Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
[TGx]Downloaded from torrentgalaxy.to .txt |
585б |
0 |
22б |
001 Become An Alumni.html |
1.79Кб |
001 Course Outline.en.srt |
8.28Кб |
001 Course Outline.mp4 |
58.03Мб |
001 Introduction to Computer Vision with TensorFlow.en.srt |
15.59Кб |
001 Introduction to Computer Vision with TensorFlow.mp4 |
75.00Мб |
001 Introduction to Milestone Project 1_ Food Vision Big™.en.srt |
9.53Кб |
001 Introduction to Milestone Project 1_ Food Vision Big™.mp4 |
42.31Мб |
001 Introduction to Milestone Project 2_ SkimLit.en.srt |
22.88Кб |
001 Introduction to Milestone Project 2_ SkimLit.mp4 |
148.38Мб |
001 Introduction to neural network classification in TensorFlow.en.srt |
13.27Кб |
001 Introduction to neural network classification in TensorFlow.mp4 |
72.81Мб |
001 Introduction to Neural Network Regression with TensorFlow.en.srt |
11.85Кб |
001 Introduction to Neural Network Regression with TensorFlow.mp4 |
60.06Мб |
001 Introduction to Transfer Learning in TensorFlow Part 2_ Fine-tuning.en.srt |
10.16Кб |
001 Introduction to Transfer Learning in TensorFlow Part 2_ Fine-tuning.mp4 |
61.46Мб |
001 Introduction to Transfer Learning Part 3_ Scaling Up.en.srt |
10.51Кб |
001 Introduction to Transfer Learning Part 3_ Scaling Up.mp4 |
41.52Мб |
001 More Videos Coming Soon!.html |
940б |
001 More Videos Coming Soon!.html |
940б |
001 More Videos Coming Soon!.html |
940б |
001 Quick Note_ Upcoming Videos.html |
1.57Кб |
001 Quick Note_ Upcoming Videos.html |
1.57Кб |
001 Quick Note_ Upcoming Videos.html |
1.57Кб |
001 Quick Note_ Upcoming Videos.html |
1.57Кб |
001 Special Bonus Lecture.html |
4.91Кб |
001 Welcome to natural language processing with TensorFlow!.html |
1.96Кб |
001 What is and why use transfer learning_.en.srt |
16.57Кб |
001 What is and why use transfer learning_.mp4 |
65.81Мб |
001 What is deep learning_.en.srt |
7.07Кб |
001 What is deep learning_.mp4 |
34.17Мб |
002 Downloading and preparing data for our first transfer learning model.en.srt |
18.85Кб |
002 Downloading and preparing data for our first transfer learning model.mp4 |
132.67Мб |
002 Example classification problems (and their inputs and outputs).en.srt |
10.30Кб |
002 Example classification problems (and their inputs and outputs).mp4 |
50.71Мб |
002 Getting helper functions ready and downloading data to model.en.srt |
18.47Кб |
002 Getting helper functions ready and downloading data to model.mp4 |
131.54Мб |
002 Importing a script full of helper functions (and saving lots of space).en.srt |
10.17Кб |
002 Importing a script full of helper functions (and saving lots of space).mp4 |
89.38Мб |
002 Inputs and outputs of a neural network regression model.en.srt |
13.63Кб |
002 Inputs and outputs of a neural network regression model.mp4 |
57.57Мб |
002 Introduction to Convolutional Neural Networks (CNNs) with TensorFlow.en.srt |
12.59Кб |
002 Introduction to Convolutional Neural Networks (CNNs) with TensorFlow.mp4 |
76.65Мб |
002 Introduction to Natural Language Processing (NLP) and Sequence Problems.en.srt |
21.08Кб |
002 Introduction to Natural Language Processing (NLP) and Sequence Problems.mp4 |
124.03Мб |
002 Join Our Online Classroom!.html |
3.31Кб |
002 LinkedIn Endorsements.html |
2.93Кб |
002 Making sure we have access to the right GPU for mixed precision training.en.srt |
14.63Кб |
002 Making sure we have access to the right GPU for mixed precision training.mp4 |
88.15Мб |
002 Section Overview.en.srt |
4.98Кб |
002 Section Overview.en.srt |
3.84Кб |
002 Section Overview.en.srt |
3.36Кб |
002 Section Overview.mp4 |
13.35Мб |
002 Section Overview.mp4 |
13.33Мб |
002 Section Overview.mp4 |
10.87Мб |
002 What is Machine Learning_.en.srt |
9.31Кб |
002 What is Machine Learning_.mp4 |
28.31Мб |
002 What we're going to cover in Milestone Project 2 (NLP for medical abstracts).en.srt |
12.36Кб |
002 What we're going to cover in Milestone Project 2 (NLP for medical abstracts).mp4 |
71.01Мб |
002 Why use deep learning_.en.srt |
14.73Кб |
002 Why use deep learning_.mp4 |
62.32Мб |
003 AI_Machine Learning_Data Science.en.srt |
6.69Кб |
003 AI_Machine Learning_Data Science.mp4 |
19.67Мб |
003 Anatomy and architecture of a neural network regression model.en.srt |
12.74Кб |
003 Anatomy and architecture of a neural network regression model.mp4 |
59.00Мб |
003 Downloading and turning our images into a TensorFlow BatchDataset.en.srt |
22.98Кб |
003 Downloading and turning our images into a TensorFlow BatchDataset.mp4 |
173.59Мб |
003 Downloading an image dataset for our first Food Vision model.en.srt |
10.74Кб |
003 Downloading an image dataset for our first Food Vision model.mp4 |
72.93Мб |
003 Downloading Workbooks and Assignments.html |
1.83Кб |
003 Example NLP inputs and outputs.en.srt |
12.14Кб |
003 Example NLP inputs and outputs.mp4 |
64.27Мб |
003 Exercise_ Meet The Community.html |
3.71Кб |
003 Getting helper functions ready.en.srt |
4.09Кб |
003 Getting helper functions ready.mp4 |
31.09Мб |
003 Input and output tensors of classification problems.en.srt |
9.18Кб |
003 Input and output tensors of classification problems.mp4 |
51.01Мб |
003 Introducing Callbacks in TensorFlow and making a callback to track our models.en.srt |
14.87Кб |
003 Introducing Callbacks in TensorFlow and making a callback to track our models.mp4 |
94.89Мб |
003 Introducing Our Framework.en.srt |
3.83Кб |
003 Introducing Our Framework.mp4 |
11.39Мб |
003 NumPy Introduction.en.srt |
7.89Кб |
003 NumPy Introduction.mp4 |
26.86Мб |
003 Outlining the model we're going to build and building a ModelCheckpoint callback.en.srt |
7.70Кб |
003 Outlining the model we're going to build and building a ModelCheckpoint callback.mp4 |
40.61Мб |
003 SkimLit inputs and outputs.en.srt |
18.80Кб |
003 SkimLit inputs and outputs.mp4 |
76.78Мб |
003 TensorFlow Certificate.html |
1.25Кб |
003 What are neural networks_.en.srt |
15.27Кб |
003 What are neural networks_.mp4 |
63.43Мб |
004 6 Step Machine Learning Framework.en.srt |
7.12Кб |
004 6 Step Machine Learning Framework.mp4 |
23.45Мб |
004 All Course Resources + Notebooks.html |
2.86Кб |
004 Becoming One With Data.en.srt |
7.04Кб |
004 Becoming One With Data.mp4 |
45.61Мб |
004 Creating a data augmentation layer to use with our model.en.srt |
6.49Кб |
004 Creating a data augmentation layer to use with our model.mp4 |
40.56Мб |
004 Creating sample regression data (so we can model it).en.srt |
16.81Кб |
004 Creating sample regression data (so we can model it).mp4 |
90.16Мб |
004 Discussing the four (actually five) modelling experiments we're running.en.srt |
3.72Кб |
004 Discussing the four (actually five) modelling experiments we're running.mp4 |
15.87Мб |
004 Exercise_ Machine Learning Playground.en.srt |
8.46Кб |
004 Exercise_ Machine Learning Playground.mp4 |
42.56Мб |
004 Exploring the TensorFlow Hub website for pretrained models.en.srt |
15.33Кб |
004 Exploring the TensorFlow Hub website for pretrained models.mp4 |
102.96Мб |
004 Introduction to TensorFlow Datasets (TFDS).en.srt |
18.35Кб |
004 Introduction to TensorFlow Datasets (TFDS).mp4 |
116.84Мб |
004 Pandas Introduction.en.srt |
7.19Кб |
004 Pandas Introduction.mp4 |
27.46Мб |
004 Quick Note_ Correction In Next Video.html |
2.52Кб |
004 Setting up our notebook for Milestone Project 2 (getting the data).en.srt |
20.50Кб |
004 Setting up our notebook for Milestone Project 2 (getting the data).mp4 |
146.03Мб |
004 The typical architecture of a Recurrent Neural Network (RNN).en.srt |
13.96Кб |
004 The typical architecture of a Recurrent Neural Network (RNN).mp4 |
107.16Мб |
004 Typical architecture of neural network classification models with TensorFlow.en.srt |
15.21Кб |
004 Typical architecture of neural network classification models with TensorFlow.mp4 |
112.73Мб |
004 What is deep learning already being used for_.en.srt |
14.02Кб |
004 What is deep learning already being used for_.mp4 |
76.21Мб |
005 Becoming One With Data Part 2.en.srt |
16.74Кб |
005 Becoming One With Data Part 2.mp4 |
104.58Мб |
005 Building and compiling a TensorFlow Hub feature extraction model.en.srt |
19.74Кб |
005 Building and compiling a TensorFlow Hub feature extraction model.mp4 |
135.62Мб |
005 Comparing the TensorFlow Keras Sequential API versus the Functional API.en.srt |
4.20Кб |
005 Comparing the TensorFlow Keras Sequential API versus the Functional API.mp4 |
26.45Мб |
005 Creating a headless EfficientNetB0 model with data augmentation built in.en.srt |
14.02Кб |
005 Creating a headless EfficientNetB0 model with data augmentation built in.mp4 |
80.41Мб |
005 Creating and viewing classification data to model.en.srt |
15.00Кб |
005 Creating and viewing classification data to model.mp4 |
106.08Мб |
005 Exploring and becoming one with the data (Food101 from TensorFlow Datasets).en.srt |
23.29Кб |
005 Exploring and becoming one with the data (Food101 from TensorFlow Datasets).mp4 |
116.71Мб |
005 How Did We Get Here_.en.srt |
7.61Кб |
005 How Did We Get Here_.mp4 |
30.49Мб |
005 NumPy DataTypes and Attributes.en.srt |
20.87Кб |
005 NumPy DataTypes and Attributes.mp4 |
78.97Мб |
005 Preparing a notebook for our first NLP with TensorFlow project.en.srt |
12.20Кб |
005 Preparing a notebook for our first NLP with TensorFlow project.mp4 |
82.41Мб |
005 Series, Data Frames and CSVs.en.srt |
19.22Кб |
005 Series, Data Frames and CSVs.mp4 |
95.43Мб |
005 The major steps in modelling with TensorFlow.en.srt |
26.85Кб |
005 The major steps in modelling with TensorFlow.mp4 |
181.81Мб |
005 Types of Machine Learning Problems.en.srt |
14.97Кб |
005 Types of Machine Learning Problems.mp4 |
60.46Мб |
005 Visualising examples from the dataset (becoming one with the data).en.srt |
17.84Кб |
005 Visualising examples from the dataset (becoming one with the data).mp4 |
132.24Мб |
005 What is and why use TensorFlow_.en.srt |
12.19Кб |
005 What is and why use TensorFlow_.mp4 |
69.16Мб |
006 Becoming One With Data Part 3.en.srt |
6.81Кб |
006 Becoming One With Data Part 3.mp4 |
39.89Мб |
006 Becoming one with the data and visualising a text dataset.en.srt |
23.12Кб |
006 Becoming one with the data and visualising a text dataset.mp4 |
160.31Мб |
006 Blowing our previous models out of the water with transfer learning.en.srt |
14.28Кб |
006 Blowing our previous models out of the water with transfer learning.mp4 |
99.45Мб |
006 Checking the input and output shapes of our classification data.en.srt |
6.85Кб |
006 Checking the input and output shapes of our classification data.mp4 |
38.14Мб |
006 Creating a preprocessing function to prepare our data for modelling.en.srt |
19.63Кб |
006 Creating a preprocessing function to prepare our data for modelling.mp4 |
132.19Мб |
006 Creating NumPy Arrays.en.srt |
13.01Кб |
006 Creating NumPy Arrays.mp4 |
66.84Мб |
006 Creating our first model with the TensorFlow Keras Functional API.en.srt |
16.51Кб |
006 Creating our first model with the TensorFlow Keras Functional API.mp4 |
132.18Мб |
006 Data from URLs.html |
2.35Кб |
006 Exercise_ YouTube Recommendation Engine.en.srt |
5.85Кб |
006 Exercise_ YouTube Recommendation Engine.mp4 |
19.43Мб |
006 Fitting and evaluating our biggest transfer learning model yet.en.srt |
11.94Кб |
006 Fitting and evaluating our biggest transfer learning model yet.mp4 |
70.15Мб |
006 Steps in improving a model with TensorFlow part 1.en.srt |
7.93Кб |
006 Steps in improving a model with TensorFlow part 1.mp4 |
45.82Мб |
006 Types of Data.en.srt |
6.71Кб |
006 Types of Data.mp4 |
29.31Мб |
006 What is a Tensor_.en.srt |
5.19Кб |
006 What is a Tensor_.mp4 |
27.58Мб |
006 Writing a preprocessing function to structure our data for modelling.en.srt |
27.05Кб |
006 Writing a preprocessing function to structure our data for modelling.mp4 |
218.07Мб |
007 Batching and preparing our datasets (to make them run fast).en.srt |
19.98Кб |
007 Batching and preparing our datasets (to make them run fast).mp4 |
132.24Мб |
007 Building an end to end CNN Model.en.srt |
27.06Кб |
007 Building an end to end CNN Model.mp4 |
155.08Мб |
007 Building a not very good classification model with TensorFlow.en.srt |
16.72Кб |
007 Building a not very good classification model with TensorFlow.mp4 |
125.29Мб |
007 Compiling and fitting our first Functional API model.en.srt |
16.46Кб |
007 Compiling and fitting our first Functional API model.mp4 |
132.84Мб |
007 Describing Data with Pandas.en.srt |
14.83Кб |
007 Describing Data with Pandas.mp4 |
75.65Мб |
007 NumPy Random Seed.en.srt |
10.91Кб |
007 NumPy Random Seed.mp4 |
51.94Мб |
007 Performing visual data analysis on our preprocessed text.en.srt |
11.34Кб |
007 Performing visual data analysis on our preprocessed text.mp4 |
74.22Мб |
007 Plotting the loss curves of our ResNet feature extraction model.en.srt |
11.27Кб |
007 Plotting the loss curves of our ResNet feature extraction model.mp4 |
62.09Мб |
007 Splitting data into training and validation sets.en.srt |
8.17Кб |
007 Splitting data into training and validation sets.mp4 |
59.87Мб |
007 Steps in improving a model with TensorFlow part 2.en.srt |
13.67Кб |
007 Steps in improving a model with TensorFlow part 2.mp4 |
90.23Мб |
007 Types of Evaluation.en.srt |
4.73Кб |
007 Types of Evaluation.mp4 |
17.74Мб |
007 Types of Machine Learning.en.srt |
5.71Кб |
007 Types of Machine Learning.mp4 |
22.81Мб |
007 Unfreezing some layers in our base model to prepare for fine-tuning.en.srt |
17.30Кб |
007 Unfreezing some layers in our base model to prepare for fine-tuning.mp4 |
100.07Мб |
007 What we're going to cover throughout the course.en.srt |
7.52Кб |
007 What we're going to cover throughout the course.mp4 |
29.38Мб |
008 Are You Getting It Yet_.html |
1.03Кб |
008 Building and training a pre-trained EfficientNet model on our data.en.srt |
14.87Кб |
008 Building and training a pre-trained EfficientNet model on our data.mp4 |
105.92Мб |
008 Converting text data to numbers using tokenisation and embeddings (overview).en.srt |
13.60Кб |
008 Converting text data to numbers using tokenisation and embeddings (overview).mp4 |
82.30Мб |
008 Exploring what happens when we batch and prefetch our data.en.srt |
9.76Кб |
008 Exploring what happens when we batch and prefetch our data.mp4 |
63.82Мб |
008 Features In Data.en.srt |
7.12Кб |
008 Features In Data.mp4 |
36.77Мб |
008 Fine-tuning our feature extraction model and evaluating its performance.en.srt |
12.36Кб |
008 Fine-tuning our feature extraction model and evaluating its performance.mp4 |
66.23Мб |
008 Getting a feature vector from our trained model.en.srt |
18.47Кб |
008 Getting a feature vector from our trained model.mp4 |
147.62Мб |
008 How to approach this course.en.srt |
8.57Кб |
008 How to approach this course.mp4 |
26.17Мб |
008 Selecting and Viewing Data with Pandas.en.srt |
15.89Кб |
008 Selecting and Viewing Data with Pandas.mp4 |
72.29Мб |
008 Steps in improving a model with TensorFlow part 3.en.srt |
17.53Кб |
008 Steps in improving a model with TensorFlow part 3.mp4 |
132.94Мб |
008 Trying to improve our not very good classification model.en.srt |
13.20Кб |
008 Trying to improve our not very good classification model.mp4 |
84.29Мб |
008 Turning our target labels into numbers (ML models require numbers).en.srt |
19.64Кб |
008 Turning our target labels into numbers (ML models require numbers).mp4 |
117.40Мб |
008 Using a GPU to run our CNN model 5x faster.en.srt |
13.60Кб |
008 Using a GPU to run our CNN model 5x faster.mp4 |
114.94Мб |
008 Viewing Arrays and Matrices.en.srt |
14.49Кб |
008 Viewing Arrays and Matrices.mp4 |
70.65Мб |
009 Creating a function to view our model's not so good predictions.en.srt |
19.77Кб |
009 Creating a function to view our model's not so good predictions.mp4 |
160.55Мб |
009 Creating modelling callbacks for our feature extraction model.en.srt |
10.23Кб |
009 Creating modelling callbacks for our feature extraction model.mp4 |
60.79Мб |
009 Different Types of Transfer Learning.en.srt |
16.31Кб |
009 Different Types of Transfer Learning.mp4 |
110.57Мб |
009 Drilling into the concept of a feature vector (a learned representation).en.srt |
5.60Кб |
009 Drilling into the concept of a feature vector (a learned representation).mp4 |
51.50Мб |
009 Evaluating a TensorFlow model part 1 (_visualise, visualise, visualise_).en.srt |
10.20Кб |
009 Evaluating a TensorFlow model part 1 (_visualise, visualise, visualise_).mp4 |
66.94Мб |
009 Manipulating Arrays.en.srt |
17.91Кб |
009 Manipulating Arrays.mp4 |
80.66Мб |
009 Model 0_ Creating, fitting and evaluating a baseline model for SkimLit.en.srt |
11.97Кб |
009 Model 0_ Creating, fitting and evaluating a baseline model for SkimLit.mp4 |
81.63Мб |
009 Modelling - Splitting Data.en.srt |
8.08Кб |
009 Modelling - Splitting Data.mp4 |
27.55Мб |
009 Need A Refresher_.html |
1.79Кб |
009 Saving and loading our trained model.en.srt |
9.36Кб |
009 Saving and loading our trained model.mp4 |
57.40Мб |
009 Selecting and Viewing Data with Pandas Part 2.en.srt |
19.75Кб |
009 Selecting and Viewing Data with Pandas Part 2.mp4 |
106.49Мб |
009 Setting up a TensorFlow TextVectorization layer to convert text to numbers.en.srt |
23.08Кб |
009 Setting up a TensorFlow TextVectorization layer to convert text to numbers.mp4 |
199.93Мб |
009 Trying a non-CNN model on our image data.en.srt |
12.13Кб |
009 Trying a non-CNN model on our image data.mp4 |
100.55Мб |
009 What Is Machine Learning_ Round 2.en.srt |
6.48Кб |
009 What Is Machine Learning_ Round 2.mp4 |
25.51Мб |
010 Comparing Our Model's Results.en.srt |
22.44Кб |
010 Comparing Our Model's Results.mp4 |
143.93Мб |
010 Creating your first tensors with TensorFlow and tf.constant().en.srt |
25.80Кб |
010 Creating your first tensors with TensorFlow and tf.constant().mp4 |
134.83Мб |
010 Downloading and preparing the data for Model 1 (1 percent of training data).en.srt |
13.52Кб |
010 Downloading and preparing the data for Model 1 (1 percent of training data).mp4 |
97.80Мб |
010 Downloading a pretrained model to make and evaluate predictions with.en.srt |
9.27Кб |
010 Downloading a pretrained model to make and evaluate predictions with.mp4 |
78.69Мб |
010 Evaluating a TensorFlow model part 2 (the three datasets).en.srt |
14.63Кб |
010 Evaluating a TensorFlow model part 2 (the three datasets).mp4 |
81.56Мб |
010 Improving our non-CNN model by adding more layers.en.srt |
14.56Кб |
010 Improving our non-CNN model by adding more layers.mp4 |
106.47Мб |
010 Make our poor classification model work for a regression dataset.en.srt |
17.02Кб |
010 Make our poor classification model work for a regression dataset.mp4 |
123.01Мб |
010 Manipulating Arrays 2.en.srt |
12.53Кб |
010 Manipulating Arrays 2.mp4 |
67.91Мб |
010 Manipulating Data.en.srt |
19.33Кб |
010 Manipulating Data.mp4 |
104.99Мб |
010 Mapping the TextVectorization layer to text data and turning it into numbers.en.srt |
16.55Кб |
010 Mapping the TextVectorization layer to text data and turning it into numbers.mp4 |
97.91Мб |
010 Modelling - Picking the Model.en.srt |
6.45Кб |
010 Modelling - Picking the Model.mp4 |
23.24Мб |
010 Preparing our data for deep sequence models.en.srt |
13.52Кб |
010 Preparing our data for deep sequence models.mp4 |
85.15Мб |
010 Section Review.en.srt |
2.28Кб |
010 Section Review.mp4 |
5.55Мб |
010 Turning on mixed precision training with TensorFlow.en.srt |
14.46Кб |
010 Turning on mixed precision training with TensorFlow.mp4 |
107.71Мб |
011 Breaking our CNN model down part 1_ Becoming one with the data.en.srt |
13.51Кб |
011 Breaking our CNN model down part 1_ Becoming one with the data.mp4 |
90.92Мб |
011 Building a data augmentation layer to use inside our model.en.srt |
16.83Кб |
011 Building a data augmentation layer to use inside our model.mp4 |
117.46Мб |
011 Creating a feature extraction model capable of using mixed precision training.en.srt |
18.12Кб |
011 Creating a feature extraction model capable of using mixed precision training.mp4 |
107.92Мб |
011 Creating an Embedding layer to turn tokenised text into embedding vectors.en.srt |
18.64Кб |
011 Creating an Embedding layer to turn tokenised text into embedding vectors.mp4 |
135.65Мб |
011 Creating a text vectoriser to map our tokens (text) to numbers.en.srt |
19.81Кб |
011 Creating a text vectoriser to map our tokens (text) to numbers.mp4 |
129.78Мб |
011 Creating tensors with TensorFlow and tf.Variable().en.srt |
10.36Кб |
011 Creating tensors with TensorFlow and tf.Variable().mp4 |
70.85Мб |
011 Evaluating a TensorFlow model part 3 (getting a model summary).en.srt |
22.43Кб |
011 Evaluating a TensorFlow model part 3 (getting a model summary).mp4 |
192.79Мб |
011 Making predictions with our trained model on 25,250 test samples.en.srt |
16.93Кб |
011 Making predictions with our trained model on 25,250 test samples.mp4 |
115.59Мб |
011 Manipulating Data 2.en.srt |
15.49Кб |
011 Manipulating Data 2.mp4 |
86.56Мб |
011 Modelling - Tuning.en.srt |
5.28Кб |
011 Modelling - Tuning.mp4 |
15.98Мб |
011 Non-linearity part 1_ Straight lines and non-straight lines.en.srt |
14.39Кб |
011 Non-linearity part 1_ Straight lines and non-straight lines.mp4 |
95.61Мб |
011 Standard Deviation and Variance.en.srt |
10.25Кб |
011 Standard Deviation and Variance.mp4 |
51.13Мб |
011 TensorFlow Transfer Learning Part 1 challenge, exercises & extra-curriculum.html |
3.37Кб |
012 Breaking our CNN model down part 2_ Preparing to load our data.en.srt |
17.18Кб |
012 Breaking our CNN model down part 2_ Preparing to load our data.mp4 |
109.47Мб |
012 Checking to see if our model is using mixed precision training layer by layer.en.srt |
10.71Кб |
012 Checking to see if our model is using mixed precision training layer by layer.mp4 |
87.67Мб |
012 Creating a custom token embedding layer with TensorFlow.en.srt |
13.15Кб |
012 Creating a custom token embedding layer with TensorFlow.mp4 |
99.51Мб |
012 Creating random tensors with TensorFlow.en.srt |
13.58Кб |
012 Creating random tensors with TensorFlow.mp4 |
88.45Мб |
012 Discussing the various modelling experiments we're going to run.en.srt |
14.33Кб |
012 Discussing the various modelling experiments we're going to run.mp4 |
87.60Мб |
012 Evaluating a TensorFlow model part 4 (visualising a model's layers).en.srt |
9.61Кб |
012 Evaluating a TensorFlow model part 4 (visualising a model's layers).mp4 |
70.28Мб |
012 Manipulating Data 3.en.srt |
14.58Кб |
012 Manipulating Data 3.mp4 |
91.07Мб |
012 Modelling - Comparison.en.srt |
13.81Кб |
012 Modelling - Comparison.mp4 |
44.86Мб |
012 Non-linearity part 2_ Building our first neural network with non-linearity.en.srt |
7.88Кб |
012 Non-linearity part 2_ Building our first neural network with non-linearity.mp4 |
59.00Мб |
012 Reshape and Transpose.en.srt |
10.10Кб |
012 Reshape and Transpose.mp4 |
53.57Мб |
012 Unravelling our test dataset for comparing ground truth labels to predictions.en.srt |
8.02Кб |
012 Unravelling our test dataset for comparing ground truth labels to predictions.mp4 |
43.81Мб |
012 Visualising what happens when images pass through our data augmentation layer.en.srt |
15.06Кб |
012 Visualising what happens when images pass through our data augmentation layer.mp4 |
119.36Мб |
013 Assignment_ Pandas Practice.html |
2.93Кб |
013 Breaking our CNN model down part 3_ Loading our data with ImageDataGenerator.en.srt |
14.01Кб |
013 Breaking our CNN model down part 3_ Loading our data with ImageDataGenerator.mp4 |
103.42Мб |
013 Building Model 1 (with a data augmentation layer and 1% of training data).en.srt |
23.38Кб |
013 Building Model 1 (with a data augmentation layer and 1% of training data).mp4 |
152.95Мб |
013 Confirming our model's predictions are in the same order as the test labels.en.srt |
7.05Кб |
013 Confirming our model's predictions are in the same order as the test labels.mp4 |
50.54Мб |
013 Creating fast loading dataset with the TensorFlow tf.data API.en.srt |
13.32Кб |
013 Creating fast loading dataset with the TensorFlow tf.data API.mp4 |
90.64Мб |
013 Dot Product vs Element Wise.en.srt |
16.58Кб |
013 Dot Product vs Element Wise.mp4 |
83.80Мб |
013 Evaluating a TensorFlow model part 5 (visualising a model's predictions).en.srt |
12.42Кб |
013 Evaluating a TensorFlow model part 5 (visualising a model's predictions).mp4 |
78.87Мб |
013 Model 0_ Building a baseline model to try and improve upon.en.srt |
13.14Кб |
013 Model 0_ Building a baseline model to try and improve upon.mp4 |
93.18Мб |
013 Non-linearity part 3_ Upgrading our non-linear model with more layers.en.srt |
14.98Кб |
013 Non-linearity part 3_ Upgrading our non-linear model with more layers.mp4 |
123.24Мб |
013 Overfitting and Underfitting Definitions.html |
2.87Кб |
013 Shuffling the order of tensors.en.srt |
13.19Кб |
013 Shuffling the order of tensors.mp4 |
89.86Мб |
013 Training and evaluating a feature extraction model (Food Vision Big™).en.srt |
14.67Кб |
013 Training and evaluating a feature extraction model (Food Vision Big™).mp4 |
89.02Мб |
014 Breaking our CNN model down part 4_ Building a baseline CNN model.en.srt |
11.70Кб |
014 Breaking our CNN model down part 4_ Building a baseline CNN model.mp4 |
85.30Мб |
014 Building Model 2 (with a data augmentation layer and 10% of training data).en.srt |
24.42Кб |
014 Building Model 2 (with a data augmentation layer and 10% of training data).mp4 |
159.77Мб |
014 Creating a confusion matrix for our model's 101 different classes.en.srt |
18.34Кб |
014 Creating a confusion matrix for our model's 101 different classes.mp4 |
156.60Мб |
014 Creating a function to track and evaluate our model's results.en.srt |
17.37Кб |
014 Creating a function to track and evaluate our model's results.mp4 |
148.65Мб |
014 Creating tensors from NumPy arrays.en.srt |
15.69Кб |
014 Creating tensors from NumPy arrays.mp4 |
101.33Мб |
014 Evaluating a TensorFlow model part 6 (common regression evaluation metrics).en.srt |
11.60Кб |
014 Evaluating a TensorFlow model part 6 (common regression evaluation metrics).mp4 |
70.37Мб |
014 Exercise_ Nut Butter Store Sales.en.srt |
18.19Кб |
014 Exercise_ Nut Butter Store Sales.mp4 |
91.26Мб |
014 Experimentation.en.srt |
5.29Кб |
014 Experimentation.mp4 |
21.29Мб |
014 How To Download The Course Assignments.en.srt |
11.70Кб |
014 How To Download The Course Assignments.mp4 |
66.79Мб |
014 Introducing your Milestone Project 1 challenge_ build a model to beat DeepFood.en.srt |
11.70Кб |
014 Introducing your Milestone Project 1 challenge_ build a model to beat DeepFood.mp4 |
89.12Мб |
014 Model 1_ Building, fitting and evaluating a Conv1D with token embeddings.en.srt |
25.65Кб |
014 Model 1_ Building, fitting and evaluating a Conv1D with token embeddings.mp4 |
168.42Мб |
014 Non-linearity part 4_ Modelling our non-linear data once and for all.en.srt |
12.52Кб |
014 Non-linearity part 4_ Modelling our non-linear data once and for all.mp4 |
96.62Мб |
015 Breaking our CNN model down part 5_ Looking inside a Conv2D layer.en.srt |
23.74Кб |
015 Breaking our CNN model down part 5_ Looking inside a Conv2D layer.mp4 |
186.03Мб |
015 Comparison Operators.en.srt |
5.47Кб |
015 Comparison Operators.mp4 |
26.37Мб |
015 Creating a ModelCheckpoint to save our model's weights during training.en.srt |
11.21Кб |
015 Creating a ModelCheckpoint to save our model's weights during training.mp4 |
68.98Мб |
015 Evaluating a TensorFlow regression model part 7 (mean absolute error).en.srt |
8.49Кб |
015 Evaluating a TensorFlow regression model part 7 (mean absolute error).mp4 |
56.09Мб |
015 Evaluating every individual class in our dataset.en.srt |
20.16Кб |
015 Evaluating every individual class in our dataset.mp4 |
131.77Мб |
015 Getting information from your tensors (tensor attributes).en.srt |
17.69Кб |
015 Getting information from your tensors (tensor attributes).mp4 |
87.38Мб |
015 Milestone Project 1_ Food Vision Big™, exercises and extra-curriculum.html |
3.24Кб |
015 Model 1_ Building, fitting and evaluating our first deep model on text data.en.srt |
29.85Кб |
015 Model 1_ Building, fitting and evaluating our first deep model on text data.mp4 |
207.74Мб |
015 Non-linearity part 5_ Replicating non-linear activation functions from scratch.en.srt |
19.08Кб |
015 Non-linearity part 5_ Replicating non-linear activation functions from scratch.mp4 |
146.61Мб |
015 Preparing a pretrained embedding layer from TensorFlow Hub for Model 2.en.srt |
15.62Кб |
015 Preparing a pretrained embedding layer from TensorFlow Hub for Model 2.mp4 |
124.68Мб |
015 Tools We Will Use.en.srt |
6.31Кб |
015 Tools We Will Use.mp4 |
27.34Мб |
016 Breaking our CNN model down part 6_ Compiling and fitting our baseline CNN.en.srt |
10.29Кб |
016 Breaking our CNN model down part 6_ Compiling and fitting our baseline CNN.mp4 |
77.08Мб |
016 Evaluating a TensorFlow regression model part 7 (mean square error).en.srt |
4.06Кб |
016 Evaluating a TensorFlow regression model part 7 (mean square error).mp4 |
32.31Мб |
016 Fitting and evaluating Model 2 (and saving its weights using ModelCheckpoint).en.srt |
10.27Кб |
016 Fitting and evaluating Model 2 (and saving its weights using ModelCheckpoint).mp4 |
68.15Мб |
016 Getting great results in less time by tweaking the learning rate.en.srt |
20.18Кб |
016 Getting great results in less time by tweaking the learning rate.mp4 |
136.77Мб |
016 Indexing and expanding tensors.en.srt |
17.66Кб |
016 Indexing and expanding tensors.mp4 |
86.56Мб |
016 Model 2_ Building, fitting and evaluating a Conv1D model with token embeddings.en.srt |
16.79Кб |
016 Model 2_ Building, fitting and evaluating a Conv1D model with token embeddings.mp4 |
106.95Мб |
016 Optional_ Elements of AI.html |
1.83Кб |
016 Plotting our model's F1-scores for each separate class.en.srt |
11.19Кб |
016 Plotting our model's F1-scores for each separate class.mp4 |
77.93Мб |
016 Sorting Arrays.en.srt |
9.35Кб |
016 Sorting Arrays.mp4 |
32.82Мб |
016 Visualising our model's learned word embeddings with TensorFlow's projector tool.en.srt |
30.95Кб |
016 Visualising our model's learned word embeddings with TensorFlow's projector tool.mp4 |
283.21Мб |
017 Breaking our CNN model down part 7_ Evaluating our CNN's training curves.en.srt |
17.81Кб |
017 Breaking our CNN model down part 7_ Evaluating our CNN's training curves.mp4 |
106.20Мб |
017 Creating a character-level tokeniser with TensorFlow's TextVectorization layer.en.srt |
31.05Кб |
017 Creating a character-level tokeniser with TensorFlow's TextVectorization layer.mp4 |
197.66Мб |
017 Creating a function to load and prepare images for making predictions.en.srt |
16.43Кб |
017 Creating a function to load and prepare images for making predictions.mp4 |
109.54Мб |
017 High-level overview of Recurrent Neural Networks (RNNs) + where to learn more.en.srt |
14.34Кб |
017 High-level overview of Recurrent Neural Networks (RNNs) + where to learn more.mp4 |
96.64Мб |
017 Loading and comparing saved weights to our existing trained Model 2.en.srt |
10.06Кб |
017 Loading and comparing saved weights to our existing trained Model 2.mp4 |
62.67Мб |
017 Manipulating tensors with basic operations.en.srt |
7.24Кб |
017 Manipulating tensors with basic operations.mp4 |
45.22Мб |
017 Setting up TensorFlow modelling experiments part 1 (start with a simple model).en.srt |
18.17Кб |
017 Setting up TensorFlow modelling experiments part 1 (start with a simple model).mp4 |
127.25Мб |
017 Turn Images Into NumPy Arrays.en.srt |
11.05Кб |
017 Turn Images Into NumPy Arrays.mp4 |
85.98Мб |
017 Using the TensorFlow History object to plot a model's loss curves.en.srt |
8.72Кб |
017 Using the TensorFlow History object to plot a model's loss curves.mp4 |
62.12Мб |
018 Assignment_ NumPy Practice.html |
3.05Кб |
018 Breaking our CNN model down part 8_ Reducing overfitting with Max Pooling.en.srt |
20.02Кб |
018 Breaking our CNN model down part 8_ Reducing overfitting with Max Pooling.mp4 |
130.43Мб |
018 Creating a character-level embedding layer with tf.keras.layers.Embedding.en.srt |
10.86Кб |
018 Creating a character-level embedding layer with tf.keras.layers.Embedding.mp4 |
77.52Мб |
018 Making predictions on our test images and evaluating them.en.srt |
24.55Кб |
018 Making predictions on our test images and evaluating them.mp4 |
171.68Мб |
018 Matrix multiplication with tensors part 1.en.srt |
15.91Кб |
018 Matrix multiplication with tensors part 1.mp4 |
100.85Мб |
018 Model 2_ Building, fitting and evaluating our first TensorFlow RNN model (LSTM).en.srt |
25.65Кб |
018 Model 2_ Building, fitting and evaluating our first TensorFlow RNN model (LSTM).mp4 |
165.78Мб |
018 Preparing Model 3 (our first fine-tuned model).en.srt |
26.97Кб |
018 Preparing Model 3 (our first fine-tuned model).mp4 |
198.23Мб |
018 Setting up TensorFlow modelling experiments part 2 (increasing complexity).en.srt |
16.55Кб |
018 Setting up TensorFlow modelling experiments part 2 (increasing complexity).mp4 |
95.62Мб |
018 Using callbacks to find a model's ideal learning rate.en.srt |
25.94Кб |
018 Using callbacks to find a model's ideal learning rate.mp4 |
155.88Мб |
019 Breaking our CNN model down part 9_ Reducing overfitting with data augmentation.en.srt |
9.77Кб |
019 Breaking our CNN model down part 9_ Reducing overfitting with data augmentation.mp4 |
66.08Мб |
019 Comparing and tracking your TensorFlow modelling experiments.en.srt |
13.70Кб |
019 Comparing and tracking your TensorFlow modelling experiments.mp4 |
92.25Мб |
019 Discussing the benefits of finding your model's most wrong predictions.en.srt |
9.80Кб |
019 Discussing the benefits of finding your model's most wrong predictions.mp4 |
59.29Мб |
019 Fitting and evaluating Model 3 (our first fine-tuned model).en.srt |
11.06Кб |
019 Fitting and evaluating Model 3 (our first fine-tuned model).mp4 |
69.16Мб |
019 Matrix multiplication with tensors part 2.en.srt |
18.10Кб |
019 Matrix multiplication with tensors part 2.mp4 |
107.79Мб |
019 Model 3_ Building, fitting and evaluating a Conv1D model on character embeddings.en.srt |
19.80Кб |
019 Model 3_ Building, fitting and evaluating a Conv1D model on character embeddings.mp4 |
131.07Мб |
019 Model 3_ Building, fitting and evaluating a GRU-cell powered RNN.en.srt |
24.87Кб |
019 Model 3_ Building, fitting and evaluating a GRU-cell powered RNN.mp4 |
168.10Мб |
019 Optional_ Extra NumPy resources.html |
1.91Кб |
019 Training and evaluating a model with an ideal learning rate.en.srt |
12.39Кб |
019 Training and evaluating a model with an ideal learning rate.mp4 |
89.00Мб |
020 Breaking our CNN model down part 10_ Visualizing our augmented data.en.srt |
22.45Кб |
020 Breaking our CNN model down part 10_ Visualizing our augmented data.mp4 |
157.61Мб |
020 Comparing our model's results before and after fine-tuning.en.srt |
14.45Кб |
020 Comparing our model's results before and after fine-tuning.mp4 |
84.17Мб |
020 Discussing how we're going to build Model 4 (character + token embeddings).en.srt |
9.08Кб |
020 Discussing how we're going to build Model 4 (character + token embeddings).mp4 |
60.31Мб |
020 How to save a TensorFlow model.en.srt |
11.88Кб |
020 How to save a TensorFlow model.mp4 |
92.29Мб |
020 Introducing more classification evaluation methods.en.srt |
9.21Кб |
020 Introducing more classification evaluation methods.mp4 |
42.21Мб |
020 Matrix multiplication with tensors part 3.en.srt |
13.84Кб |
020 Matrix multiplication with tensors part 3.mp4 |
80.62Мб |
020 Model 4_ Building, fitting and evaluating a bidirectional RNN model.en.srt |
28.30Кб |
020 Model 4_ Building, fitting and evaluating a bidirectional RNN model.mp4 |
167.29Мб |
020 Writing code to uncover our model's most wrong predictions.en.srt |
17.79Кб |
020 Writing code to uncover our model's most wrong predictions.mp4 |
109.59Мб |
021 Breaking our CNN model down part 11_ Training a CNN model on augmented data.en.srt |
14.17Кб |
021 Breaking our CNN model down part 11_ Training a CNN model on augmented data.mp4 |
94.06Мб |
021 Changing the datatype of tensors.en.srt |
9.00Кб |
021 Changing the datatype of tensors.mp4 |
71.39Мб |
021 Discussing the intuition behind Conv1D neural networks for text and sequences.en.srt |
28.08Кб |
021 Discussing the intuition behind Conv1D neural networks for text and sequences.mp4 |
184.39Мб |
021 Downloading and preparing data for our biggest experiment yet (Model 4).en.srt |
9.34Кб |
021 Downloading and preparing data for our biggest experiment yet (Model 4).mp4 |
56.68Мб |
021 Finding the accuracy of our classification model.en.srt |
5.86Кб |
021 Finding the accuracy of our classification model.mp4 |
34.07Мб |
021 How to load and use a saved TensorFlow model.en.srt |
13.35Кб |
021 How to load and use a saved TensorFlow model.mp4 |
104.36Мб |
021 Model 4_ Building a multi-input model (hybrid token + character embeddings).en.srt |
23.53Кб |
021 Model 4_ Building a multi-input model (hybrid token + character embeddings).mp4 |
181.85Мб |
021 Plotting and visualising the samples our model got most wrong.en.srt |
16.14Кб |
021 Plotting and visualising the samples our model got most wrong.mp4 |
125.49Мб |
022 (Optional) How to save and download files from Google Colab.en.srt |
8.10Кб |
022 (Optional) How to save and download files from Google Colab.mp4 |
67.70Мб |
022 Breaking our CNN model down part 12_ Discovering the power of shuffling data.en.srt |
14.88Кб |
022 Breaking our CNN model down part 12_ Discovering the power of shuffling data.mp4 |
103.86Мб |
022 Creating our first confusion matrix (to see where our model is getting confused).en.srt |
12.04Кб |
022 Creating our first confusion matrix (to see where our model is getting confused).mp4 |
65.70Мб |
022 Making predictions on and plotting our own custom images.en.srt |
15.23Кб |
022 Making predictions on and plotting our own custom images.mp4 |
108.30Мб |
022 Model 4_ Plotting and visually exploring different data inputs.en.srt |
12.83Кб |
022 Model 4_ Plotting and visually exploring different data inputs.mp4 |
86.56Мб |
022 Model 5_ Building, fitting and evaluating a 1D CNN for text.en.srt |
15.45Кб |
022 Model 5_ Building, fitting and evaluating a 1D CNN for text.mp4 |
77.75Мб |
022 Preparing our final modelling experiment (Model 4).en.srt |
15.53Кб |
022 Preparing our final modelling experiment (Model 4).mp4 |
96.42Мб |
022 Tensor aggregation (finding the min, max, mean & more).en.srt |
13.43Кб |
022 Tensor aggregation (finding the min, max, mean & more).mp4 |
89.58Мб |
023 Breaking our CNN model down part 13_ Exploring options to improve our model.en.srt |
7.82Кб |
023 Breaking our CNN model down part 13_ Exploring options to improve our model.mp4 |
50.34Мб |
023 Crafting multi-input fast loading tf.data datasets for Model 4.en.srt |
11.32Кб |
023 Crafting multi-input fast loading tf.data datasets for Model 4.mp4 |
83.83Мб |
023 Fine-tuning Model 4 on 100% of the training data and evaluating its results.en.srt |
15.54Кб |
023 Fine-tuning Model 4 on 100% of the training data and evaluating its results.mp4 |
96.84Мб |
023 Making our confusion matrix prettier.en.srt |
19.08Кб |
023 Making our confusion matrix prettier.mp4 |
114.11Мб |
023 Putting together what we've learned part 1 (preparing a dataset).en.srt |
19.51Кб |
023 Putting together what we've learned part 1 (preparing a dataset).mp4 |
143.51Мб |
023 Tensor troubleshooting example (updating tensor datatypes).en.srt |
6.93Кб |
023 Tensor troubleshooting example (updating tensor datatypes).mp4 |
69.39Мб |
023 Transfer Learning in TensorFlow Part 3 challenge, exercises and extra-curriculum.html |
3.21Кб |
023 Using TensorFlow Hub for pretrained word embeddings (transfer learning for NLP).en.srt |
20.25Кб |
023 Using TensorFlow Hub for pretrained word embeddings (transfer learning for NLP).mp4 |
138.06Мб |
024 Comparing our modelling experiment results in TensorBoard.en.srt |
16.43Кб |
024 Comparing our modelling experiment results in TensorBoard.mp4 |
95.75Мб |
024 Downloading a custom image to make predictions on.en.srt |
7.25Кб |
024 Downloading a custom image to make predictions on.mp4 |
53.08Мб |
024 Finding the positional minimum and maximum of a tensor (argmin and argmax).en.srt |
12.92Кб |
024 Finding the positional minimum and maximum of a tensor (argmin and argmax).mp4 |
96.50Мб |
024 Model 4_ Building, fitting and evaluating a hybrid embedding model.en.srt |
19.35Кб |
024 Model 4_ Building, fitting and evaluating a hybrid embedding model.mp4 |
139.22Мб |
024 Model 6_ Building, training and evaluating a transfer learning model for NLP.en.srt |
15.71Кб |
024 Model 6_ Building, training and evaluating a transfer learning model for NLP.mp4 |
99.03Мб |
024 Putting things together with multi-class classification part 1_ Getting the data.en.srt |
14.33Кб |
024 Putting things together with multi-class classification part 1_ Getting the data.mp4 |
87.22Мб |
024 Putting together what we've learned part 2 (building a regression model).en.srt |
18.76Кб |
024 Putting together what we've learned part 2 (building a regression model).mp4 |
121.37Мб |
025 How to view and delete previous TensorBoard experiments.en.srt |
2.93Кб |
025 How to view and delete previous TensorBoard experiments.mp4 |
21.91Мб |
025 Model 5_ Adding positional embeddings via feature engineering (overview).en.srt |
10.57Кб |
025 Model 5_ Adding positional embeddings via feature engineering (overview).mp4 |
66.23Мб |
025 Multi-class classification part 2_ Becoming one with the data.en.srt |
10.40Кб |
025 Multi-class classification part 2_ Becoming one with the data.mp4 |
48.65Мб |
025 Preparing subsets of data for model 7 (same as model 6 but 10% of data).en.srt |
15.93Кб |
025 Preparing subsets of data for model 7 (same as model 6 but 10% of data).mp4 |
91.64Мб |
025 Putting together what we've learned part 3 (improving our regression model).en.srt |
19.63Кб |
025 Putting together what we've learned part 3 (improving our regression model).mp4 |
155.11Мб |
025 Squeezing a tensor (removing all 1-dimension axes).en.srt |
4.01Кб |
025 Squeezing a tensor (removing all 1-dimension axes).mp4 |
30.20Мб |
025 Writing a helper function to load and preprocessing custom images.en.srt |
14.34Кб |
025 Writing a helper function to load and preprocessing custom images.mp4 |
105.15Мб |
026 Encoding the line number feature to used with Model 5.en.srt |
17.32Кб |
026 Encoding the line number feature to used with Model 5.mp4 |
113.03Мб |
026 Making a prediction on a custom image with our trained CNN.en.srt |
16.14Кб |
026 Making a prediction on a custom image with our trained CNN.mp4 |
99.90Мб |
026 Model 7_ Building, training and evaluating a transfer learning model on 10% data.en.srt |
13.43Кб |
026 Model 7_ Building, training and evaluating a transfer learning model on 10% data.mp4 |
100.71Мб |
026 Multi-class classification part 3_ Building a multi-class classification model.en.srt |
22.06Кб |
026 Multi-class classification part 3_ Building a multi-class classification model.mp4 |
142.80Мб |
026 One-hot encoding tensors.en.srt |
8.35Кб |
026 One-hot encoding tensors.mp4 |
59.72Мб |
026 Preprocessing data with feature scaling part 1 (what is feature scaling_).en.srt |
14.48Кб |
026 Preprocessing data with feature scaling part 1 (what is feature scaling_).mp4 |
92.51Мб |
026 Transfer Learning in TensorFlow Part 2 challenge, exercises and extra-curriculum.html |
3.57Кб |
027 Encoding the total lines feature to be used with Model 5.en.srt |
10.58Кб |
027 Encoding the total lines feature to be used with Model 5.mp4 |
64.28Мб |
027 Fixing our data leakage issue with model 7 and retraining it.en.srt |
18.01Кб |
027 Fixing our data leakage issue with model 7 and retraining it.mp4 |
165.94Мб |
027 Multi-class classification part 4_ Improving performance with normalisation.en.srt |
16.89Кб |
027 Multi-class classification part 4_ Improving performance with normalisation.mp4 |
113.41Мб |
027 Multi-class CNN's part 1_ Becoming one with the data.en.srt |
23.68Кб |
027 Multi-class CNN's part 1_ Becoming one with the data.mp4 |
140.19Мб |
027 Preprocessing data with feature scaling part 2 (normalising our data).en.srt |
14.54Кб |
027 Preprocessing data with feature scaling part 2 (normalising our data).mp4 |
97.18Мб |
027 Trying out more tensor math operations.en.srt |
6.53Кб |
027 Trying out more tensor math operations.mp4 |
55.93Мб |
028 Comparing all our modelling experiments evaluation metrics.en.srt |
18.60Кб |
028 Comparing all our modelling experiments evaluation metrics.mp4 |
115.92Мб |
028 Exploring TensorFlow and NumPy's compatibility.en.srt |
7.41Кб |
028 Exploring TensorFlow and NumPy's compatibility.mp4 |
43.74Мб |
028 Model 5_ Building the foundations of a tribrid embedding model.en.srt |
11.92Кб |
028 Model 5_ Building the foundations of a tribrid embedding model.mp4 |
81.89Мб |
028 Multi-class classification part 5_ Comparing normalised and non-normalised data.en.srt |
5.66Кб |
028 Multi-class classification part 5_ Comparing normalised and non-normalised data.mp4 |
26.77Мб |
028 Multi-class CNN's part 2_ Preparing our data (turning it into tensors).en.srt |
10.40Кб |
028 Multi-class CNN's part 2_ Preparing our data (turning it into tensors).mp4 |
72.71Мб |
028 Preprocessing data with feature scaling part 3 (fitting a model on scaled data).en.srt |
11.45Кб |
028 Preprocessing data with feature scaling part 3 (fitting a model on scaled data).mp4 |
75.72Мб |
029 Making sure our tensor operations run really fast on GPUs.en.srt |
15.05Кб |
029 Making sure our tensor operations run really fast on GPUs.mp4 |
110.90Мб |
029 Model 5_ Completing the build of a tribrid embedding model for sequences.en.srt |
18.94Кб |
029 Model 5_ Completing the build of a tribrid embedding model for sequences.mp4 |
152.91Мб |
029 Multi-class classification part 6_ Finding the ideal learning rate.en.srt |
15.57Кб |
029 Multi-class classification part 6_ Finding the ideal learning rate.mp4 |
73.33Мб |
029 Multi-class CNN's part 3_ Building a multi-class CNN model.en.srt |
11.14Кб |
029 Multi-class CNN's part 3_ Building a multi-class CNN model.mp4 |
89.24Мб |
029 TensorFlow Regression challenge, exercises & extra-curriculum.html |
2.89Кб |
029 Uploading our model's training logs to TensorBoard and comparing them.en.srt |
15.95Кб |
029 Uploading our model's training logs to TensorBoard and comparing them.mp4 |
109.34Мб |
030 Multi-class classification part 7_ Evaluating our model.en.srt |
17.69Кб |
030 Multi-class classification part 7_ Evaluating our model.mp4 |
119.14Мб |
030 Multi-class CNN's part 4_ Fitting a multi-class CNN model to the data.en.srt |
9.34Кб |
030 Multi-class CNN's part 4_ Fitting a multi-class CNN model to the data.mp4 |
59.66Мб |
030 Saving and loading in a trained NLP model with TensorFlow.en.srt |
14.07Кб |
030 Saving and loading in a trained NLP model with TensorFlow.mp4 |
104.88Мб |
030 TensorFlow Fundamentals challenge, exercises & extra-curriculum.html |
2.86Кб |
030 Visually inspecting the architecture of our tribrid embedding model.en.srt |
14.38Кб |
030 Visually inspecting the architecture of our tribrid embedding model.mp4 |
107.80Мб |
031 Creating multi-level data input pipelines for Model 5 with the tf.data API.en.srt |
11.17Кб |
031 Creating multi-level data input pipelines for Model 5 with the tf.data API.mp4 |
99.16Мб |
031 Downloading a pretrained model and preparing data to investigate predictions.en.srt |
17.18Кб |
031 Downloading a pretrained model and preparing data to investigate predictions.mp4 |
131.00Мб |
031 Multi-class classification part 8_ Creating a confusion matrix.en.srt |
6.95Кб |
031 Multi-class classification part 8_ Creating a confusion matrix.mp4 |
40.52Мб |
031 Multi-class CNN's part 5_ Evaluating our multi-class CNN model.en.srt |
7.07Кб |
031 Multi-class CNN's part 5_ Evaluating our multi-class CNN model.mp4 |
41.04Мб |
031 Python + Machine Learning Monthly.html |
1.66Кб |
032 Bringing SkimLit to life!!! (fitting and evaluating Model 5).en.srt |
15.49Кб |
032 Bringing SkimLit to life!!! (fitting and evaluating Model 5).mp4 |
115.78Мб |
032 LinkedIn Endorsements.html |
2.93Кб |
032 Multi-class classification part 9_ Visualising random model predictions.en.srt |
14.12Кб |
032 Multi-class classification part 9_ Visualising random model predictions.mp4 |
65.68Мб |
032 Multi-class CNN's part 6_ Trying to fix overfitting by removing layers.en.srt |
17.13Кб |
032 Multi-class CNN's part 6_ Trying to fix overfitting by removing layers.mp4 |
129.83Мб |
032 Visualising our model's most wrong predictions.en.srt |
12.80Кб |
032 Visualising our model's most wrong predictions.mp4 |
77.07Мб |
033 Comparing the performance of all of our modelling experiments.en.srt |
12.89Кб |
033 Comparing the performance of all of our modelling experiments.mp4 |
77.95Мб |
033 Making and visualising predictions on the test dataset.en.srt |
12.14Кб |
033 Making and visualising predictions on the test dataset.mp4 |
76.72Мб |
033 Multi-class CNN's part 7_ Trying to fix overfitting with data augmentation.en.srt |
17.04Кб |
033 Multi-class CNN's part 7_ Trying to fix overfitting with data augmentation.mp4 |
121.02Мб |
033 What _patterns_ is our model learning_.en.srt |
21.67Кб |
033 What _patterns_ is our model learning_.mp4 |
127.95Мб |
034 Multi-class CNN's part 8_ Things you could do to improve your CNN model.en.srt |
6.43Кб |
034 Multi-class CNN's part 8_ Things you could do to improve your CNN model.mp4 |
43.29Мб |
034 Saving, loading & testing our best performing model.en.srt |
10.42Кб |
034 Saving, loading & testing our best performing model.mp4 |
83.63Мб |
034 TensorFlow classification challenge, exercises & extra-curriculum.html |
3.40Кб |
034 Understanding the concept of the speed_score tradeoff.en.srt |
19.39Кб |
034 Understanding the concept of the speed_score tradeoff.mp4 |
130.63Мб |
035 Congratulations and your challenge before heading to the next module.en.srt |
17.88Кб |
035 Congratulations and your challenge before heading to the next module.mp4 |
135.69Мб |
035 Multi-class CNN's part 9_ Making predictions with our model on custom images.en.srt |
12.47Кб |
035 Multi-class CNN's part 9_ Making predictions with our model on custom images.mp4 |
118.98Мб |
035 NLP Fundamentals in TensorFlow challenge, exercises and extra-curriculum.html |
3.08Кб |
036 Milestone Project 2 (SkimLit) challenge, exercises and extra-curriculum.html |
2.46Кб |
036 Saving and loading our trained CNN model.en.srt |
9.44Кб |
036 Saving and loading our trained CNN model.mp4 |
69.28Мб |
037 TensorFlow computer vision and CNNs challenge, exercises & extra-curriculum.html |
3.44Кб |
1 |
38б |
10 |
420.84Кб |
100 |
78.21Кб |
101 |
871.47Кб |
102 |
1.01Мб |
103 |
1.12Мб |
104 |
1.42Мб |
105 |
1.64Мб |
106 |
141.06Кб |
107 |
592.13Кб |
108 |
1.04Мб |
109 |
690.11Кб |
11 |
329.22Кб |
110 |
1.15Мб |
111 |
1.29Мб |
112 |
1.45Мб |
113 |
1.93Мб |
114 |
101.61Кб |
115 |
500.69Кб |
116 |
561.93Кб |
117 |
864.35Кб |
118 |
998.02Кб |
119 |
95.36Кб |
12 |
1.58Мб |
120 |
205.27Кб |
121 |
835.74Кб |
122 |
1.16Мб |
123 |
1.36Мб |
124 |
1.38Мб |
125 |
1.50Мб |
126 |
1.58Мб |
127 |
256.63Кб |
128 |
389.02Кб |
129 |
403.55Кб |
13 |
1.90Мб |
130 |
585.56Кб |
131 |
1.11Мб |
132 |
1.94Мб |
133 |
839.36Кб |
134 |
1.49Мб |
135 |
1.71Мб |
136 |
1.75Мб |
137 |
370.42Кб |
138 |
760.67Кб |
139 |
951.41Кб |
14 |
723.09Кб |
140 |
1.08Мб |
141 |
1.36Мб |
142 |
1.77Мб |
143 |
1.84Мб |
144 |
141.64Кб |
145 |
434.51Кб |
146 |
637.72Кб |
147 |
774.58Кб |
148 |
904.34Кб |
149 |
1003.84Кб |
15 |
56.98Кб |
150 |
1.00Мб |
151 |
1.55Мб |
152 |
1.85Мб |
153 |
337.61Кб |
154 |
411.95Кб |
155 |
634.83Кб |
156 |
799.17Кб |
157 |
1.44Мб |
158 |
1.44Мб |
159 |
1.44Мб |
16 |
227.09Кб |
160 |
20.02Кб |
161 |
716.66Кб |
162 |
871.61Кб |
163 |
1.71Мб |
164 |
1.83Мб |
165 |
172.59Кб |
166 |
208.46Кб |
167 |
381.83Кб |
168 |
1.59Мб |
169 |
1.70Мб |
17 |
1.45Мб |
170 |
111.70Кб |
171 |
374.43Кб |
172 |
448.05Кб |
173 |
1.34Мб |
174 |
1.38Мб |
175 |
1.59Мб |
176 |
1.03Мб |
177 |
1.13Мб |
178 |
1.31Мб |
179 |
49.68Кб |
18 |
1.69Мб |
180 |
72.78Кб |
181 |
257.30Кб |
182 |
495.17Кб |
183 |
945.69Кб |
184 |
952.51Кб |
185 |
1.22Мб |
186 |
1.28Мб |
187 |
1.35Мб |
188 |
1.79Мб |
189 |
291.54Кб |
19 |
231.26Кб |
190 |
358.95Кб |
191 |
1019.77Кб |
192 |
1.78Мб |
193 |
685.31Кб |
194 |
1.07Мб |
195 |
1.19Мб |
196 |
1.29Мб |
197 |
1.71Мб |
198 |
626.59Кб |
199 |
1014.99Кб |
2 |
13б |
20 |
400.43Кб |
200 |
1.15Мб |
201 |
1.35Мб |
202 |
1.63Мб |
203 |
1.72Мб |
204 |
1.85Мб |
205 |
621.97Кб |
206 |
739.32Кб |
207 |
855.64Кб |
208 |
858.98Кб |
209 |
1.02Мб |
21 |
1.40Мб |
210 |
1.85Мб |
211 |
92.68Кб |
212 |
304.50Кб |
213 |
1.06Мб |
214 |
1.16Мб |
215 |
1.21Мб |
216 |
1.77Мб |
217 |
1.77Мб |
218 |
1.92Мб |
219 |
199.20Кб |
22 |
124.10Кб |
220 |
302.71Кб |
221 |
323.97Кб |
222 |
1.72Мб |
223 |
1.73Мб |
224 |
186.67Кб |
225 |
584.98Кб |
226 |
1.33Мб |
227 |
1.68Мб |
228 |
1.88Мб |
229 |
1.91Мб |
23 |
916.43Кб |
230 |
549.24Кб |
231 |
1.21Мб |
232 |
1.54Мб |
233 |
1.69Мб |
234 |
1.94Мб |
235 |
135.71Кб |
236 |
289.38Кб |
237 |
352.02Кб |
238 |
728.95Кб |
239 |
1021.53Кб |
24 |
945.47Кб |
240 |
1.00Мб |
241 |
1.97Мб |
242 |
441.00Кб |
243 |
610.43Кб |
244 |
1.32Мб |
245 |
1.91Мб |
246 |
76.55Кб |
247 |
436.54Кб |
248 |
940.68Кб |
249 |
60.42Кб |
25 |
1.05Мб |
250 |
511.79Кб |
251 |
888.74Кб |
252 |
1016.88Кб |
253 |
1.29Мб |
254 |
1.46Мб |
255 |
1.66Мб |
256 |
1.35Мб |
257 |
180.74Кб |
258 |
401.52Кб |
259 |
796.25Кб |
26 |
1.09Мб |
260 |
1.14Мб |
261 |
195.35Кб |
262 |
269.55Кб |
263 |
722.88Кб |
264 |
1.44Мб |
265 |
1.69Мб |
266 |
1.79Мб |
267 |
490.33Кб |
268 |
985.06Кб |
269 |
1.39Мб |
27 |
1.35Мб |
270 |
1.44Мб |
271 |
1.48Мб |
272 |
113.15Кб |
273 |
1.86Мб |
274 |
1.23Мб |
275 |
1.83Мб |
276 |
1.93Мб |
277 |
1.18Мб |
278 |
1.69Мб |
279 |
926.97Кб |
28 |
1.62Мб |
280 |
1.51Мб |
281 |
1.80Мб |
282 |
631.48Кб |
283 |
703.09Кб |
284 |
1.69Мб |
285 |
432.18Кб |
286 |
463.15Кб |
287 |
549.52Кб |
288 |
679.13Кб |
289 |
1.14Мб |
29 |
389.08Кб |
290 |
1.23Мб |
291 |
1.55Мб |
292 |
1.63Мб |
293 |
1.83Мб |
294 |
498.26Кб |
295 |
559.37Кб |
296 |
773.93Кб |
297 |
1.19Мб |
298 |
90.71Кб |
299 |
723.90Кб |
3 |
11б |
30 |
1.39Мб |
300 |
339.93Кб |
301 |
579.58Кб |
302 |
261.51Кб |
303 |
16.26Кб |
304 |
132.05Кб |
305 |
670.13Кб |
306 |
684.87Кб |
307 |
623.51Кб |
308 |
1.13Мб |
309 |
748.12Кб |
31 |
1.97Мб |
319 pandas-anatomy-of-a-dataframe.png |
333.24Кб |
32 |
69.27Кб |
322 car-sales.csv |
369б |
324 car-sales-missing-data.csv |
287б |
325 pandas-anatomy-of-a-dataframe.png |
333.24Кб |
33 |
498.79Кб |
34 |
1.20Мб |
345 numpy-images.zip |
7.27Мб |
35 |
1.81Мб |
36 |
801.33Кб |
37 |
1.94Мб |
38 |
1.23Мб |
39 |
322.23Кб |
4 |
185.54Кб |
40 |
361.32Кб |
41 |
392.00Кб |
42 |
1.17Мб |
43 |
1.06Мб |
44 |
1.16Мб |
45 |
1.33Мб |
46 |
1.76Мб |
47 |
1.76Мб |
48 |
1.81Мб |
49 |
1.82Мб |
5 |
1.21Мб |
50 |
232.10Кб |
51 |
467.04Кб |
52 |
955.14Кб |
53 |
1.00Мб |
54 |
1.37Мб |
55 |
1.57Мб |
56 |
178.64Кб |
57 |
221.34Кб |
58 |
52.12Кб |
59 |
766.96Кб |
6 |
1.97Мб |
60 |
523.70Кб |
61 |
722.23Кб |
62 |
1.32Мб |
63 |
1.97Мб |
64 |
781.82Кб |
65 |
1011.34Кб |
66 |
648.66Кб |
67 |
1007.62Кб |
68 |
656.03Кб |
69 |
883.01Кб |
7 |
1.61Мб |
70 |
1.02Мб |
71 |
557.29Кб |
72 |
619.21Кб |
73 |
1.16Мб |
74 |
1.29Мб |
75 |
81.40Кб |
76 |
229.96Кб |
77 |
415.21Кб |
78 |
1.06Мб |
79 |
1.89Мб |
8 |
153.18Кб |
80 |
607.14Кб |
81 |
991.24Кб |
82 |
1.27Мб |
83 |
1.10Мб |
84 |
1.43Мб |
85 |
420.75Кб |
86 |
468.42Кб |
87 |
539.67Кб |
88 |
675.33Кб |
89 |
1.70Мб |
9 |
198.20Кб |
90 |
78.12Кб |
91 |
205.67Кб |
92 |
217.52Кб |
93 |
299.35Кб |
94 |
860.68Кб |
95 |
1.05Мб |
96 |
1.51Мб |
97 |
1.53Мб |
98 |
1.80Мб |
99 |
1.92Мб |
external-assets-links.txt |
113б |
external-assets-links.txt |
94б |
external-assets-links.txt |
130б |
external-assets-links.txt |
108б |
external-assets-links.txt |
135б |
external-assets-links.txt |
207б |
external-assets-links.txt |
130б |
external-assets-links.txt |
1.10Кб |
external-assets-links.txt |
1.02Кб |
external-assets-links.txt |
149б |
TutsNode.com.txt |
63б |