvectors implementation.mp4 |
10.84Мб |
002 Euler's method introduction_en.vtt |
7.02Кб |
002 Euler's method introduction.mp4 |
12.94Мб |
002 First steps_en.vtt |
3.40Кб |
002 First steps.mp4 |
10.44Мб |
002 GaussElimination.py |
838б |
002 Gaussian elimination illustration_en.vtt |
7.85Кб |
002 Gaussian elimination illustration.mp4 |
13.62Мб |
002 Gaussian elimination implementation II_en.vtt |
8.01Кб |
002 Gaussian elimination implementation II.mp4 |
29.57Мб |
002 GradientDescent.py |
1.26Кб |
002 Gradient descent implementation_en.vtt |
11.30Кб |
002 Gradient descent implementation.mp4 |
47.54Мб |
002 Interpolation illustration_en.vtt |
6.65Кб |
002 Interpolation illustration.mp4 |
15.11Мб |
002 MatrixMultiplication.py |
496б |
002 Matrix multiplication implementation_en.vtt |
6.41Кб |
002 Matrix multiplication implementation.mp4 |
20.57Мб |
002 MonteCarloIntegral.py |
1.15Кб |
002 Monte-Carlo integral implementation I_en.vtt |
9.51Кб |
002 Monte-Carlo integral implementation I.mp4 |
39.77Мб |
002 Portfolio optimization implementation_en.vtt |
3.01Кб |
002 Portfolio optimization implementation.mp4 |
13.84Мб |
002 Precision and accuracy_en.vtt |
3.46Кб |
002 Precision and accuracy.mp4 |
9.44Мб |
002 Rectangle method introduction_en.vtt |
5.92Кб |
002 Rectangle method introduction.mp4 |
18.05Мб |
002 What are the basic data types_en.vtt |
5.59Кб |
002 What are the basic data types.mp4 |
15.70Мб |
003 Applications of eigenvectors in machine learning_en.vtt |
2.22Кб |
003 Applications of eigenvectors in machine learning.mp4 |
10.65Мб |
003 BisectionMethod.py |
360б |
003 Bisection method implementation_en.vtt |
6.44Кб |
003 Bisection method implementation.mp4 |
24.12Мб |
003 Booleans_en.vtt |
2.21Кб |
003 Booleans.mp4 |
6.78Мб |
003 Dimension of arrays_en.vtt |
10.65Кб |
003 Dimension of arrays.mp4 |
36.26Мб |
003 Euler's method example_en.vtt |
6.06Кб |
003 Euler's method example.mp4 |
19.65Мб |
003 EulerMethodExample1.py |
449б |
003 Gradient descent with momentum_en.vtt |
4.71Кб |
003 Gradient descent with momentum.mp4 |
20.02Мб |
003 Interpolation implementation I_en.vtt |
7.22Кб |
003 Interpolation implementation I.mp4 |
26.13Мб |
003 MonteCarloIntegral2.py |
676б |
003 Monte-Carlo integral implementation II_en.vtt |
5.00Кб |
003 Monte-Carlo integral implementation II.mp4 |
24.52Мб |
003 Positional arguments and keyword arguments_en.vtt |
11.69Кб |
003 Positional arguments and keyword arguments.mp4 |
46.11Мб |
003 RectangleIntegral.py |
376б |
003 Rectangle method implementation_en.vtt |
6.82Кб |
003 Rectangle method implementation.mp4 |
22.38Мб |
003 Rounding errors_en.vtt |
4.65Кб |
003 Rounding errors.mp4 |
14.12Мб |
003 Running time analysis of matrix multiplication_en.vtt |
5.56Кб |
003 Running time analysis of matrix multiplication.mp4 |
27.04Мб |
003 Series_en.vtt |
8.16Кб |
003 Series.mp4 |
26.94Мб |
003 The original formula_en.vtt |
6.69Кб |
003 The original formula.mp4 |
17.78Мб |
003 Using the constructor_en.vtt |
6.79Кб |
003 Using the constructor.mp4 |
33.59Мб |
003 What are array data structures I_en.vtt |
8.05Кб |
003 What are array data structures I.mp4 |
24.99Мб |
003 What is pivoting_en.vtt |
7.25Кб |
003 What is pivoting.mp4 |
19.76Мб |
004 Applications of Monte-Carlo simulations in finance_en.vtt |
3.29Кб |
004 Applications of Monte-Carlo simulations in finance.mp4 |
14.29Мб |
004 Class variables and instance variables_en.vtt |
4.91Кб |
004 Class variables and instance variables.mp4 |
31.01Мб |
004 DataFrames_en.vtt |
6.08Кб |
004 DataFrames.mp4 |
18.45Мб |
004 Euler's method example - pendulum_en.vtt |
12.94Кб |
004 Euler's method example - pendulum.mp4 |
34.00Мб |
004 EulerMethodExample2.py |
421б |
004 Gaussian elimination and singular matrixes_en.vtt |
4.01Кб |
004 Gaussian elimination and singular matrixes.mp4 |
8.69Мб |
004 Indexes and slicing_en.vtt |
9.38Кб |
004 Indexes and slicing.mp4 |
31.50Мб |
004 Interpolation implementation II_en.vtt |
5.50Кб |
004 Interpolation implementation II.mp4 |
30.85Мб |
004 LagrangeInterpolation.py |
2.12Кб |
004 Mathematical formulation of eigenvectors.html |
261б |
004 Matrix vector multiplication_en.vtt |
4.65Кб |
004 Matrix vector multiplication.mp4 |
13.41Мб |
004 MatrixVectorMultiplication.py |
423б |
004 Newton method introduction_en.vtt |
5.28Кб |
004 Newton method introduction.mp4 |
16.40Мб |
004 PageRank algorithm example_en.vtt |
11.20Кб |
004 PageRank algorithm example.mp4 |
24.94Мб |
004 Returning values_en.vtt |
2.71Кб |
004 Returning values.mp4 |
8.14Мб |
004 Speed consideration - C, Java and Python_en.vtt |
7.64Кб |
004 Speed consideration - C, Java and Python.mp4 |
27.51Мб |
004 Stochastic gradient descent introduction_en.vtt |
11.84Кб |
004 Stochastic gradient descent introduction.mp4 |
36.45Мб |
004 Strings_en.vtt |
8.77Кб |
004 Strings.mp4 |
28.16Мб |
004 Trapezoidal integral introduction_en.vtt |
7.74Кб |
004 Trapezoidal integral introduction.mp4 |
19.06Мб |
004 What are array data structures II_en.vtt |
8.60Кб |
004 What are array data structures II.mp4 |
24.95Мб |
005 Applications of interpolation_en.vtt |
2.90Кб |
005 Applications of interpolation.mp4 |
8.61Мб |
005 DataFrame operations_en.vtt |
10.85Кб |
005 DataFrame operations.mp4 |
41.30Мб |
005 Euler's method example - pendulum with drag_en.vtt |
4.67Кб |
005 Euler's method example - pendulum with drag.mp4 |
16.15Мб |
005 Inner product_en.vtt |
4.86Кб |
005 Inner product.mp4 |
16.56Мб |
005 InnerProduct.py |
386б |
005 Lists in Python_en.vtt |
6.42Кб |
005 Lists in Python.mp4 |
21.74Мб |
005 Mathematical formulation of Gaussian elimination.html |
345б |
005 Matrix representation of the problem_en.vtt |
9.77Кб |
005 Matrix representation of the problem.mp4 |
29.07Мб |
005 Newton method implementation_en.vtt |
4.70Кб |
005 Newton method implementation.mp4 |
15.79Мб |
005 NewtonRaphsonMethod.py |
294б |
005 Private variables and name mangling_en.vtt |
5.08Кб |
005 Private variables and name mangling.mp4 |
19.13Мб |
005 Returning multiple values_en.vtt |
3.37Кб |
005 Returning multiple values.mp4 |
12.17Мб |
005 StochasticGradientDescent.py |
1.93Кб |
005 Stochastic gradient descent implementation I_en.vtt |
24.44Кб |
005 Stochastic gradient descent implementation I.mp4 |
105.86Мб |
005 String slicing_en.vtt |
7.44Кб |
005 String slicing.mp4 |
25.08Мб |
005 TrapezoidalIntegral.py |
468б |
005 Trapezoidal integral implementation_en.vtt |
5.33Кб |
005 Trapezoidal integral implementation.mp4 |
17.61Мб |
005 Types_en.vtt |
4.95Кб |
005 Types.mp4 |
19.29Мб |
006 Lists and NumPy arrays_en.vtt |
5.14Кб |
006 Lists and NumPy arrays.mp4 |
19.40Мб |
006 Lists in Python - advanced operations_en.vtt |
8.71Кб |
006 Lists in Python - advanced operations.mp4 |
39.32Мб |
006 Mathematical formulation of interpolation.html |
265б |
006 Mathematical formulation of root finding.html |
271б |
006 Reshape_en.vtt |
8.85Кб |
006 Reshape.mp4 |
33.84Мб |
006 Runge-Kutta method introduction_en.vtt |
5.03Кб |
006 Runge-Kutta method introduction.mp4 |
14.24Мб |
006 Simpson's method introduction_en.vtt |
5.64Кб |
006 Simpson's method introduction.mp4 |
11.99Мб |
006 Speed comparison - DataFrame operations_en.vtt |
4.91Кб |
006 Speed comparison - DataFrame operations.mp4 |
28.65Мб |
006 Stochastic gradient descent implementation II_en.vtt |
6.37Кб |
006 Stochastic gradient descent implementation II.mp4 |
41.23Мб |
006 StochasticGradientDescentRegression.py |
2.17Кб |
006 The random surfer model_en.vtt |
5.66Кб |
006 The random surfer model.mp4 |
18.81Мб |
006 Type casting_en.vtt |
4.66Кб |
006 Type casting.mp4 |
16.74Мб |
006 What is inheritance in OOP_en.vtt |
4.14Кб |
006 What is inheritance in OOP.mp4 |
18.03Мб |
006 Yield operator_en.vtt |
5.77Кб |
006 Yield operator.mp4 |
18.28Мб |
007 Lists in Python - list comprehension_en.vtt |
6.12Кб |
007 Lists in Python - list comprehension.mp4 |
22.88Мб |
007 Matrix operations with NumPy_en.vtt |
4.54Кб |
007 Matrix operations with NumPy.mp4 |
13.69Мб |
007 Operators_en.vtt |
5.88Кб |
007 Operators.mp4 |
20.63Мб |
007 Reading CSV and text files_en.vtt |
6.45Кб |
007 Reading CSV and text files.mp4 |
35.23Мб |
007 RungeKuttaExample1.py |
648б |
007 Runge-Kutta method example I_en.vtt |
6.92Кб |
007 Runge-Kutta method example I.mp4 |
24.49Мб |
007 Simpson's method implementation_en.vtt |
5.99Кб |
007 Simpson's method implementation.mp4 |
20.56Мб |
007 SimpsonMethod.py |
511б |
007 Stacking and merging arrays_en.vtt |
7.34Кб |
007 Stacking and merging arrays.mp4 |
27.69Мб |
007 The super keyword_en.vtt |
4.91Кб |
007 The super keyword.mp4 |
21.23Мб |
007 What are the most relevant built-in functions_en.vtt |
4.92Кб |
007 What are the most relevant built-in functions.mp4 |
15.38Мб |
007 What are the problems with the random surfer model_en.vtt |
4.08Кб |
007 What are the problems with the random surfer model.mp4 |
12.26Мб |
007 What is ADAGrad_en.vtt |
7.54Кб |
007 What is ADAGrad.mp4 |
22.13Мб |
008 (!!!) Python lists and arrays.html |
628б |
008 ADAGrad implementation_en.vtt |
13.63Кб |
008 ADAGrad implementation.mp4 |
63.99Мб |
008 Conditional statements_en.vtt |
4.63Кб |
008 Conditional statements.mp4 |
17.81Мб |
008 Filter_en.vtt |
4.22Кб |
008 Filter.mp4 |
15.24Мб |
008 Function (method) override_en.vtt |
2.71Кб |
008 Function (method) override.mp4 |
18.17Мб |
008 GradientDescentAdaGrad.py |
1.56Кб |
008 Mathematical formulation of numerical integration.html |
245б |
008 Operations_en.vtt |
6.61Кб |
008 Operations.mp4 |
32.93Мб |
008 PageRank algorithm - the final formula_en.vtt |
8.93Кб |
008 PageRank algorithm - the final formula.mp4 |
37.74Мб |
008 RungeKuttaExample2.py |
663б |
008 Runge-Kutta method example II_en.vtt |
4.88Кб |
008 Runge-Kutta method example II.mp4 |
22.20Мб |
008 What is recursion_en.vtt |
10.64Кб |
008 What is recursion.mp4 |
35.28Мб |
009 Data filtering_en.vtt |
8.67Кб |
009 Data filtering.mp4 |
27.06Мб |
009 How to use multiple conditions_en.vtt |
9.05Кб |
009 How to use multiple conditions.mp4 |
31.41Мб |
009 Local vs global variables_en.vtt |
4.77Кб |
009 Local vs global variables.mp4 |
15.01Мб |
009 Mathematical formulation of numerical differentiation.html |
251б |
009 Measuring running time of lists.html |
1.24Кб |
009 Power method_en.vtt |
6.30Кб |
009 Power method.mp4 |
21.32Мб |
009 Running time comparison arrays and lists.html |
1.34Кб |
009 What is polymorphism_en.vtt |
5.25Кб |
009 What is polymorphism.mp4 |
21.16Мб |
009 What is RMSProp_en.vtt |
4.31Кб |
009 What is RMSProp.mp4 |
19.12Мб |
010 ADAM optimizer introduction_en.vtt |
5.23Кб |
010 ADAM optimizer introduction.mp4 |
12.31Мб |
010 Logical operators_en.vtt |
3.97Кб |
010 Logical operators.mp4 |
17.60Мб |
010 Original scientific paper of PageRank algorithm.html |
254б |
010 Polymorphism and abstraction example_en.vtt |
6.03Кб |
010 Polymorphism and abstraction example.mp4 |
33.27Мб |
010 The __main__ function_en.vtt |
4.02Кб |
010 The __main__ function.mp4 |
14.81Мб |
010 Using the apply() function_en.vtt |
7.95Кб |
010 Using the apply() function.mp4 |
30.85Мб |
010 What are tuples_en.vtt |
4.32Кб |
010 What are tuples.mp4 |
14.73Мб |
011 ADAM.py |
1.07Кб |
011 ADAM optimizer implementation_en.vtt |
10.18Кб |
011 ADAM optimizer implementation.mp4 |
43.02Мб |
011 Loops - for loop_en.vtt |
6.92Кб |
011 Loops - for loop.mp4 |
18.95Мб |
011 Modules_en.vtt |
6.71Кб |
011 Modules.mp4 |
21.79Мб |
011 Mutability and immutability_en.vtt |
5.25Кб |
011 Mutability and immutability.mp4 |
18.49Мб |
011 Speed comparison - loops and apply()_en.vtt |
2.97Кб |
011 Speed comparison - loops and apply().mp4 |
17.77Мб |
012 Loops - while loop_en.vtt |
4.88Кб |
012 Loops - while loop.mp4 |
14.41Мб |
012 Mathematical formulation of optimization algorithms in machine learning.html |
275б |
012 The __str__ function_en.vtt |
3.51Кб |
012 The __str__ function.mp4 |
15.67Мб |
012 What are linked list data structures_en.vtt |
10.30Кб |
012 What are linked list data structures.mp4 |
34.49Мб |
012 What is vectorization_en.vtt |
7.52Кб |
012 What is vectorization.mp4 |
26.44Мб |
013 Comparing objects - overriding functions_en.vtt |
9.05Кб |
013 Comparing objects - overriding functions.mp4 |
40.18Мб |
013 Doubly linked list implementation in Python_en.vtt |
6.19Кб |
013 Doubly linked list implementation in Python.mp4 |
24.46Мб |
013 Vectorization example I_en.vtt |
5.80Кб |
013 Vectorization example I.mp4 |
22.18Мб |
013 What are nested loops_en.vtt |
3.03Кб |
013 What are nested loops.mp4 |
13.16Мб |
014 Enumerate_en.vtt |
4.34Кб |
014 Enumerate.mp4 |
15.13Мб |
014 Hashing and O(1) running time complexity_en.vtt |
9.73Кб |
014 Hashing and O(1) running time complexity.mp4 |
30.98Мб |
014 Vectorization example II_en.vtt |
4.01Кб |
014 Vectorization example II.mp4 |
20.81Мб |
015 Break and continue_en.vtt |
6.12Кб |
015 Break and continue.mp4 |
20.42Мб |
015 Dictionaries in Python_en.vtt |
10.69Кб |
015 Dictionaries in Python.mp4 |
38.50Мб |
016 Calculating Fibonacci-numbers_en.vtt |
2.89Кб |
016 Calculating Fibonacci-numbers.mp4 |
8.39Мб |
016 Sets in Python_en.vtt |
9.56Кб |
016 Sets in Python.mp4 |
47.14Мб |
017 Sorting_en.vtt |
11.36Кб |
017 Sorting.mp4 |
50.57Мб |
1 |
7.68Кб |
10 |
238.65Кб |
100 |
268.04Кб |
101 |
445.67Кб |
102 |
610.49Кб |
103 |
870.96Кб |
104 |
216.45Кб |
105 |
303.08Кб |
106 |
342.87Кб |
107 |
631.51Кб |
108 |
775.21Кб |
109 |
890.63Кб |
11 |
700.64Кб |
110 |
916.34Кб |
111 |
1010.14Кб |
112 |
192.06Кб |
113 |
272.17Кб |
114 |
602.90Кб |
115 |
630.29Кб |
116 |
723.50Кб |
117 |
781.36Кб |
118 |
897.22Кб |
119 |
159.66Кб |
12 |
283.49Кб |
120 |
166.66Кб |
121 |
322.53Кб |
122 |
334.24Кб |
123 |
394.00Кб |
124 |
412.63Кб |
125 |
601.41Кб |
126 |
859.28Кб |
127 |
893.74Кб |
128 |
65.45Кб |
129 |
507.11Кб |
13 |
514.48Кб |
130 |
549.13Кб |
131 |
705.96Кб |
132 |
736.87Кб |
133 |
757.84Кб |
134 |
854.11Кб |
135 |
6.56Кб |
136 |
88.44Кб |
137 |
166.89Кб |
138 |
361.49Кб |
139 |
534.63Кб |
14 |
269.43Кб |
140 |
576.44Кб |
141 |
852.17Кб |
142 |
570.53Кб |
143 |
313.11Кб |
144 |
397.36Кб |
145 |
629.68Кб |
146 |
878.43Кб |
147 |
223.38Кб |
15 |
725.00Кб |
16 |
565.20Кб |
17 |
758.07Кб |
18 |
333.49Кб |
19 |
736.68Кб |
2 |
439.31Кб |
20 |
791.46Кб |
21 |
519.93Кб |
22 |
1.37Кб |
23 |
165.90Кб |
24 |
249.93Кб |
25 |
415.81Кб |
26 |
745.27Кб |
27 |
66.72Кб |
28 |
507.74Кб |
29 |
606.87Кб |
3 |
467.51Кб |
30 |
1015.52Кб |
31 |
19.76Кб |
32 |
150.11Кб |
33 |
157.08Кб |
34 |
908.71Кб |
35 |
436.03Кб |
36 |
957.38Кб |
37 |
357.73Кб |
38 |
863.20Кб |
39 |
203.33Кб |
4 |
876.14Кб |
40 |
322.18Кб |
41 |
503.59Кб |
42 |
965.72Кб |
43 |
983.40Кб |
44 |
60.21Кб |
45 |
572.82Кб |
46 |
895.28Кб |
47 |
121.95Кб |
48 |
585.57Кб |
49 |
946.66Кб |
5 |
909.18Кб |
50 |
966.75Кб |
51 |
10.02Кб |
52 |
48.42Кб |
53 |
57.50Кб |
54 |
491.74Кб |
55 |
509.96Кб |
56 |
523.84Кб |
57 |
530.85Кб |
58 |
555.95Кб |
59 |
897.20Кб |
6 |
1002.90Кб |
60 |
119.26Кб |
61 |
636.26Кб |
62 |
815.62Кб |
63 |
839.65Кб |
64 |
892.19Кб |
65 |
216.54Кб |
66 |
270.71Кб |
67 |
698.37Кб |
68 |
786.84Кб |
69 |
856.26Кб |
7 |
714.47Кб |
70 |
190.86Кб |
71 |
381.88Кб |
72 |
439.97Кб |
73 |
450.23Кб |
74 |
588.91Кб |
75 |
1004.94Кб |
76 |
247.27Кб |
77 |
360.47Кб |
78 |
609.89Кб |
79 |
731.14Кб |
8 |
792.56Кб |
80 |
888.75Кб |
81 |
902.11Кб |
82 |
966.77Кб |
83 |
53.55Кб |
84 |
153.19Кб |
85 |
193.41Кб |
86 |
517.95Кб |
87 |
564.75Кб |
88 |
738.38Кб |
89 |
851.35Кб |
9 |
842.42Кб |
90 |
971.07Кб |
91 |
992.17Кб |
92 |
195.45Кб |
93 |
227.69Кб |
94 |
237.17Кб |
95 |
395.27Кб |
96 |
411.36Кб |
97 |
725.74Кб |
98 |
844.08Кб |
99 |
187.01Кб |
TutsNode.com.txt |
63б |