Общая информация
Название [FreeCourseSite.com] Udemy - Machine Learning A-Z™ Hands-On Python & R In Data Science
Тип
Размер 11.52Гб
Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[CourseClub.ME].url 122б
[FCS Forum].url 133б
[FreeCourseSite.com].url 127б
1.1 Machine Learning A-Z (Codes and Datasets).zip 5.27Мб
1.1 Machine Learning A-Z (Codes and Datasets).zip 5.28Мб
1.1 Machine Learning A-Z (Codes and Datasets).zip 5.28Мб
1.1 Machine Learning A-Z (Codes and Datasets).zip 5.28Мб
1.1 Machine Learning A-Z (Model Selection).zip 160.01Кб
1.1 Machine Learning A-Z (Model Selection).zip 160.01Кб
1. Applications of Machine Learning.mp4 9.81Мб
1. Applications of Machine Learning.srt 5.30Кб
1. Apriori Intuition.mp4 35.02Мб
1. Apriori Intuition.srt 25.91Кб
1. Bayes Theorem.mp4 50.44Мб
1. Bayes Theorem.srt 34.45Кб
1. Dataset + Business Problem Description.mp4 12.56Мб
1. Dataset + Business Problem Description.srt 5.68Кб
1. Decision Tree Classification Intuition.mp4 21.63Мб
1. Decision Tree Classification Intuition.srt 12.87Кб
1. Decision Tree Regression Intuition.mp4 25.33Мб
1. Decision Tree Regression Intuition.srt 17.06Кб
1. Eclat Intuition.mp4 10.66Мб
1. Eclat Intuition.srt 8.10Кб
1. Evaluating Regression Models Performance - Homework's Final Part.mp4 28.36Мб
1. Evaluating Regression Models Performance - Homework's Final Part.srt 12.93Кб
1. False Positives & False Negatives.mp4 15.13Мб
1. False Positives & False Negatives.srt 11.29Кб
1. Kernel SVM Intuition.mp4 6.42Мб
1. Kernel SVM Intuition.srt 4.41Кб
1. K-Means Clustering.html 125б
1. K-Means Clustering Intuition.mp4 29.97Мб
1. K-Means Clustering Intuition.srt 23.34Кб
1. K-Nearest Neighbor.html 125б
1. K-Nearest Neighbor Intuition.mp4 10.48Мб
1. K-Nearest Neighbor Intuition.srt 8.04Кб
1. Linear Discriminant Analysis (LDA) Intuition.mp4 26.99Мб
1. Linear Discriminant Analysis (LDA) Intuition.srt 5.11Кб
1. Logistic Regression Intuition.mp4 29.18Мб
1. Logistic Regression Intuition.srt 23.94Кб
1. Make sure you have this Model Selection folder ready.html 973б
1. Make sure you have this Model Selection folder ready.html 985б
1. Make sure you have your Machine Learning A-Z folder ready.html 664б
1. Make sure you have your Machine Learning A-Z folder ready.html 776б
1. Make sure you have your Machine Learning A-Z folder ready.html 776б
1. Make sure you have your Machine Learning A-Z folder ready.html 776б
1. Plan of attack.mp4 4.74Мб
1. Plan of attack.mp4 5.90Мб
1. Plan of attack.srt 4.00Кб
1. Plan of attack.srt 5.24Кб
1. Polynomial Regression Intuition.mp4 9.44Мб
1. Polynomial Regression Intuition.srt 7.82Кб
1. Principal Component Analysis (PCA) Intuition.mp4 32.12Мб
1. Principal Component Analysis (PCA) Intuition.srt 5.05Кб
1. Random Forest Classification Intuition.mp4 25.66Мб
1. Random Forest Classification Intuition.srt 7.05Кб
1. Random Forest Regression Intuition.mp4 15.65Мб
1. Random Forest Regression Intuition.srt 10.22Кб
1. R-Squared Intuition.mp4 9.81Мб
1. R-Squared Intuition.srt 7.17Кб
1. Simple Linear Regression Intuition - Step 1.mp4 10.53Мб
1. Simple Linear Regression Intuition - Step 1.srt 8.30Кб
1. SVR Intuition (Updated!).mp4 36.85Мб
1. SVR Intuition (Updated!).srt 11.58Кб
1. The Multi-Armed Bandit Problem.mp4 30.20Мб
1. The Multi-Armed Bandit Problem.srt 22.27Кб
1. Thompson Sampling Intuition.mp4 37.28Мб
1. Thompson Sampling Intuition.srt 27.53Кб
1. Welcome.html 608б
1. Welcome to Part 10 - Model Selection & Boosting.html 899б
1. Welcome to Part 1 - Data Preprocessing.html 531б
1. Welcome to Part 2 - Regression.html 875б
1. Welcome to Part 3 - Classification.html 831б
1. Welcome to Part 4 - Clustering.html 734б
1. Welcome to Part 5 - Association Rule Learning.html 425б
1. Welcome to Part 6 - Reinforcement Learning.html 1.52Кб
1. Welcome to Part 7 - Natural Language Processing.html 1.69Кб
1. Welcome to Part 8 - Deep Learning.html 870б
1. Welcome to Part 9 - Dimensionality Reduction.html 1.26Кб
1. YOUR SPECIAL BONUS.html 4.73Кб
10.1 Machine Learning A-Z (Codes and Datasets).zip 5.28Мб
10.1 Section 40 - Convolutional Neural Networks (CNN).zip 224.04Мб
10. Data Preprocessing Template.mp4 50.74Мб
10. Data Preprocessing Template.srt 8.32Кб
10. Hierarchical Clustering in R - Step 2.mp4 13.87Мб
10. Hierarchical Clustering in R - Step 2.srt 8.14Кб
10. Installing R and R Studio (Mac, Linux & Windows).mp4 23.22Мб
10. Installing R and R Studio (Mac, Linux & Windows).srt 9.15Кб
10. K-Means Clustering in R.mp4 36.91Мб
10. K-Means Clustering in R.srt 19.44Кб
10. Logistic Regression in R - Step 1.mp4 15.73Мб
10. Logistic Regression in R - Step 1.srt 8.92Кб
10. Make sure you have your dataset ready.html 797б
10. Make sure you have your Machine Learning A-Z folder ready.html 776б
10. Multiple Linear Regression in Python - Step 2.mp4 62.33Мб
10. Multiple Linear Regression in Python - Step 2.srt 14.86Кб
10. Natural Language Processing in Python - Step 4.mp4 60.11Мб
10. Natural Language Processing in Python - Step 4.srt 16.78Кб
10. Polynomial Regression in R - Step 4.mp4 28.52Мб
10. Polynomial Regression in R - Step 4.srt 15.44Кб
10. Simple Linear Regression in R - Step 2.mp4 24.87Мб
10. Simple Linear Regression in R - Step 2.srt 8.89Кб
10. Thompson Sampling in R - Step 2.mp4 9.56Мб
10. Thompson Sampling in R - Step 2.srt 5.29Кб
10. Upper Confidence Bound in Python - Step 7.mp4 43.34Мб
10. Upper Confidence Bound in Python - Step 7.srt 11.67Кб
11. ANN in Python - Step 1.mp4 66.47Мб
11. ANN in Python - Step 1.srt 17.37Кб
11. BONUS Meet your instructors.html 1.10Кб
11. CNN in Python - Step 1.mp4 70.80Мб
11. CNN in Python - Step 1.srt 18.29Кб
11. Hierarchical Clustering in R - Step 3.mp4 9.96Мб
11. Hierarchical Clustering in R - Step 3.srt 4.73Кб
11. Logistic Regression in R - Step 2.mp4 14.85Мб
11. Logistic Regression in R - Step 2.srt 4.35Кб
11. Multiple Linear Regression in Python - Step 3.mp4 58.21Мб
11. Multiple Linear Regression in Python - Step 3.srt 16.60Кб
11. Natural Language Processing in Python - Step 5.mp4 89.63Мб
11. Natural Language Processing in Python - Step 5.srt 26.38Кб
11. R Regression Template.mp4 31.34Мб
11. R Regression Template.srt 18.63Кб
11. Simple Linear Regression in R - Step 3.mp4 11.43Мб
11. Simple Linear Regression in R - Step 3.srt 5.52Кб
11. Upper Confidence Bound in R - Step 1.mp4 34.01Мб
11. Upper Confidence Bound in R - Step 1.srt 20.54Кб
12. Check out our free course on ANN for Regression.html 533б
12. CNN in Python - Step 2.mp4 106.88Мб
12. CNN in Python - Step 2.srt 29.00Кб
12. Hierarchical Clustering in R - Step 4.mp4 10.18Мб
12. Hierarchical Clustering in R - Step 4.srt 3.83Кб
12. Logistic Regression in R - Step 3.mp4 27.45Мб
12. Logistic Regression in R - Step 3.srt 7.42Кб
12. Multiple Linear Regression in Python - Step 4.mp4 72.52Мб
12. Multiple Linear Regression in Python - Step 4.srt 20.01Кб
12. Natural Language Processing in Python - Step 6.mp4 52.90Мб
12. Natural Language Processing in Python - Step 6.srt 15.02Кб
12. Simple Linear Regression in R - Step 4.mp4 49.16Мб
12. Simple Linear Regression in R - Step 4.srt 23.94Кб
12. Some Additional Resources.html 553б
12. Upper Confidence Bound in R - Step 2.mp4 34.10Мб
12. Upper Confidence Bound in R - Step 2.srt 22.17Кб
13. ANN in Python - Step 2.mp4 111.03Мб
13. ANN in Python - Step 2.srt 31.00Кб
13. CNN in Python - Step 3.mp4 118.59Мб
13. CNN in Python - Step 3.srt 28.91Кб
13. FAQBot!.html 2.98Кб
13. Hierarchical Clustering in R - Step 5.mp4 13.68Мб
13. Hierarchical Clustering in R - Step 5.srt 4.03Кб
13. Logistic Regression in R - Step 4.mp4 11.73Мб
13. Logistic Regression in R - Step 4.srt 3.98Кб
13. Multiple Linear Regression in Python - Backward Elimination.html 3.48Кб
13. Natural Language Processing in Python - BONUS.html 1.10Кб
13. Simple Linear Regression.html 125б
13. Upper Confidence Bound in R - Step 3.mp4 57.84Мб
13. Upper Confidence Bound in R - Step 3.srt 25.32Кб
14. ANN in Python - Step 3.mp4 75.07Мб
14. ANN in Python - Step 3.srt 23.46Кб
14. CNN in Python - Step 4.mp4 40.02Мб
14. CNN in Python - Step 4.srt 11.44Кб
14. Hierarchical Clustering.html 125б
14. Homework Challenge.html 1.36Кб
14. Multiple Linear Regression in Python - BONUS.html 1.20Кб
14. Upper Confidence Bound in R - Step 4.mp4 9.55Мб
14. Upper Confidence Bound in R - Step 4.srt 4.41Кб
14. Warning - Update.html 1.33Кб
14. Your Shortcut To Becoming A Better Data Scientist!.html 3.74Кб
15.1 Clustering-Pros-Cons.pdf 25.76Кб
15. ANN in Python - Step 4.mp4 65.38Мб
15. ANN in Python - Step 4.srt 20.20Кб
15. CNN in Python - Step 5.mp4 97.68Мб
15. CNN in Python - Step 5.srt 22.49Кб
15. Conclusion of Part 4 - Clustering.html 516б
15. Logistic Regression in R - Step 5.mp4 93.77Мб
15. Logistic Regression in R - Step 5.srt 29.10Кб
15. Multiple Linear Regression in R - Step 1.mp4 23.44Мб
15. Multiple Linear Regression in R - Step 1.srt 11.85Кб
15. Natural Language Processing in R - Step 1.mp4 51.20Мб
15. Natural Language Processing in R - Step 1.srt 24.00Кб
16. ANN in Python - Step 5.mp4 101.34Мб
16. ANN in Python - Step 5.srt 25.76Кб
16. CNN in Python - FINAL DEMO!.mp4 152.77Мб
16. CNN in Python - FINAL DEMO!.srt 38.78Кб
16. Multiple Linear Regression in R - Step 2.mp4 45.22Мб
16. Multiple Linear Regression in R - Step 2.srt 15.43Кб
16. Natural Language Processing in R - Step 2.mp4 21.66Мб
16. Natural Language Processing in R - Step 2.srt 12.88Кб
16. R Classification Template.mp4 17.51Мб
16. R Classification Template.srt 6.70Кб
17. ANN in R - Step 1.mp4 49.90Мб
17. ANN in R - Step 1.srt 26.79Кб
17. Deep Learning BONUS #2.html 923б
17. Machine Learning Regression and Classification BONUS.html 819б
17. Multiple Linear Regression in R - Step 3.mp4 13.85Мб
17. Multiple Linear Regression in R - Step 3.srt 7.06Кб
17. Natural Language Processing in R - Step 3.mp4 16.89Мб
17. Natural Language Processing in R - Step 3.srt 10.12Кб
18. ANN in R - Step 2.mp4 18.24Мб
18. ANN in R - Step 2.srt 10.12Кб
18. Logistic Regression.html 125б
18. Multiple Linear Regression in R - Backward Elimination - HOMEWORK !.mp4 50.79Мб
18. Multiple Linear Regression in R - Backward Elimination - HOMEWORK !.srt 27.48Кб
18. Natural Language Processing in R - Step 4.mp4 8.25Мб
18. Natural Language Processing in R - Step 4.srt 4.66Кб
19. ANN in R - Step 3.mp4 37.86Мб
19. ANN in R - Step 3.srt 18.88Кб
19. BONUS Logistic Regression Practical Case Study.html 619б
19. Multiple Linear Regression in R - Backward Elimination - Homework Solution.mp4 21.95Мб
19. Multiple Linear Regression in R - Backward Elimination - Homework Solution.srt 11.86Кб
19. Natural Language Processing in R - Step 5.mp4 5.78Мб
19. Natural Language Processing in R - Step 5.srt 3.25Кб
2.1 Machine Learning A-Z (Codes and Datasets).zip 5.28Мб
2.1 Machine Learning A-Z (Codes and Datasets).zip 5.28Мб
2.1 Machine Learning A-Z (Codes and Datasets).zip 5.27Мб
2.1 Machine Learning A-Z (Codes and Datasets).zip 5.28Мб
2.1 Machine Learning A-Z (Codes and Datasets).zip 5.27Мб
2.1 Machine Learning A-Z (Codes and Datasets).zip 5.28Мб
2.1 Machine Learning A-Z (Codes and Datasets).zip 5.28Мб
2.1 Machine Learning A-Z (Codes and Datasets).zip 5.27Мб
2.1 Machine Learning A-Z (Codes and Datasets).zip 5.27Мб
2.1 Machine Learning A-Z (Codes and Datasets).zip 5.27Мб
2.1 Machine Learning A-Z (Codes and Datasets).zip 5.28Мб
2. Adjusted R-Squared Intuition.mp4 21.42Мб
2. Adjusted R-Squared Intuition.srt 14.45Кб
2. Algorithm Comparison UCB vs Thompson Sampling.mp4 14.08Мб
2. Algorithm Comparison UCB vs Thompson Sampling.srt 11.14Кб
2. BONUS #1 Learning Paths.html 1.39Кб
2. Confusion Matrix.mp4 8.91Мб
2. Confusion Matrix.srt 7.51Кб
2. Getting Started.mp4 54.34Мб
2. Getting Started.mp4 9.81Мб
2. Getting Started.srt 16.73Кб
2. Getting Started.srt 2.46Кб
2. Heads-up on non-linear SVR.mp4 19.78Мб
2. Heads-up on non-linear SVR.srt 5.93Кб
2. Hierarchical Clustering Intuition.mp4 16.52Мб
2. Hierarchical Clustering Intuition.srt 14.59Кб
2. Interpreting Linear Regression Coefficients.mp4 27.38Мб
2. Interpreting Linear Regression Coefficients.srt 13.32Кб
2. Kernel PCA in Python.mp4 77.50Мб
2. Kernel PCA in Python.srt 17.46Кб
2. k-Fold Cross Validation in Python.mp4 112.37Мб
2. k-Fold Cross Validation in Python.srt 28.65Кб
2. K-Means Random Initialization Trap.mp4 15.37Мб
2. K-Means Random Initialization Trap.srt 12.95Кб
2. Make sure you have your Machine Learning A-Z folder ready.html 776б
2. Make sure you have your Machine Learning A-Z folder ready.html 776б
2. Make sure you have your Machine Learning A-Z folder ready.html 776б
2. Make sure you have your Machine Learning A-Z folder ready.html 776б
2. Make sure you have your Machine Learning A-Z folder ready.html 776б
2. Make sure you have your Machine Learning A-Z folder ready.html 776б
2. Make sure you have your Machine Learning A-Z folder ready.html 776б
2. Make sure you have your Machine Learning A-Z folder ready.html 776б
2. Make sure you have your Machine Learning A-Z folder ready.html 776б
2. Make sure you have your Machine Learning A-Z folder ready.html 776б
2. Make sure you have your Machine Learning A-Z folder ready.html 776б
2. Mapping to a higher dimension.mp4 15.40Мб
2. Mapping to a higher dimension.srt 10.54Кб
2. Multiple Linear Regression Intuition - Step 1.mp4 2.00Мб
2. Multiple Linear Regression Intuition - Step 1.srt 1.58Кб
2. Naive Bayes Intuition.mp4 31.11Мб
2. Naive Bayes Intuition.srt 23.34Кб
2. NLP Intuition.mp4 12.71Мб
2. NLP Intuition.srt 4.57Кб
2. Preparation of the Regression Code Templates.mp4 123.59Мб
2. Preparation of the Regression Code Templates.srt 30.20Кб
2. Simple Linear Regression Intuition - Step 2.mp4 5.99Мб
2. Simple Linear Regression Intuition - Step 2.srt 4.34Кб
2. SVM Intuition.mp4 19.92Мб
2. SVM Intuition.srt 15.72Кб
2. The Neuron.mp4 29.87Мб
2. The Neuron.srt 25.04Кб
2. THE ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION!.mp4 135.99Мб
2. THE ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION!.srt 34.43Кб
2. Upper Confidence Bound (UCB) Intuition.mp4 29.33Мб
2. Upper Confidence Bound (UCB) Intuition.srt 21.92Кб
2. What are convolutional neural networks.mp4 29.51Мб
2. What are convolutional neural networks.srt 22.06Кб
2. What is Deep Learning.mp4 31.32Мб
2. What is Deep Learning.srt 158.11Мб
2. XGBoost in Python.mp4 89.99Мб
2. XGBoost in Python.srt 23.05Кб
20. ANN in R - Step 4 (Last step).mp4 43.76Мб
20. ANN in R - Step 4 (Last step).srt 20.68Кб
20. Multiple Linear Regression in R - Automatic Backward Elimination.html 726б
20. Natural Language Processing in R - Step 6.mp4 16.10Мб
20. Natural Language Processing in R - Step 6.srt 8.35Кб
21. Deep Learning BONUS #1.html 1011б
21. Multiple Linear Regression.html 125б
21. Natural Language Processing in R - Step 7.mp4 9.59Мб
21. Natural Language Processing in R - Step 7.srt 5.59Кб
22. BONUS ANN Case Study.html 544б
22. Natural Language Processing in R - Step 8.mp4 17.23Мб
22. Natural Language Processing in R - Step 8.srt 8.01Кб
23. Natural Language Processing in R - Step 9.mp4 37.70Мб
23. Natural Language Processing in R - Step 9.srt 19.60Кб
24. Natural Language Processing in R - Step 10.mp4 54.15Мб
24. Natural Language Processing in R - Step 10.srt 26.29Кб
25. Homework Challenge.html 1.40Кб
26. BONUS NLP BERT.html 906б
3.1 Machine Learning A-Z (Codes and Datasets).zip 5.28Мб
3.1 Machine Learning A-Z (Codes and Datasets).zip 5.28Мб
3.1 Machine Learning A-Z (Codes and Datasets).zip 5.27Мб
3.1 Machine Learning A-Z (Codes and Datasets).zip 5.27Мб
3.1 Machine Learning A-Z (Codes and Datasets).zip 5.27Мб
3.1 Regression_Bonus.zip 364.49Кб
3. Accuracy Paradox.mp4 4.22Мб
3. Accuracy Paradox.srt 3.24Кб
3. Apriori in Python - Step 1.mp4 69.84Мб
3. Apriori in Python - Step 1.srt 14.29Кб
3. BONUS #2 ML vs. DL vs. AI - What’s the Difference.html 499б
3. Conclusion of Part 2 - Regression.html 1.71Кб
3. Decision Tree Classification in Python.mp4 108.06Мб
3. Decision Tree Classification in Python.srt 22.26Кб
3. Decision Tree Regression in Python - Step 1.mp4 42.39Мб
3. Decision Tree Regression in Python - Step 1.srt 13.28Кб
3. Eclat in Python.mp4 75.55Мб
3. Eclat in Python.srt 18.85Кб
3. Grid Search in Python.mp4 151.79Мб
3. Grid Search in Python.srt 34.61Кб
3. Hierarchical Clustering How Dendrograms Work.mp4 17.47Мб
3. Hierarchical Clustering How Dendrograms Work.srt 14.35Кб
3. Importing the Libraries.mp4 15.98Мб
3. Importing the Libraries.srt 5.62Кб
3. Kernel PCA in R.mp4 56.58Мб
3. Kernel PCA in R.srt 30.81Кб
3. K-Means Selecting The Number Of Clusters.mp4 25.69Мб
3. K-Means Selecting The Number Of Clusters.srt 18.46Кб
3. K-NN in Python.mp4 146.61Мб
3. K-NN in Python.srt 30.75Кб
3. LDA in Python.mp4 102.00Мб
3. LDA in Python.srt 23.45Кб
3. Logistic Regression in Python - Step 1.mp4 44.60Мб
3. Logistic Regression in Python - Step 1.srt 14.49Кб
3. Make sure you have your dataset ready.html 465б
3. Make sure you have your Machine Learning A-Z folder ready.html 776б
3. Make sure you have your Machine Learning A-Z folder ready.html 776б
3. Make sure you have your Machine Learning A-Z folder ready.html 776б
3. Make sure you have your Machine Learning A-Z folder ready.html 776б
3. Make sure you have your Machine Learning A-Z folder ready.html 776б
3. Model Selection and Boosting BONUS.html 1.14Кб
3. Multiple Linear Regression Intuition - Step 2.mp4 2.04Мб
3. Multiple Linear Regression Intuition - Step 2.srt 1.45Кб
3. Naive Bayes Intuition (Challenge Reveal).mp4 13.27Мб
3. Naive Bayes Intuition (Challenge Reveal).srt 9.50Кб
3. PCA in Python - Step 1.mp4 112.91Мб
3. PCA in Python - Step 1.srt 26.45Кб
3. Polynomial Regression in Python - Step 1.mp4 58.25Мб
3. Polynomial Regression in Python - Step 1.srt 20.81Кб
3. Random Forest Classification in Python.mp4 96.69Мб
3. Random Forest Classification in Python.srt 21.42Кб
3. Random Forest Regression in Python.mp4 74.39Мб
3. Random Forest Regression in Python.srt 21.08Кб
3. Step 1 - Convolution Operation.mp4 31.02Мб
3. Step 1 - Convolution Operation.srt 23.23Кб
3. The Activation Function.mp4 14.76Мб
3. The Activation Function.srt 12.03Кб
3. The Kernel Trick.mp4 34.73Мб
3. The Kernel Trick.srt 16.52Кб
3. THE ULTIMATE DEMO OF THE POWERFUL REGRESSION CODE TEMPLATES IN ACTION!.mp4 56.78Мб
3. THE ULTIMATE DEMO OF THE POWERFUL REGRESSION CODE TEMPLATES IN ACTION!.srt 13.62Кб
3. Types of Natural Language Processing.mp4 22.50Мб
3. Types of Natural Language Processing.srt 5.94Кб
4.1 Eclat.zip 48.54Кб
4.1 Machine Learning A-Z (Codes and Datasets).zip 5.27Мб
4.1 Regression_Bonus.zip 364.49Кб
4. Apriori in Python - Step 2.mp4 107.70Мб
4. Apriori in Python - Step 2.srt 26.41Кб
4. BONUS #3 Regression Types.html 511б
4. CAP Curve.mp4 20.32Мб
4. CAP Curve.srt 16.18Кб
4. Classical vs Deep Learning Models.mp4 83.95Мб
4. Classical vs Deep Learning Models.srt 16.14Кб
4. Conclusion of Part 2 - Regression.html 1.71Кб
4. Dataset Description.mp4 11.84Мб
4. Dataset Description.srt 3.18Кб
4. Decision Tree Classification in R.mp4 68.19Мб
4. Decision Tree Classification in R.srt 29.14Кб
4. Decision Tree Regression in Python - Step 2.mp4 26.26Мб
4. Decision Tree Regression in Python - Step 2.srt 7.54Кб
4. Eclat in R.mp4 25.26Мб
4. Eclat in R.srt 15.79Кб
4. Hierarchical Clustering Using Dendrograms.mp4 22.82Мб
4. Hierarchical Clustering Using Dendrograms.srt 17.60Кб
4. How do Neural Networks work.mp4 23.53Мб
4. How do Neural Networks work.srt 19.11Кб
4. Importing the Dataset.mp4 71.79Мб
4. Importing the Dataset.srt 24.12Кб
4. k-Fold Cross Validation in R.mp4 43.64Мб
4. k-Fold Cross Validation in R.srt 27.91Кб
4. K-NN in R.mp4 55.78Мб
4. K-NN in R.srt 23.37Кб
4. LDA in R.mp4 51.29Мб
4. LDA in R.srt 29.68Кб
4. Logistic Regression in Python - Step 2.mp4 84.66Мб
4. Logistic Regression in Python - Step 2.srt 21.41Кб
4. Make sure you have your Machine Learning A-Z folder ready.html 776б
4. Multiple Linear Regression Intuition - Step 3.mp4 16.59Мб
4. Multiple Linear Regression Intuition - Step 3.srt 10.70Кб
4. Naive Bayes Intuition (Extras).mp4 18.94Мб
4. Naive Bayes Intuition (Extras).srt 15.93Кб
4. PCA in Python - Step 2.mp4 40.79Мб
4. PCA in Python - Step 2.srt 9.19Кб
4. Polynomial Regression in Python - Step 2.mp4 69.31Мб
4. Polynomial Regression in Python - Step 2.srt 17.62Кб
4. Random Forest Classification in R.mp4 64.11Мб
4. Random Forest Classification in R.srt 32.40Кб
4. Random Forest Regression in R.mp4 51.87Мб
4. Random Forest Regression in R.srt 28.11Кб
4. Simple Linear Regression in Python - Step 1.mp4 48.61Мб
4. Simple Linear Regression in Python - Step 1.srt 19.77Кб
4. Step 1(b) - ReLU Layer.mp4 14.09Мб
4. Step 1(b) - ReLU Layer.srt 9.20Кб
4. SVM in Python.mp4 104.75Мб
4. SVM in Python.srt 23.96Кб
4. SVR in Python - Step 1.mp4 42.56Мб
4. SVR in Python - Step 1.srt 13.98Кб
4. Thompson Sampling in Python - Step 1.mp4 30.59Мб
4. Thompson Sampling in Python - Step 1.srt 9.74Кб
4. Types of Kernel Functions.mp4 15.71Мб
4. Types of Kernel Functions.srt 4.94Кб
4. Upper Confidence Bound in Python - Step 1.mp4 58.74Мб
4. Upper Confidence Bound in Python - Step 1.srt 20.57Кб
4. XGBoost in R.mp4 47.27Мб
4. XGBoost in R.srt 26.00Кб
5.1 Machine Learning A-Z (Codes and Datasets).zip 5.28Мб
5.1 Machine Learning A-Z (Codes and Datasets).zip 5.28Мб
5.1 SVM.zip 8.27Кб
5. Apriori in Python - Step 3.mp4 69.20Мб
5. Apriori in Python - Step 3.srt 19.25Кб
5. Bag-Of-Words Model.mp4 103.50Мб
5. Bag-Of-Words Model.srt 28.31Кб
5. CAP Curve Analysis.mp4 12.95Мб
5. CAP Curve Analysis.srt 9.24Кб
5. Decision Tree Regression in Python - Step 3.mp4 19.47Мб
5. Decision Tree Regression in Python - Step 3.srt 4.93Кб
5. For Python learners, summary of Object-oriented programming classes & objects.html 1.47Кб
5. Grid Search in R.mp4 35.55Мб
5. Grid Search in R.srt 20.94Кб
5. How do Neural Networks learn.mp4 26.56Мб
5. How do Neural Networks learn.srt 18.95Кб
5. Importing the Dataset.mp4 16.42Мб
5. Importing the Dataset.srt 4.50Кб
5. K-Means Clustering in Python - Step 1.mp4 38.09Мб
5. K-Means Clustering in Python - Step 1.srt 12.88Кб
5. Logistic Regression in Python - Step 3.mp4 43.05Мб
5. Logistic Regression in Python - Step 3.srt 10.89Кб
5. Make sure you have your Machine Learning A-Z folder ready.html 776б
5. Make sure you have your Machine Learning A-Z folder ready.html 776б
5. Multiple Linear Regression Intuition - Step 4.mp4 5.34Мб
5. Multiple Linear Regression Intuition - Step 4.srt 3.51Кб
5. Non-Linear Kernel SVR (Advanced).mp4 65.64Мб
5. Non-Linear Kernel SVR (Advanced).srt 16.03Кб
5. PCA in R - Step 1.mp4 30.66Мб
5. PCA in R - Step 1.srt 18.70Кб
5. Polynomial Regression in Python - Step 3.mp4 77.86Мб
5. Polynomial Regression in Python - Step 3.srt 19.92Кб
5. Simple Linear Regression in Python - Step 2.mp4 39.85Мб
5. Simple Linear Regression in Python - Step 2.srt 11.80Кб
5. Step 2 - Pooling.mp4 40.25Мб
5. Step 2 - Pooling.srt 21.04Кб
5. SVM in R.mp4 65.32Мб
5. SVM in R.srt 18.40Кб
5. SVR in Python - Step 2.mp4 86.92Мб
5. SVR in Python - Step 2.srt 22.14Кб
5. THANK YOU Bonus Video.mp4 52.25Мб
5. THANK YOU Bonus Video.srt 2.31Кб
5. Thompson Sampling in Python - Step 2.mp4 70.01Мб
5. Thompson Sampling in Python - Step 2.srt 17.89Кб
5. Upper Confidence Bound in Python - Step 2.mp4 17.75Мб
5. Upper Confidence Bound in Python - Step 2.srt 6.38Кб
5. Why Machine Learning is the Future.mp4 14.49Мб
5. Why Machine Learning is the Future.srt 9.23Кб
6.1 Classification_Pros_Cons.pdf 29.25Кб
6.1 Machine Learning A-Z (Codes and Datasets).zip 5.28Мб
6.1 Machine Learning A-Z (Codes and Datasets).zip 5.27Мб
6. Apriori in Python - Step 4.mp4 164.33Мб
6. Apriori in Python - Step 4.srt 31.25Кб
6. Conclusion of Part 3 - Classification.html 3.35Кб
6. Decision Tree Regression in Python - Step 4.mp4 54.79Мб
6. Decision Tree Regression in Python - Step 4.srt 15.47Кб
6. Gradient Descent.mp4 18.54Мб
6. Gradient Descent.srt 14.02Кб
6. Hierarchical Clustering in Python - Step 1.mp4 40.23Мб
6. Hierarchical Clustering in Python - Step 1.srt 10.57Кб
6. Important notes, tips & tricks for this course.html 3.30Кб
6. K-Means Clustering in Python - Step 2.mp4 54.08Мб
6. K-Means Clustering in Python - Step 2.srt 15.61Кб
6. Logistic Regression in Python - Step 4.mp4 45.20Мб
6. Logistic Regression in Python - Step 4.srt 11.19Кб
6. Make sure you have your Machine Learning A-Z folder ready.html 776б
6. Make sure you have your Machine Learning A-Z folder ready.html 776б
6. Naive Bayes in Python.mp4 100.47Мб
6. Naive Bayes in Python.srt 22.25Кб
6. PCA in R - Step 2.mp4 29.03Мб
6. PCA in R - Step 2.srt 16.89Кб
6. Polynomial Regression in Python - Step 4.mp4 38.79Мб
6. Polynomial Regression in Python - Step 4.srt 12.31Кб
6. Simple Linear Regression in Python - Step 3.mp4 28.22Мб
6. Simple Linear Regression in Python - Step 3.srt 7.34Кб
6. Step 3 - Flattening.mp4 3.27Мб
6. Step 3 - Flattening.srt 2.54Кб
6. SVR in Python - Step 3.mp4 34.80Мб
6. SVR in Python - Step 3.srt 9.69Кб
6. Taking care of Missing Data.mp4 69.02Мб
6. Taking care of Missing Data.mp4 39.79Мб
6. Taking care of Missing Data.srt 18.05Кб
6. Taking care of Missing Data.srt 9.05Кб
6. Thompson Sampling in Python - Step 3.mp4 78.66Мб
6. Thompson Sampling in Python - Step 3.srt 20.54Кб
6. Understanding the P-Value.mp4 56.48Мб
6. Understanding the P-Value.srt 19.49Кб
6. Upper Confidence Bound in Python - Step 3.mp4 38.47Мб
6. Upper Confidence Bound in Python - Step 3.srt 11.02Кб
7.1 Machine_Learning_A_Z_Q_A.pdf 2.26Мб
7. Apriori in R - Step 1.mp4 52.84Мб
7. Apriori in R - Step 1.srt 31.05Кб
7. Decision Tree Regression in R.mp4 56.24Мб
7. Decision Tree Regression in R.srt 32.15Кб
7. Encoding Categorical Data.mp4 88.63Мб
7. Encoding Categorical Data.mp4 57.32Мб
7. Encoding Categorical Data.srt 21.98Кб
7. Encoding Categorical Data.srt 8.51Кб
7. Hierarchical Clustering in Python - Step 2.mp4 135.92Мб
7. Hierarchical Clustering in Python - Step 2.srt 26.22Кб
7. Kernel SVM in Python.mp4 88.37Мб
7. Kernel SVM in Python.srt 20.43Кб
7. K-Means Clustering in Python - Step 3.mp4 81.33Мб
7. K-Means Clustering in Python - Step 3.srt 23.64Кб
7. Logistic Regression in Python - Step 5.mp4 30.59Мб
7. Logistic Regression in Python - Step 5.srt 9.50Кб
7. Multiple Linear Regression Intuition - Step 5.mp4 32.81Мб
7. Multiple Linear Regression Intuition - Step 5.srt 23.56Кб
7. Naive Bayes in R.mp4 49.80Мб
7. Naive Bayes in R.srt 21.90Кб
7. Natural Language Processing in Python - Step 1.mp4 34.07Мб
7. Natural Language Processing in Python - Step 1.srt 11.14Кб
7. PCA in R - Step 3.mp4 36.74Мб
7. PCA in R - Step 3.srt 19.76Кб
7. Polynomial Regression in R - Step 1.mp4 21.21Мб
7. Polynomial Regression in R - Step 1.srt 14.12Кб
7. Simple Linear Regression in Python - Step 4.mp4 74.57Мб
7. Simple Linear Regression in Python - Step 4.srt 19.40Кб
7. Step 4 - Full Connection.mp4 42.75Мб
7. Step 4 - Full Connection.srt 28.57Кб
7. Stochastic Gradient Descent.mp4 16.82Мб
7. Stochastic Gradient Descent.srt 12.14Кб
7. SVR in Python - Step 4.mp4 46.30Мб
7. SVR in Python - Step 4.srt 11.86Кб
7. This PDF resource will help you a lot!.html 1.49Кб
7. Thompson Sampling in Python - Step 4.mp4 44.64Мб
7. Thompson Sampling in Python - Step 4.srt 11.33Кб
7. Upper Confidence Bound in Python - Step 4.mp4 85.38Мб
7. Upper Confidence Bound in Python - Step 4.srt 25.12Кб
8.1 Machine Learning A-Z (Codes and Datasets).zip 5.27Мб
8.1 Machine Learning A-Z (Codes and Datasets).zip 5.28Мб
8. Additional Resource for this Section.html 2.24Кб
8. Apriori in R - Step 2.mp4 38.82Мб
8. Apriori in R - Step 2.srt 23.02Кб
8. Backpropagation.mp4 10.93Мб
8. Backpropagation.srt 7.11Кб
8. GET ALL THE CODES AND DATASETS HERE!.html 1.83Кб
8. Hierarchical Clustering in Python - Step 3.mp4 75.29Мб
8. Hierarchical Clustering in Python - Step 3.srt 18.17Кб
8. Kernel SVM in R.mp4 52.82Мб
8. Kernel SVM in R.srt 25.44Кб
8. K-Means Clustering in Python - Step 4.mp4 35.10Мб
8. K-Means Clustering in Python - Step 4.srt 9.40Кб
8. Logistic Regression in Python - Step 6.mp4 52.96Мб
8. Logistic Regression in Python - Step 6.srt 13.66Кб
8. Make sure you have your Machine Learning A-Z folder ready.html 776б
8. Natural Language Processing in Python - Step 2.mp4 40.48Мб
8. Natural Language Processing in Python - Step 2.srt 10.77Кб
8. Polynomial Regression in R - Step 2.mp4 32.28Мб
8. Polynomial Regression in R - Step 2.srt 15.27Кб
8. Simple Linear Regression in Python - BONUS.html 1.12Кб
8. Splitting the dataset into the Training set and Test set.mp4 67.63Мб
8. Splitting the dataset into the Training set and Test set.mp4 86.50Мб
8. Splitting the dataset into the Training set and Test set.srt 20.02Кб
8. Splitting the dataset into the Training set and Test set.srt 14.81Кб
8. Summary.mp4 7.92Мб
8. Summary.srt 6.02Кб
8. SVR in Python - Step 5.mp4 93.64Мб
8. SVR in Python - Step 5.srt 22.27Кб
8. Upper Confidence Bound in Python - Step 5.mp4 32.43Мб
8. Upper Confidence Bound in Python - Step 5.srt 9.50Кб
9. Apriori in R - Step 3.mp4 56.51Мб
9. Apriori in R - Step 3.srt 31.16Кб
9. Business Problem Description.mp4 29.24Мб
9. Business Problem Description.srt 7.30Кб
9. Feature Scaling.mp4 101.72Мб
9. Feature Scaling.mp4 78.89Мб
9. Feature Scaling.srt 30.26Кб
9. Feature Scaling.srt 13.08Кб
9. Hierarchical Clustering in R - Step 1.mp4 8.59Мб
9. Hierarchical Clustering in R - Step 1.srt 6.35Кб
9. K-Means Clustering in Python - Step 5.mp4 120.50Мб
9. K-Means Clustering in Python - Step 5.srt 29.09Кб
9. Logistic Regression in Python - Step 7.mp4 118.63Мб
9. Logistic Regression in Python - Step 7.srt 22.52Кб
9. Multiple Linear Regression in Python - Step 1.mp4 50.92Мб
9. Multiple Linear Regression in Python - Step 1.srt 13.16Кб
9. Natural Language Processing in Python - Step 3.mp4 60.61Мб
9. Natural Language Processing in Python - Step 3.srt 19.11Кб
9. Polynomial Regression in R - Step 3.mp4 54.81Мб
9. Polynomial Regression in R - Step 3.srt 30.86Кб
9. Presentation of the ML A-Z folder, Colaboratory, Jupyter Notebook and Spyder.mp4 94.80Мб
9. Presentation of the ML A-Z folder, Colaboratory, Jupyter Notebook and Spyder.srt 28.27Кб
9. Simple Linear Regression in R - Step 1.mp4 11.53Мб
9. Simple Linear Regression in R - Step 1.srt 7.71Кб
9. Softmax & Cross-Entropy.mp4 33.24Мб
9. Softmax & Cross-Entropy.srt 25.27Кб
9. SVR in R.mp4 33.73Мб
9. SVR in R.srt 18.70Кб
9. Thompson Sampling in R - Step 1.mp4 51.04Мб
9. Thompson Sampling in R - Step 1.srt 27.86Кб
9. Upper Confidence Bound in Python - Step 6.mp4 44.90Мб
9. Upper Confidence Bound in Python - Step 6.srt 11.24Кб
Статистика распространения по странам
Бангладеш (BD) 2
Южная Корея (KR) 1
Индия (IN) 1
Всего 4
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент