| Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
                        эти файлы или скачать torrent-файл. | 
                
                    | [CourseClub.ME].url | 122б | 
                
                    | [FCS Forum].url | 133б | 
                
                    | [FreeCourseSite.com].url | 127б | 
                
                    | 1. Applications of Machine Learning.mp4 | 7.99Мб | 
                
                    | 1. Applications of Machine Learning.vtt | 4.64Кб | 
                
                    | 1. Apriori Intuition.mp4 | 35.02Мб | 
                
                    | 1. Apriori Intuition.vtt | 22.59Кб | 
                
                    | 1. Bayes Theorem.mp4 | 43.90Мб | 
                
                    | 1. Bayes Theorem.vtt | 30.66Кб | 
                
                    | 1. Decision Tree Classification Intuition.mp4 | 18.79Мб | 
                
                    | 1. Decision Tree Classification Intuition.vtt | 18.80Мб | 
                
                    | 1. Decision Tree Regression Intuition.mp4 | 22.69Мб | 
                
                    | 1. Decision Tree Regression Intuition.vtt | 15.25Кб | 
                
                    | 1. Eclat Intuition.mp4 | 10.65Мб | 
                
                    | 1. Eclat Intuition.vtt | 7.12Кб | 
                
                    | 1. False Positives & False Negatives.mp4 | 13.65Мб | 
                
                    | 1. False Positives & False Negatives.vtt | 10.19Кб | 
                
                    | 1. Hierarchical Clustering Intuition.mp4 | 16.53Мб | 
                
                    | 1. Hierarchical Clustering Intuition.vtt | 16.53Мб | 
                
                    | 1. How to get the dataset.mp4 | 11.71Мб | 
                
                    | 1. How to get the dataset.mp4 | 11.72Мб | 
                
                    | 1. How to get the dataset.mp4 | 11.71Мб | 
                
                    | 1. How to get the dataset.mp4 | 11.71Мб | 
                
                    | 1. How to get the dataset.mp4 | 11.71Мб | 
                
                    | 1. How to get the dataset.mp4 | 11.71Мб | 
                
                    | 1. How to get the dataset.vtt | 4.23Кб | 
                
                    | 1. How to get the dataset.vtt | 11.72Мб | 
                
                    | 1. How to get the dataset.vtt | 4.23Кб | 
                
                    | 1. How to get the dataset.vtt | 4.23Кб | 
                
                    | 1. How to get the dataset.vtt | 4.23Кб | 
                
                    | 1. How to get the dataset.vtt | 4.23Кб | 
                
                    | 1. Kernel SVM Intuition.mp4 | 5.79Мб | 
                
                    | 1. Kernel SVM Intuition.vtt | 3.92Кб | 
                
                    | 1. K-Means Clustering Intuition.mp4 | 26.86Мб | 
                
                    | 1. K-Means Clustering Intuition.vtt | 20.91Кб | 
                
                    | 1. K-Nearest Neighbor Intuition.mp4 | 9.28Мб | 
                
                    | 1. K-Nearest Neighbor Intuition.vtt | 7.23Кб | 
                
                    | 1. Linear Discriminant Analysis (LDA) Intuition.mp4 | 26.98Мб | 
                
                    | 1. Linear Discriminant Analysis (LDA) Intuition.vtt | 4.53Кб | 
                
                    | 1. Logistic Regression Intuition.mp4 | 29.17Мб | 
                
                    | 1. Logistic Regression Intuition.vtt | 20.91Кб | 
                
                    | 1. Plan of attack.mp4 | 4.74Мб | 
                
                    | 1. Plan of attack.mp4 | 5.90Мб | 
                
                    | 1. Plan of attack.vtt | 3.54Кб | 
                
                    | 1. Plan of attack.vtt | 4.63Кб | 
                
                    | 1. Polynomial Regression Intuition.mp4 | 9.44Мб | 
                
                    | 1. Polynomial Regression Intuition.vtt | 7.07Кб | 
                
                    | 1. Principal Component Analysis (PCA) Intuition.mp4 | 32.11Мб | 
                
                    | 1. Principal Component Analysis (PCA) Intuition.vtt | 4.45Кб | 
                
                    | 1. Random Forest Classification Intuition.mp4 | 19.43Мб | 
                
                    | 1. Random Forest Classification Intuition.vtt | 6.41Кб | 
                
                    | 1. Random Forest Regression Intuition.mp4 | 13.82Мб | 
                
                    | 1. Random Forest Regression Intuition.vtt | 9.29Кб | 
                
                    | 1. R-Squared Intuition.mp4 | 8.85Мб | 
                
                    | 1. R-Squared Intuition.vtt | 6.46Кб | 
                
                    | 1. SVM Intuition.mp4 | 18.01Мб | 
                
                    | 1. SVM Intuition.vtt | 14.19Кб | 
                
                    | 1. The Multi-Armed Bandit Problem.mp4 | 30.19Мб | 
                
                    | 1. The Multi-Armed Bandit Problem.vtt | 19.44Кб | 
                
                    | 1. Thompson Sampling Intuition.mp4 | 37.27Мб | 
                
                    | 1. Thompson Sampling Intuition.vtt | 24.09Кб | 
                
                    | 1. Welcome to Part 10 - Model Selection & Boosting.html | 899б | 
                
                    | 1. Welcome to Part 1 - Data Preprocessing.mp4 | 2.99Мб | 
                
                    | 1. Welcome to Part 1 - Data Preprocessing.vtt | 2.29Кб | 
                
                    | 1. Welcome to Part 2 - Regression.html | 875б | 
                
                    | 1. Welcome to Part 3 - Classification.html | 831б | 
                
                    | 1. Welcome to Part 4 - Clustering.html | 734б | 
                
                    | 1. Welcome to Part 5 - Association Rule Learning.html | 425б | 
                
                    | 1. Welcome to Part 6 - Reinforcement Learning.html | 804б | 
                
                    | 1. Welcome to Part 7 - Natural Language Processing.html | 1.69Кб | 
                
                    | 1. Welcome to Part 8 - Deep Learning.html | 870б | 
                
                    | 1. Welcome to Part 9 - Dimensionality Reduction.html | 1.26Кб | 
                
                    | 1. YOUR SPECIAL BONUS.html | 4.54Кб | 
                
                    | 10. Business Problem Description.mp4 | 16.38Мб | 
                
                    | 10. Business Problem Description.vtt | 6.47Кб | 
                
                    | 10. Feature Scaling.mp4 | 34.62Мб | 
                
                    | 10. Feature Scaling.vtt | 20.79Кб | 
                
                    | 10. HC in R - Step 1.mp4 | 7.38Мб | 
                
                    | 10. HC in R - Step 1.vtt | 5.67Кб | 
                
                    | 10. How to get the dataset.mp4 | 11.71Мб | 
                
                    | 10. How to get the dataset.vtt | 4.23Кб | 
                
                    | 10. Installing R and R Studio (Mac, Linux & Windows).mp4 | 17.55Мб | 
                
                    | 10. Installing R and R Studio (Mac, Linux & Windows).vtt | 7.94Кб | 
                
                    | 10. Logistic Regression in R - Step 2.mp4 | 7.85Мб | 
                
                    | 10. Logistic Regression in R - Step 2.vtt | 3.92Кб | 
                
                    | 10. Multiple Linear Regression in Python - Step 2.mp4 | 7.23Мб | 
                
                    | 10. Multiple Linear Regression in Python - Step 2.vtt | 3.63Кб | 
                
                    | 10. Natural Language Processing in Python - Step 7.mp4 | 17.10Мб | 
                
                    | 10. Natural Language Processing in Python - Step 7.vtt | 8.60Кб | 
                
                    | 10. Polynomial Regression in R - Step 3.mp4 | 43.31Мб | 
                
                    | 10. Polynomial Regression in R - Step 3.vtt | 27.44Кб | 
                
                    | 10. Simple Linear Regression in R - Step 2.mp4 | 14.36Мб | 
                
                    | 10. Simple Linear Regression in R - Step 2.vtt | 8.00Кб | 
                
                    | 10. Upper Confidence Bound in R - Step 3.mp4 | 47.20Мб | 
                
                    | 10. Upper Confidence Bound in R - Step 3.vtt | 21.98Кб | 
                
                    | 11. And here is our Data Preprocessing Template!.mp4 | 19.67Мб | 
                
                    | 11. And here is our Data Preprocessing Template!.vtt | 12.67Кб | 
                
                    | 11. BONUS Meet your instructors.html | 1.04Кб | 
                
                    | 11. HC in R - Step 2.mp4 | 11.15Мб | 
                
                    | 11. HC in R - Step 2.vtt | 7.32Кб | 
                
                    | 11. Installing Keras.html | 1.42Кб | 
                
                    | 11. Installing Keras.html | 927б | 
                
                    | 11. Logistic Regression in R - Step 3.mp4 | 14.59Мб | 
                
                    | 11. Logistic Regression in R - Step 3.vtt | 6.65Кб | 
                
                    | 11. Multiple Linear Regression in Python - Step 3.mp4 | 14.29Мб | 
                
                    | 11. Multiple Linear Regression in Python - Step 3.vtt | 7.38Кб | 
                
                    | 11. Natural Language Processing in Python - Step 8.mp4 | 39.48Мб | 
                
                    | 11. Natural Language Processing in Python - Step 8.vtt | 20.80Кб | 
                
                    | 11. Polynomial Regression in R - Step 4.mp4 | 22.34Мб | 
                
                    | 11. Polynomial Regression in R - Step 4.vtt | 22.36Мб | 
                
                    | 11. Simple Linear Regression in R - Step 3.mp4 | 8.64Мб | 
                
                    | 11. Simple Linear Regression in R - Step 3.vtt | 4.94Кб | 
                
                    | 11. Upper Confidence Bound in R - Step 4.mp4 | 7.41Мб | 
                
                    | 11. Upper Confidence Bound in R - Step 4.vtt | 3.86Кб | 
                
                    | 12. ANN in Python - Step 1.mp4 | 29.31Мб | 
                
                    | 12. ANN in Python - Step 1.vtt | 17.41Кб | 
                
                    | 12. CNN in Python - Step 1.mp4 | 24.93Мб | 
                
                    | 12. CNN in Python - Step 1.vtt | 16.16Кб | 
                
                    | 12. Data Preprocessing.html | 118б | 
                
                    | 12. HC in R - Step 3.mp4 | 7.81Мб | 
                
                    | 12. HC in R - Step 3.vtt | 4.29Кб | 
                
                    | 12. Logistic Regression in R - Step 4.mp4 | 6.91Мб | 
                
                    | 12. Logistic Regression in R - Step 4.vtt | 3.55Кб | 
                
                    | 12. Multiple Linear Regression in Python - Backward Elimination - Preparation.mp4 | 23.82Мб | 
                
                    | 12. Multiple Linear Regression in Python - Backward Elimination - Preparation.vtt | 13.13Кб | 
                
                    | 12. Natural Language Processing in Python - Step 9.mp4 | 14.01Мб | 
                
                    | 12. Natural Language Processing in Python - Step 9.vtt | 7.25Кб | 
                
                    | 12. R Regression Template.mp4 | 25.41Мб | 
                
                    | 12. R Regression Template.vtt | 16.72Кб | 
                
                    | 12. Simple Linear Regression in R - Step 4.mp4 | 37.37Мб | 
                
                    | 12. Simple Linear Regression in R - Step 4.vtt | 21.21Кб | 
                
                    | 12. Some Additional Resources.html | 551б | 
                
                    | 13. ANN in Python - Step 2.mp4 | 48.09Мб | 
                
                    | 13. ANN in Python - Step 2.vtt | 24.77Кб | 
                
                    | 13. CNN in Python - Step 2.mp4 | 5.86Мб | 
                
                    | 13. CNN in Python - Step 2.vtt | 3.92Кб | 
                
                    | 13. FAQBot!.html | 1.76Кб | 
                
                    | 13. HC in R - Step 4.mp4 | 7.44Мб | 
                
                    | 13. HC in R - Step 4.vtt | 3.49Кб | 
                
                    | 13. Logistic Regression in R - Step 5.mp4 | 51.68Мб | 
                
                    | 13. Logistic Regression in R - Step 5.vtt | 26.00Кб | 
                
                    | 13. Multiple Linear Regression in Python - Backward Elimination - HOMEWORK !.mp4 | 32.59Мб | 
                
                    | 13. Multiple Linear Regression in Python - Backward Elimination - HOMEWORK !.vtt | 17.57Кб | 
                
                    | 13. Natural Language Processing in Python - Step 10.mp4 | 24.13Мб | 
                
                    | 13. Natural Language Processing in Python - Step 10.vtt | 12.49Кб | 
                
                    | 13. Simple Linear Regression.html | 118б | 
                
                    | 14. ANN in Python - Step 3.mp4 | 8.38Мб | 
                
                    | 14. ANN in Python - Step 3.vtt | 4.62Кб | 
                
                    | 14. CNN in Python - Step 3.mp4 | 2.22Мб | 
                
                    | 14. CNN in Python - Step 3.vtt | 1.56Кб | 
                
                    | 14. HC in R - Step 5.mp4 | 6.89Мб | 
                
                    | 14. HC in R - Step 5.vtt | 3.66Кб | 
                
                    | 14. Homework Challenge.html | 1.37Кб | 
                
                    | 14. Multiple Linear Regression in Python - Backward Elimination - Homework Solution.mp4 | 27.17Мб | 
                
                    | 14. Multiple Linear Regression in Python - Backward Elimination - Homework Solution.vtt | 12.68Кб | 
                
                    | 14. R Classification Template.mp4 | 12.47Мб | 
                
                    | 14. R Classification Template.vtt | 6.06Кб | 
                
                    | 15. ANN in Python - Step 4.mp4 | 5.88Мб | 
                
                    | 15. ANN in Python - Step 4.vtt | 3.46Кб | 
                
                    | 15. CNN in Python - Step 4.mp4 | 27.18Мб | 
                
                    | 15. CNN in Python - Step 4.vtt | 16.89Кб | 
                
                    | 15. Hierarchical Clustering.html | 118б | 
                
                    | 15. Logistic Regression.html | 118б | 
                
                    | 15. Multiple Linear Regression in Python - Automatic Backward Elimination.html | 2.14Кб | 
                
                    | 15. Natural Language Processing in R - Step 1.mp4 | 40.38Мб | 
                
                    | 15. Natural Language Processing in R - Step 1.vtt | 40.38Мб | 
                
                    | 16.1 Clustering-Pros-Cons.pdf.pdf | 25.76Кб | 
                
                    | 16. ANN in Python - Step 5.mp4 | 29.58Мб | 
                
                    | 16. ANN in Python - Step 5.vtt | 17.06Кб | 
                
                    | 16. CNN in Python - Step 5.mp4 | 9.91Мб | 
                
                    | 16. CNN in Python - Step 5.vtt | 6.59Кб | 
                
                    | 16. Conclusion of Part 4 - Clustering.html | 516б | 
                
                    | 16. Multiple Linear Regression in R - Step 1.mp4 | 17.94Мб | 
                
                    | 16. Multiple Linear Regression in R - Step 1.vtt | 10.50Кб | 
                
                    | 16. Natural Language Processing in R - Step 2.mp4 | 17.48Мб | 
                
                    | 16. Natural Language Processing in R - Step 2.vtt | 11.33Кб | 
                
                    | 17. ANN in Python - Step 6.mp4 | 7.06Мб | 
                
                    | 17. ANN in Python - Step 6.vtt | 4.03Кб | 
                
                    | 17. CNN in Python - Step 6.mp4 | 9.71Мб | 
                
                    | 17. CNN in Python - Step 6.vtt | 6.71Кб | 
                
                    | 17. Multiple Linear Regression in R - Step 2.mp4 | 25.93Мб | 
                
                    | 17. Multiple Linear Regression in R - Step 2.vtt | 13.83Кб | 
                
                    | 17. Natural Language Processing in R - Step 3.mp4 | 13.52Мб | 
                
                    | 17. Natural Language Processing in R - Step 3.vtt | 8.83Кб | 
                
                    | 18. ANN in Python - Step 7.mp4 | 8.99Мб | 
                
                    | 18. ANN in Python - Step 7.vtt | 5.17Кб | 
                
                    | 18. CNN in Python - Step 7.mp4 | 12.93Мб | 
                
                    | 18. CNN in Python - Step 7.vtt | 8.02Кб | 
                
                    | 18. Multiple Linear Regression in R - Step 3.mp4 | 10.41Мб | 
                
                    | 18. Multiple Linear Regression in R - Step 3.vtt | 6.29Кб | 
                
                    | 18. Natural Language Processing in R - Step 4.mp4 | 6.51Мб | 
                
                    | 18. Natural Language Processing in R - Step 4.vtt | 4.20Кб | 
                
                    | 19. ANN in Python - Step 8.mp4 | 18.17Мб | 
                
                    | 19. ANN in Python - Step 8.vtt | 18.18Мб | 
                
                    | 19. CNN in Python - Step 8.mp4 | 6.80Мб | 
                
                    | 19. CNN in Python - Step 8.vtt | 3.91Кб | 
                
                    | 19. Multiple Linear Regression in R - Backward Elimination - HOMEWORK !.mp4 | 39.73Мб | 
                
                    | 19. Multiple Linear Regression in R - Backward Elimination - HOMEWORK !.vtt | 24.57Кб | 
                
                    | 19. Natural Language Processing in R - Step 5.mp4 | 4.57Мб | 
                
                    | 19. Natural Language Processing in R - Step 5.vtt | 2.83Кб | 
                
                    | 2. Adjusted R-Squared Intuition.mp4 | 19.28Мб | 
                
                    | 2. Adjusted R-Squared Intuition.vtt | 12.99Кб | 
                
                    | 2. Algorithm Comparison UCB vs Thompson Sampling.mp4 | 14.09Мб | 
                
                    | 2. Algorithm Comparison UCB vs Thompson Sampling.vtt | 9.89Кб | 
                
                    | 2. BONUS Learning Paths.html | 2.37Кб | 
                
                    | 2. Confusion Matrix.mp4 | 8.22Мб | 
                
                    | 2. Confusion Matrix.vtt | 6.74Кб | 
                
                    | 2. Dataset + Business Problem Description.mp4 | 6.63Мб | 
                
                    | 2. Dataset + Business Problem Description.mp4 | 9.98Мб | 
                
                    | 2. Dataset + Business Problem Description.vtt | 3.71Кб | 
                
                    | 2. Dataset + Business Problem Description.vtt | 5.11Кб | 
                
                    | 2. Get the dataset.mp4 | 21.15Мб | 
                
                    | 2. Get the dataset.vtt | 9.39Кб | 
                
                    | 2. Hierarchical Clustering How Dendrograms Work.mp4 | 17.47Мб | 
                
                    | 2. Hierarchical Clustering How Dendrograms Work.vtt | 12.84Кб | 
                
                    | 2. How to get the dataset.mp4 | 11.71Мб | 
                
                    | 2. How to get the dataset.mp4 | 11.71Мб | 
                
                    | 2. How to get the dataset.mp4 | 11.72Мб | 
                
                    | 2. How to get the dataset.mp4 | 11.71Мб | 
                
                    | 2. How to get the dataset.mp4 | 11.71Мб | 
                
                    | 2. How to get the dataset.mp4 | 11.72Мб | 
                
                    | 2. How to get the dataset.mp4 | 11.72Мб | 
                
                    | 2. How to get the dataset.mp4 | 11.71Мб | 
                
                    | 2. How to get the dataset.mp4 | 11.71Мб | 
                
                    | 2. How to get the dataset.mp4 | 11.71Мб | 
                
                    | 2. How to get the dataset.mp4 | 11.71Мб | 
                
                    | 2. How to get the dataset.mp4 | 11.72Мб | 
                
                    | 2. How to get the dataset.vtt | 4.23Кб | 
                
                    | 2. How to get the dataset.vtt | 4.23Кб | 
                
                    | 2. How to get the dataset.vtt | 4.23Кб | 
                
                    | 2. How to get the dataset.vtt | 4.23Кб | 
                
                    | 2. How to get the dataset.vtt | 4.23Кб | 
                
                    | 2. How to get the dataset.vtt | 4.23Кб | 
                
                    | 2. How to get the dataset.vtt | 4.23Кб | 
                
                    | 2. How to get the dataset.vtt | 4.23Кб | 
                
                    | 2. How to get the dataset.vtt | 4.23Кб | 
                
                    | 2. How to get the dataset.vtt | 4.23Кб | 
                
                    | 2. How to get the dataset.vtt | 4.23Кб | 
                
                    | 2. How to get the dataset.vtt | 4.23Кб | 
                
                    | 2. Kernel PCA in Python.mp4 | 33.38Мб | 
                
                    | 2. Kernel PCA in Python.vtt | 18.79Кб | 
                
                    | 2. k-Fold Cross Validation in Python.mp4 | 32.83Мб | 
                
                    | 2. k-Fold Cross Validation in Python.vtt | 17.62Кб | 
                
                    | 2. K-Means Random Initialization Trap.mp4 | 15.36Мб | 
                
                    | 2. K-Means Random Initialization Trap.vtt | 11.61Кб | 
                
                    | 2. Mapping to a higher dimension.mp4 | 13.74Мб | 
                
                    | 2. Mapping to a higher dimension.vtt | 9.32Кб | 
                
                    | 2. Naive Bayes Intuition.mp4 | 27.79Мб | 
                
                    | 2. Naive Bayes Intuition.vtt | 20.89Кб | 
                
                    | 2. Natural Language Processing Intuition.mp4 | 29.69Мб | 
                
                    | 2. Natural Language Processing Intuition.vtt | 6.26Кб | 
                
                    | 2. SVR Intuition.mp4 | 46.59Мб | 
                
                    | 2. SVR Intuition.vtt | 10.11Кб | 
                
                    | 2. The Neuron.mp4 | 29.87Мб | 
                
                    | 2. The Neuron.vtt | 21.91Кб | 
                
                    | 2. Upper Confidence Bound (UCB) Intuition.mp4 | 29.33Мб | 
                
                    | 2. Upper Confidence Bound (UCB) Intuition.vtt | 29.33Мб | 
                
                    | 2. What are convolutional neural networks.mp4 | 29.50Мб | 
                
                    | 2. What are convolutional neural networks.vtt | 19.34Кб | 
                
                    | 2. What is Deep Learning.mp4 | 31.31Мб | 
                
                    | 2. What is Deep Learning.vtt | 15.89Кб | 
                
                    | 2. XGBoost in Python - Step 1.mp4 | 21.39Мб | 
                
                    | 2. XGBoost in Python - Step 1.vtt | 12.05Кб | 
                
                    | 20. ANN in Python - Step 9.mp4 | 16.90Мб | 
                
                    | 20. ANN in Python - Step 9.vtt | 8.24Кб | 
                
                    | 20. CNN in Python - Step 9.mp4 | 46.85Мб | 
                
                    | 20. CNN in Python - Step 9.vtt | 25.49Кб | 
                
                    | 20. Multiple Linear Regression in R - Backward Elimination - Homework Solution.mp4 | 17.24Мб | 
                
                    | 20. Multiple Linear Regression in R - Backward Elimination - Homework Solution.vtt | 10.59Кб | 
                
                    | 20. Natural Language Processing in R - Step 6.mp4 | 12.74Мб | 
                
                    | 20. Natural Language Processing in R - Step 6.vtt | 7.32Кб | 
                
                    | 21. ANN in Python - Step 10.mp4 | 17.09Мб | 
                
                    | 21. ANN in Python - Step 10.vtt | 9.03Кб | 
                
                    | 21. CNN in Python - Step 10.mp4 | 20.60Мб | 
                
                    | 21. CNN in Python - Step 10.vtt | 11.28Кб | 
                
                    | 21. Multiple Linear Regression in R - Automatic Backward Elimination.html | 726б | 
                
                    | 21. Natural Language Processing in R - Step 7.mp4 | 7.52Мб | 
                
                    | 21. Natural Language Processing in R - Step 7.vtt | 4.99Кб | 
                
                    | 22. ANN in R - Step 1.mp4 | 38.55Мб | 
                
                    | 22. ANN in R - Step 1.vtt | 23.03Кб | 
                
                    | 22. CNN in R.html | 2.38Кб | 
                
                    | 22. Multiple Linear Regression.html | 118б | 
                
                    | 22. Natural Language Processing in R - Step 8.mp4 | 13.27Мб | 
                
                    | 22. Natural Language Processing in R - Step 8.vtt | 6.97Кб | 
                
                    | 23. ANN in R - Step 2.mp4 | 14.17Мб | 
                
                    | 23. ANN in R - Step 2.vtt | 8.85Кб | 
                
                    | 23. Natural Language Processing in R - Step 9.mp4 | 28.99Мб | 
                
                    | 23. Natural Language Processing in R - Step 9.vtt | 17.18Кб | 
                
                    | 24. ANN in R - Step 3.mp4 | 28.94Мб | 
                
                    | 24. ANN in R - Step 3.vtt | 16.38Кб | 
                
                    | 24. Natural Language Processing in R - Step 10.mp4 | 41.19Мб | 
                
                    | 24. Natural Language Processing in R - Step 10.vtt | 22.89Кб | 
                
                    | 25. ANN in R - Step 4 (Last step).mp4 | 33.44Мб | 
                
                    | 25. ANN in R - Step 4 (Last step).vtt | 17.95Кб | 
                
                    | 25. Homework Challenge.html | 1.40Кб | 
                
                    | 3.1 Eclat.zip.zip | 48.54Кб | 
                
                    | 3. Accuracy Paradox.mp4 | 3.80Мб | 
                
                    | 3. Accuracy Paradox.vtt | 2.94Кб | 
                
                    | 3. Apriori in R - Step 1.mp4 | 42.87Мб | 
                
                    | 3. Apriori in R - Step 1.vtt | 42.89Мб | 
                
                    | 3. Decision Tree Classification in Python.mp4 | 29.80Мб | 
                
                    | 3. Decision Tree Classification in Python.vtt | 17.21Кб | 
                
                    | 3. Decision Tree Regression in Python.mp4 | 33.54Мб | 
                
                    | 3. Decision Tree Regression in Python.vtt | 21.13Кб | 
                
                    | 3. Eclat in R.mp4 | 20.68Мб | 
                
                    | 3. Eclat in R.vtt | 14.11Кб | 
                
                    | 3. Evaluating Regression Models Performance - Homework's Final Part.mp4 | 21.89Мб | 
                
                    | 3. Evaluating Regression Models Performance - Homework's Final Part.vtt | 11.59Кб | 
                
                    | 3. Hierarchical Clustering Using Dendrograms.mp4 | 22.81Мб | 
                
                    | 3. Hierarchical Clustering Using Dendrograms.vtt | 15.86Кб | 
                
                    | 3. How to get the dataset.mp4 | 11.71Мб | 
                
                    | 3. How to get the dataset.mp4 | 11.72Мб | 
                
                    | 3. How to get the dataset.mp4 | 11.71Мб | 
                
                    | 3. How to get the dataset.vtt | 4.23Кб | 
                
                    | 3. How to get the dataset.vtt | 4.23Кб | 
                
                    | 3. How to get the dataset.vtt | 4.23Кб | 
                
                    | 3. Importing the Libraries.mp4 | 11.08Мб | 
                
                    | 3. Importing the Libraries.vtt | 6.98Кб | 
                
                    | 3. Kernel PCA in R.mp4 | 56.57Мб | 
                
                    | 3. Kernel PCA in R.vtt | 26.63Кб | 
                
                    | 3. k-Fold Cross Validation in R.mp4 | 43.63Мб | 
                
                    | 3. k-Fold Cross Validation in R.vtt | 24.24Кб | 
                
                    | 3. K-Means Selecting The Number Of Clusters.mp4 | 23.13Мб | 
                
                    | 3. K-Means Selecting The Number Of Clusters.vtt | 16.55Кб | 
                
                    | 3. K-NN in Python.mp4 | 35.21Мб | 
                
                    | 3. K-NN in Python.vtt | 18.76Кб | 
                
                    | 3. LDA in Python.mp4 | 45.42Мб | 
                
                    | 3. LDA in Python.vtt | 23.05Кб | 
                
                    | 3. Logistic Regression in Python - Step 1.mp4 | 12.93Мб | 
                
                    | 3. Logistic Regression in Python - Step 1.vtt | 2.26Мб | 
                
                    | 3. Multiple Linear Regression Intuition - Step 1.mp4 | 1.82Мб | 
                
                    | 3. Multiple Linear Regression Intuition - Step 1.vtt | 1.43Кб | 
                
                    | 3. Naive Bayes Intuition (Challenge Reveal).mp4 | 13.28Мб | 
                
                    | 3. Naive Bayes Intuition (Challenge Reveal).vtt | 8.57Кб | 
                
                    | 3. PCA in Python - Step 1.mp4 | 31.96Мб | 
                
                    | 3. PCA in Python - Step 1.vtt | 15.42Кб | 
                
                    | 3. Polynomial Regression in Python - Step 1.mp4 | 24.89Мб | 
                
                    | 3. Polynomial Regression in Python - Step 1.vtt | 15.69Кб | 
                
                    | 3. Random Forest Classification in Python.mp4 | 47.15Мб | 
                
                    | 3. Random Forest Classification in Python.vtt | 27.43Кб | 
                
                    | 3. Random Forest Regression in Python.mp4 | 39.47Мб | 
                
                    | 3. Random Forest Regression in Python.vtt | 24.45Кб | 
                
                    | 3. Simple Linear Regression Intuition - Step 1.mp4 | 9.48Мб | 
                
                    | 3. Simple Linear Regression Intuition - Step 1.vtt | 7.50Кб | 
                
                    | 3. Step 1 - Convolution Operation.mp4 | 31.02Мб | 
                
                    | 3. Step 1 - Convolution Operation.vtt | 20.41Кб | 
                
                    | 3. SVM in Python.mp4 | 31.16Мб | 
                
                    | 3. SVM in Python.vtt | 16.91Кб | 
                
                    | 3. SVR in Python.mp4 | 46.18Мб | 
                
                    | 3. SVR in Python.vtt | 27.45Кб | 
                
                    | 3. The Activation Function.mp4 | 14.76Мб | 
                
                    | 3. The Activation Function.vtt | 10.56Кб | 
                
                    | 3. The Kernel Trick.mp4 | 29.28Мб | 
                
                    | 3. The Kernel Trick.vtt | 14.43Кб | 
                
                    | 3. Why Machine Learning is the Future.mp4 | 12.81Мб | 
                
                    | 3. Why Machine Learning is the Future.vtt | 8.12Кб | 
                
                    | 3. XGBoost in Python - Step 2.mp4 | 31.98Мб | 
                
                    | 3. XGBoost in Python - Step 2.vtt | 32.00Мб | 
                
                    | 4.1 SVM.zip.zip | 8.27Кб | 
                
                    | 4. Apriori in R - Step 2.mp4 | 30.50Мб | 
                
                    | 4. Apriori in R - Step 2.vtt | 20.59Кб | 
                
                    | 4. CAP Curve.mp4 | 18.68Мб | 
                
                    | 4. CAP Curve.vtt | 14.55Кб | 
                
                    | 4. Decision Tree Classification in R.mp4 | 51.18Мб | 
                
                    | 4. Decision Tree Classification in R.vtt | 25.86Кб | 
                
                    | 4. Decision Tree Regression in R.mp4 | 44.37Мб | 
                
                    | 4. Decision Tree Regression in R.vtt | 28.54Кб | 
                
                    | 4. Grid Search in Python - Step 1.mp4 | 38.21Мб | 
                
                    | 4. Grid Search in Python - Step 1.vtt | 19.29Кб | 
                
                    | 4. How do Neural Networks work.mp4 | 23.53Мб | 
                
                    | 4. How do Neural Networks work.vtt | 16.84Кб | 
                
                    | 4. How to get the dataset.mp4 | 11.71Мб | 
                
                    | 4. How to get the dataset.mp4 | 11.72Мб | 
                
                    | 4. How to get the dataset.vtt | 4.23Кб | 
                
                    | 4. How to get the dataset.vtt | 4.23Кб | 
                
                    | 4. Important notes, tips & tricks for this course.html | 3.24Кб | 
                
                    | 4. Importing the Dataset.mp4 | 23.31Мб | 
                
                    | 4. Importing the Dataset.vtt | 16.59Кб | 
                
                    | 4. Interpreting Linear Regression Coefficients.mp4 | 24.21Мб | 
                
                    | 4. Interpreting Linear Regression Coefficients.vtt | 12.02Кб | 
                
                    | 4. K-NN in R.mp4 | 41.37Мб | 
                
                    | 4. K-NN in R.vtt | 20.68Кб | 
                
                    | 4. LDA in R.mp4 | 51.29Мб | 
                
                    | 4. LDA in R.vtt | 25.61Кб | 
                
                    | 4. Logistic Regression in Python - Step 2.mp4 | 8.24Мб | 
                
                    | 4. Logistic Regression in Python - Step 2.vtt | 4.42Кб | 
                
                    | 4. Multiple Linear Regression Intuition - Step 2.mp4 | 1.78Мб | 
                
                    | 4. Multiple Linear Regression Intuition - Step 2.vtt | 1.34Кб | 
                
                    | 4. Naive Bayes Intuition (Extras).mp4 | 18.94Мб | 
                
                    | 4. Naive Bayes Intuition (Extras).vtt | 14.29Кб | 
                
                    | 4. Natural Language Processing in Python - Step 1.mp4 | 35.20Мб | 
                
                    | 4. Natural Language Processing in Python - Step 1.vtt | 15.95Кб | 
                
                    | 4. PCA in Python - Step 2.mp4 | 22.07Мб | 
                
                    | 4. PCA in Python - Step 2.vtt | 10.35Кб | 
                
                    | 4. Polynomial Regression in Python - Step 2.mp4 | 27.10Мб | 
                
                    | 4. Polynomial Regression in Python - Step 2.vtt | 15.33Кб | 
                
                    | 4. Random Forest Classification in R.mp4 | 49.39Мб | 
                
                    | 4. Random Forest Classification in R.vtt | 28.85Кб | 
                
                    | 4. Random Forest Regression in R.mp4 | 40.34Мб | 
                
                    | 4. Random Forest Regression in R.vtt | 25.10Кб | 
                
                    | 4. Simple Linear Regression Intuition - Step 2.mp4 | 5.37Мб | 
                
                    | 4. Simple Linear Regression Intuition - Step 2.vtt | 3.93Кб | 
                
                    | 4. Step 1(b) - ReLU Layer.mp4 | 14.09Мб | 
                
                    | 4. Step 1(b) - ReLU Layer.vtt | 8.08Кб | 
                
                    | 4. SVM in R.mp4 | 32.26Мб | 
                
                    | 4. SVM in R.vtt | 16.36Кб | 
                
                    | 4. SVR in R.mp4 | 25.87Мб | 
                
                    | 4. SVR in R.vtt | 16.61Кб | 
                
                    | 4. Thompson Sampling in Python - Step 1.mp4 | 43.13Мб | 
                
                    | 4. Thompson Sampling in Python - Step 1.vtt | 25.19Кб | 
                
                    | 4. Types of Kernel Functions.mp4 | 12.31Мб | 
                
                    | 4. Types of Kernel Functions.vtt | 4.37Кб | 
                
                    | 4. Upper Confidence Bound in Python - Step 1.mp4 | 31.53Мб | 
                
                    | 4. Upper Confidence Bound in Python - Step 1.vtt | 19.05Кб | 
                
                    | 4. XGBoost in R.mp4 | 47.26Мб | 
                
                    | 4. XGBoost in R.vtt | 22.59Кб | 
                
                    | 5.1 Machine_Learning_A_Z_Q_A.pdf.pdf | 2.26Мб | 
                
                    | 5. Apriori in R - Step 3.mp4 | 43.84Мб | 
                
                    | 5. Apriori in R - Step 3.vtt | 27.72Кб | 
                
                    | 5. CAP Curve Analysis.mp4 | 11.52Мб | 
                
                    | 5. CAP Curve Analysis.vtt | 8.35Кб | 
                
                    | 5. Conclusion of Part 2 - Regression.html | 2.91Кб | 
                
                    | 5. Grid Search in Python - Step 2.mp4 | 29.52Мб | 
                
                    | 5. Grid Search in Python - Step 2.vtt | 13.28Кб | 
                
                    | 5. HC in Python - Step 1.mp4 | 10.72Мб | 
                
                    | 5. HC in Python - Step 1.vtt | 6.79Кб | 
                
                    | 5. How do Neural Networks learn.mp4 | 26.55Мб | 
                
                    | 5. How do Neural Networks learn.vtt | 16.53Кб | 
                
                    | 5. How to get the dataset.mp4 | 11.71Мб | 
                
                    | 5. How to get the dataset.mp4 | 11.71Мб | 
                
                    | 5. How to get the dataset.vtt | 4.23Кб | 
                
                    | 5. How to get the dataset.vtt | 4.23Кб | 
                
                    | 5. K-Means Clustering in Python.mp4 | 39.77Мб | 
                
                    | 5. K-Means Clustering in Python.vtt | 25.22Кб | 
                
                    | 5. K-Nearest Neighbor.html | 118б | 
                
                    | 5. Logistic Regression in Python - Step 3.mp4 | 5.98Мб | 
                
                    | 5. Logistic Regression in Python - Step 3.vtt | 3.66Кб | 
                
                    | 5. Multiple Linear Regression Intuition - Step 3.mp4 | 14.28Мб | 
                
                    | 5. Multiple Linear Regression Intuition - Step 3.vtt | 9.71Кб | 
                
                    | 5. Natural Language Processing in Python - Step 2.mp4 | 21.96Мб | 
                
                    | 5. Natural Language Processing in Python - Step 2.vtt | 13.74Кб | 
                
                    | 5. PCA in Python - Step 3.mp4 | 25.51Мб | 
                
                    | 5. PCA in Python - Step 3.vtt | 12.94Кб | 
                
                    | 5. Polynomial Regression in Python - Step 3.mp4 | 42.98Мб | 
                
                    | 5. Polynomial Regression in Python - Step 3.vtt | 42.99Мб | 
                
                    | 5. Simple Linear Regression in Python - Step 1.mp4 | 21.72Мб | 
                
                    | 5. Simple Linear Regression in Python - Step 1.vtt | 13.88Кб | 
                
                    | 5. Step 2 - Pooling.mp4 | 40.24Мб | 
                
                    | 5. Step 2 - Pooling.vtt | 18.41Кб | 
                
                    | 5. THANK YOU bonus video.mp4 | 52.24Мб | 
                
                    | 5. THANK YOU bonus video.vtt | 2.04Кб | 
                
                    | 5. This PDF resource will help you a lot.html | 1.49Кб | 
                
                    | 5. Thompson Sampling in Python - Step 2.mp4 | 8.42Мб | 
                
                    | 5. Thompson Sampling in Python - Step 2.vtt | 5.20Кб | 
                
                    | 5. Upper Confidence Bound in Python - Step 2.mp4 | 35.44Мб | 
                
                    | 5. Upper Confidence Bound in Python - Step 2.vtt | 21.82Кб | 
                
                    | 6.1 Machine_Learning_A-Z_New.zip.zip | 228.44Мб | 
                
                    | 6. Apriori in Python - Step 1.mp4 | 37.97Мб | 
                
                    | 6. Apriori in Python - Step 1.vtt | 24.86Кб | 
                
                    | 6. Conclusion of Part 3 - Classification.html | 3.75Кб | 
                
                    | 6. Gradient Descent.mp4 | 18.54Мб | 
                
                    | 6. Gradient Descent.vtt | 12.26Кб | 
                
                    | 6. Grid Search in R.mp4 | 35.54Мб | 
                
                    | 6. Grid Search in R.vtt | 18.26Кб | 
                
                    | 6. HC in Python - Step 2.mp4 | 12.64Мб | 
                
                    | 6. HC in Python - Step 2.vtt | 8.57Кб | 
                
                    | 6. Kernel SVM in Python.mp4 | 41.62Мб | 
                
                    | 6. Kernel SVM in Python.vtt | 24.98Кб | 
                
                    | 6. K-Means Clustering in R.mp4 | 28.99Мб | 
                
                    | 6. K-Means Clustering in R.vtt | 17.34Кб | 
                
                    | 6. Logistic Regression in Python - Step 4.mp4 | 10.38Мб | 
                
                    | 6. Logistic Regression in Python - Step 4.vtt | 6.37Кб | 
                
                    | 6. Missing Data.mp4 | 32.16Мб | 
                
                    | 6. Missing Data.vtt | 19.43Кб | 
                
                    | 6. Multiple Linear Regression Intuition - Step 4.mp4 | 4.51Мб | 
                
                    | 6. Multiple Linear Regression Intuition - Step 4.vtt | 3.17Кб | 
                
                    | 6. Naive Bayes in Python.mp4 | 23.38Мб | 
                
                    | 6. Naive Bayes in Python.vtt | 12.22Кб | 
                
                    | 6. Natural Language Processing in Python - Step 3.mp4 | 3.39Мб | 
                
                    | 6. Natural Language Processing in Python - Step 3.vtt | 3.39Мб | 
                
                    | 6. PCA in R - Step 1.mp4 | 30.65Мб | 
                
                    | 6. PCA in R - Step 1.vtt | 16.36Кб | 
                
                    | 6. Polynomial Regression in Python - Step 4.mp4 | 13.50Мб | 
                
                    | 6. Polynomial Regression in Python - Step 4.vtt | 13.52Мб | 
                
                    | 6. Simple Linear Regression in Python - Step 2.mp4 | 18.75Мб | 
                
                    | 6. Simple Linear Regression in Python - Step 2.vtt | 11.12Кб | 
                
                    | 6. Step 3 - Flattening.mp4 | 3.28Мб | 
                
                    | 6. Step 3 - Flattening.vtt | 2.28Кб | 
                
                    | 6. The whole code folder of the course.html | 1.02Кб | 
                
                    | 6. Thompson Sampling in R - Step 1.mp4 | 40.93Мб | 
                
                    | 6. Thompson Sampling in R - Step 1.vtt | 24.31Кб | 
                
                    | 6. Upper Confidence Bound in Python - Step 3.mp4 | 41.11Мб | 
                
                    | 6. Upper Confidence Bound in Python - Step 3.vtt | 23.38Кб | 
                
                    | 7. Apriori in Python - Step 2.mp4 | 29.52Мб | 
                
                    | 7. Apriori in Python - Step 2.vtt | 20.11Кб | 
                
                    | 7. Categorical Data.mp4 | 40.79Мб | 
                
                    | 7. Categorical Data.vtt | 23.86Кб | 
                
                    | 7. HC in Python - Step 3.mp4 | 12.30Мб | 
                
                    | 7. HC in Python - Step 3.vtt | 6.95Кб | 
                
                    | 7. Kernel SVM in R.mp4 | 40.45Мб | 
                
                    | 7. Kernel SVM in R.vtt | 22.66Кб | 
                
                    | 7. K-Means Clustering.html | 118б | 
                
                    | 7. Logistic Regression in Python - Step 5.mp4 | 42.55Мб | 
                
                    | 7. Logistic Regression in Python - Step 5.vtt | 26.48Кб | 
                
                    | 7. Naive Bayes in R.mp4 | 37.31Мб | 
                
                    | 7. Naive Bayes in R.vtt | 19.45Кб | 
                
                    | 7. Natural Language Processing in Python - Step 4.mp4 | 24.01Мб | 
                
                    | 7. Natural Language Processing in Python - Step 4.vtt | 15.17Кб | 
                
                    | 7. PCA in R - Step 2.mp4 | 29.02Мб | 
                
                    | 7. PCA in R - Step 2.vtt | 14.64Кб | 
                
                    | 7. Prerequisites What is the P-Value.html | 676б | 
                
                    | 7. Python Regression Template.mp4 | 27.43Мб | 
                
                    | 7. Python Regression Template.vtt | 14.67Кб | 
                
                    | 7. Simple Linear Regression in Python - Step 3.mp4 | 15.61Мб | 
                
                    | 7. Simple Linear Regression in Python - Step 3.vtt | 8.89Кб | 
                
                    | 7. Step 4 - Full Connection.mp4 | 42.75Мб | 
                
                    | 7. Step 4 - Full Connection.vtt | 25.08Кб | 
                
                    | 7. Stochastic Gradient Descent.mp4 | 16.83Мб | 
                
                    | 7. Stochastic Gradient Descent.vtt | 10.74Кб | 
                
                    | 7. Thompson Sampling in R - Step 2.mp4 | 7.47Мб | 
                
                    | 7. Thompson Sampling in R - Step 2.vtt | 4.76Кб | 
                
                    | 7. Updates on Udemy Reviews.mp4 | 52.92Мб | 
                
                    | 7. Updates on Udemy Reviews.vtt | 52.93Мб | 
                
                    | 7. Upper Confidence Bound in Python - Step 4.mp4 | 9.13Мб | 
                
                    | 7. Upper Confidence Bound in Python - Step 4.vtt | 4.38Кб | 
                
                    | 8. Apriori in Python - Step 3.mp4 | 26.96Мб | 
                
                    | 8. Apriori in Python - Step 3.vtt | 26.98Мб | 
                
                    | 8. Backpropagation.mp4 | 10.92Мб | 
                
                    | 8. Backpropagation.vtt | 6.32Кб | 
                
                    | 8. HC in Python - Step 4.mp4 | 12.02Мб | 
                
                    | 8. HC in Python - Step 4.vtt | 5.85Кб | 
                
                    | 8. Installing Python and Anaconda (Mac, Linux & Windows).mp4 | 19.52Мб | 
                
                    | 8. Installing Python and Anaconda (Mac, Linux & Windows).vtt | 10.98Кб | 
                
                    | 8. Multiple Linear Regression Intuition - Step 5.mp4 | 28.83Мб | 
                
                    | 8. Multiple Linear Regression Intuition - Step 5.vtt | 21.06Кб | 
                
                    | 8. Natural Language Processing in Python - Step 5.mp4 | 14.91Мб | 
                
                    | 8. Natural Language Processing in Python - Step 5.vtt | 9.23Кб | 
                
                    | 8. PCA in R - Step 3.mp4 | 36.73Мб | 
                
                    | 8. PCA in R - Step 3.vtt | 36.76Мб | 
                
                    | 8. Polynomial Regression in R - Step 1.mp4 | 17.78Мб | 
                
                    | 8. Polynomial Regression in R - Step 1.vtt | 12.66Кб | 
                
                    | 8. Python Classification Template.mp4 | 12.06Мб | 
                
                    | 8. Python Classification Template.vtt | 5.48Кб | 
                
                    | 8. Simple Linear Regression in Python - Step 4.mp4 | 30.82Мб | 
                
                    | 8. Simple Linear Regression in Python - Step 4.vtt | 20.04Кб | 
                
                    | 8. Summary.mp4 | 7.92Мб | 
                
                    | 8. Summary.vtt | 5.33Кб | 
                
                    | 8. Upper Confidence Bound in R - Step 1.mp4 | 28.05Мб | 
                
                    | 8. Upper Confidence Bound in R - Step 1.vtt | 17.91Кб | 
                
                    | 8. WARNING - Update.html | 2.86Кб | 
                
                    | 9. HC in Python - Step 5.mp4 | 8.39Мб | 
                
                    | 9. HC in Python - Step 5.vtt | 6.14Кб | 
                
                    | 9. How to get the dataset.mp4 | 11.71Мб | 
                
                    | 9. How to get the dataset.vtt | 4.23Кб | 
                
                    | 9. Logistic Regression in R - Step 1.mp4 | 12.59Мб | 
                
                    | 9. Logistic Regression in R - Step 1.vtt | 7.92Кб | 
                
                    | 9. Multiple Linear Regression in Python - Step 1.mp4 | 39.56Мб | 
                
                    | 9. Multiple Linear Regression in Python - Step 1.vtt | 21.52Кб | 
                
                    | 9. Natural Language Processing in Python - Step 6.mp4 | 6.49Мб | 
                
                    | 9. Natural Language Processing in Python - Step 6.vtt | 3.86Кб | 
                
                    | 9. Polynomial Regression in R - Step 2.mp4 | 23.87Мб | 
                
                    | 9. Polynomial Regression in R - Step 2.vtt | 13.72Кб | 
                
                    | 9. Simple Linear Regression in R - Step 1.mp4 | 9.54Мб | 
                
                    | 9. Simple Linear Regression in R - Step 1.vtt | 6.86Кб | 
                
                    | 9. Softmax & Cross-Entropy.mp4 | 33.23Мб | 
                
                    | 9. Softmax & Cross-Entropy.vtt | 22.13Кб | 
                
                    | 9. Splitting the Dataset into the Training set and Test set.mp4 | 39.03Мб | 
                
                    | 9. Splitting the Dataset into the Training set and Test set.vtt | 23.91Кб | 
                
                    | 9. Update Recommended Anaconda Version.html | 1.32Кб | 
                
                    | 9. Upper Confidence Bound in R - Step 2.mp4 | 29.02Мб | 
                
                    | 9. Upper Confidence Bound in R - Step 2.vtt | 19.20Кб |