Общая информация
Название TensorFlow Developer Certificate in 2021 Zero to Mastery
Тип
Размер 27.64Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[TGx]Downloaded from torrentgalaxy.to .txt 585б
0 22б
001 Become An Alumni.html 1.79Кб
001 Course Outline.en.srt 8.28Кб
001 Course Outline.mp4 58.03Мб
001 Introduction to Computer Vision with TensorFlow.en.srt 15.59Кб
001 Introduction to Computer Vision with TensorFlow.mp4 75.00Мб
001 Introduction to Milestone Project 1_ Food Vision Big™.en.srt 9.53Кб
001 Introduction to Milestone Project 1_ Food Vision Big™.mp4 42.31Мб
001 Introduction to Milestone Project 2_ SkimLit.en.srt 22.88Кб
001 Introduction to Milestone Project 2_ SkimLit.mp4 148.38Мб
001 Introduction to neural network classification in TensorFlow.en.srt 13.27Кб
001 Introduction to neural network classification in TensorFlow.mp4 72.81Мб
001 Introduction to Neural Network Regression with TensorFlow.en.srt 11.85Кб
001 Introduction to Neural Network Regression with TensorFlow.mp4 60.06Мб
001 Introduction to Transfer Learning in TensorFlow Part 2_ Fine-tuning.en.srt 10.16Кб
001 Introduction to Transfer Learning in TensorFlow Part 2_ Fine-tuning.mp4 61.46Мб
001 Introduction to Transfer Learning Part 3_ Scaling Up.en.srt 10.51Кб
001 Introduction to Transfer Learning Part 3_ Scaling Up.mp4 41.52Мб
001 More Videos Coming Soon!.html 940б
001 More Videos Coming Soon!.html 940б
001 More Videos Coming Soon!.html 940б
001 Quick Note_ Upcoming Videos.html 1.57Кб
001 Quick Note_ Upcoming Videos.html 1.57Кб
001 Quick Note_ Upcoming Videos.html 1.57Кб
001 Quick Note_ Upcoming Videos.html 1.57Кб
001 Special Bonus Lecture.html 4.91Кб
001 Welcome to natural language processing with TensorFlow!.html 1.96Кб
001 What is and why use transfer learning_.en.srt 16.57Кб
001 What is and why use transfer learning_.mp4 65.81Мб
001 What is deep learning_.en.srt 7.07Кб
001 What is deep learning_.mp4 34.17Мб
002 Downloading and preparing data for our first transfer learning model.en.srt 18.85Кб
002 Downloading and preparing data for our first transfer learning model.mp4 132.67Мб
002 Example classification problems (and their inputs and outputs).en.srt 10.30Кб
002 Example classification problems (and their inputs and outputs).mp4 50.71Мб
002 Getting helper functions ready and downloading data to model.en.srt 18.47Кб
002 Getting helper functions ready and downloading data to model.mp4 131.54Мб
002 Importing a script full of helper functions (and saving lots of space).en.srt 10.17Кб
002 Importing a script full of helper functions (and saving lots of space).mp4 89.38Мб
002 Inputs and outputs of a neural network regression model.en.srt 13.63Кб
002 Inputs and outputs of a neural network regression model.mp4 57.57Мб
002 Introduction to Convolutional Neural Networks (CNNs) with TensorFlow.en.srt 12.59Кб
002 Introduction to Convolutional Neural Networks (CNNs) with TensorFlow.mp4 76.65Мб
002 Introduction to Natural Language Processing (NLP) and Sequence Problems.en.srt 21.08Кб
002 Introduction to Natural Language Processing (NLP) and Sequence Problems.mp4 124.03Мб
002 Join Our Online Classroom!.html 3.31Кб
002 LinkedIn Endorsements.html 2.93Кб
002 Making sure we have access to the right GPU for mixed precision training.en.srt 14.63Кб
002 Making sure we have access to the right GPU for mixed precision training.mp4 88.15Мб
002 Section Overview.en.srt 4.98Кб
002 Section Overview.en.srt 3.84Кб
002 Section Overview.en.srt 3.36Кб
002 Section Overview.mp4 13.35Мб
002 Section Overview.mp4 13.33Мб
002 Section Overview.mp4 10.87Мб
002 What is Machine Learning_.en.srt 9.31Кб
002 What is Machine Learning_.mp4 28.31Мб
002 What we're going to cover in Milestone Project 2 (NLP for medical abstracts).en.srt 12.36Кб
002 What we're going to cover in Milestone Project 2 (NLP for medical abstracts).mp4 71.01Мб
002 Why use deep learning_.en.srt 14.73Кб
002 Why use deep learning_.mp4 62.32Мб
003 AI_Machine Learning_Data Science.en.srt 6.69Кб
003 AI_Machine Learning_Data Science.mp4 19.67Мб
003 Anatomy and architecture of a neural network regression model.en.srt 12.74Кб
003 Anatomy and architecture of a neural network regression model.mp4 59.00Мб
003 Downloading and turning our images into a TensorFlow BatchDataset.en.srt 22.98Кб
003 Downloading and turning our images into a TensorFlow BatchDataset.mp4 173.59Мб
003 Downloading an image dataset for our first Food Vision model.en.srt 10.74Кб
003 Downloading an image dataset for our first Food Vision model.mp4 72.93Мб
003 Downloading Workbooks and Assignments.html 1.83Кб
003 Example NLP inputs and outputs.en.srt 12.14Кб
003 Example NLP inputs and outputs.mp4 64.27Мб
003 Exercise_ Meet The Community.html 3.71Кб
003 Getting helper functions ready.en.srt 4.09Кб
003 Getting helper functions ready.mp4 31.09Мб
003 Input and output tensors of classification problems.en.srt 9.18Кб
003 Input and output tensors of classification problems.mp4 51.01Мб
003 Introducing Callbacks in TensorFlow and making a callback to track our models.en.srt 14.87Кб
003 Introducing Callbacks in TensorFlow and making a callback to track our models.mp4 94.89Мб
003 Introducing Our Framework.en.srt 3.83Кб
003 Introducing Our Framework.mp4 11.39Мб
003 NumPy Introduction.en.srt 7.89Кб
003 NumPy Introduction.mp4 26.86Мб
003 Outlining the model we're going to build and building a ModelCheckpoint callback.en.srt 7.70Кб
003 Outlining the model we're going to build and building a ModelCheckpoint callback.mp4 40.61Мб
003 SkimLit inputs and outputs.en.srt 18.80Кб
003 SkimLit inputs and outputs.mp4 76.78Мб
003 TensorFlow Certificate.html 1.25Кб
003 What are neural networks_.en.srt 15.27Кб
003 What are neural networks_.mp4 63.43Мб
004 6 Step Machine Learning Framework.en.srt 7.12Кб
004 6 Step Machine Learning Framework.mp4 23.45Мб
004 All Course Resources + Notebooks.html 2.86Кб
004 Becoming One With Data.en.srt 7.04Кб
004 Becoming One With Data.mp4 45.61Мб
004 Creating a data augmentation layer to use with our model.en.srt 6.49Кб
004 Creating a data augmentation layer to use with our model.mp4 40.56Мб
004 Creating sample regression data (so we can model it).en.srt 16.81Кб
004 Creating sample regression data (so we can model it).mp4 90.16Мб
004 Discussing the four (actually five) modelling experiments we're running.en.srt 3.72Кб
004 Discussing the four (actually five) modelling experiments we're running.mp4 15.87Мб
004 Exercise_ Machine Learning Playground.en.srt 8.46Кб
004 Exercise_ Machine Learning Playground.mp4 42.56Мб
004 Exploring the TensorFlow Hub website for pretrained models.en.srt 15.33Кб
004 Exploring the TensorFlow Hub website for pretrained models.mp4 102.96Мб
004 Introduction to TensorFlow Datasets (TFDS).en.srt 18.35Кб
004 Introduction to TensorFlow Datasets (TFDS).mp4 116.84Мб
004 Pandas Introduction.en.srt 7.19Кб
004 Pandas Introduction.mp4 27.46Мб
004 Quick Note_ Correction In Next Video.html 2.52Кб
004 Setting up our notebook for Milestone Project 2 (getting the data).en.srt 20.50Кб
004 Setting up our notebook for Milestone Project 2 (getting the data).mp4 146.03Мб
004 The typical architecture of a Recurrent Neural Network (RNN).en.srt 13.96Кб
004 The typical architecture of a Recurrent Neural Network (RNN).mp4 107.16Мб
004 Typical architecture of neural network classification models with TensorFlow.en.srt 15.21Кб
004 Typical architecture of neural network classification models with TensorFlow.mp4 112.73Мб
004 What is deep learning already being used for_.en.srt 14.02Кб
004 What is deep learning already being used for_.mp4 76.21Мб
005 Becoming One With Data Part 2.en.srt 16.74Кб
005 Becoming One With Data Part 2.mp4 104.58Мб
005 Building and compiling a TensorFlow Hub feature extraction model.en.srt 19.74Кб
005 Building and compiling a TensorFlow Hub feature extraction model.mp4 135.62Мб
005 Comparing the TensorFlow Keras Sequential API versus the Functional API.en.srt 4.20Кб
005 Comparing the TensorFlow Keras Sequential API versus the Functional API.mp4 26.45Мб
005 Creating a headless EfficientNetB0 model with data augmentation built in.en.srt 14.02Кб
005 Creating a headless EfficientNetB0 model with data augmentation built in.mp4 80.41Мб
005 Creating and viewing classification data to model.en.srt 15.00Кб
005 Creating and viewing classification data to model.mp4 106.08Мб
005 Exploring and becoming one with the data (Food101 from TensorFlow Datasets).en.srt 23.29Кб
005 Exploring and becoming one with the data (Food101 from TensorFlow Datasets).mp4 116.71Мб
005 How Did We Get Here_.en.srt 7.61Кб
005 How Did We Get Here_.mp4 30.49Мб
005 NumPy DataTypes and Attributes.en.srt 20.87Кб
005 NumPy DataTypes and Attributes.mp4 78.97Мб
005 Preparing a notebook for our first NLP with TensorFlow project.en.srt 12.20Кб
005 Preparing a notebook for our first NLP with TensorFlow project.mp4 82.41Мб
005 Series, Data Frames and CSVs.en.srt 19.22Кб
005 Series, Data Frames and CSVs.mp4 95.43Мб
005 The major steps in modelling with TensorFlow.en.srt 26.85Кб
005 The major steps in modelling with TensorFlow.mp4 181.81Мб
005 Types of Machine Learning Problems.en.srt 14.97Кб
005 Types of Machine Learning Problems.mp4 60.46Мб
005 Visualising examples from the dataset (becoming one with the data).en.srt 17.84Кб
005 Visualising examples from the dataset (becoming one with the data).mp4 132.24Мб
005 What is and why use TensorFlow_.en.srt 12.19Кб
005 What is and why use TensorFlow_.mp4 69.16Мб
006 Becoming One With Data Part 3.en.srt 6.81Кб
006 Becoming One With Data Part 3.mp4 39.89Мб
006 Becoming one with the data and visualising a text dataset.en.srt 23.12Кб
006 Becoming one with the data and visualising a text dataset.mp4 160.31Мб
006 Blowing our previous models out of the water with transfer learning.en.srt 14.28Кб
006 Blowing our previous models out of the water with transfer learning.mp4 99.45Мб
006 Checking the input and output shapes of our classification data.en.srt 6.85Кб
006 Checking the input and output shapes of our classification data.mp4 38.14Мб
006 Creating a preprocessing function to prepare our data for modelling.en.srt 19.63Кб
006 Creating a preprocessing function to prepare our data for modelling.mp4 132.19Мб
006 Creating NumPy Arrays.en.srt 13.01Кб
006 Creating NumPy Arrays.mp4 66.84Мб
006 Creating our first model with the TensorFlow Keras Functional API.en.srt 16.51Кб
006 Creating our first model with the TensorFlow Keras Functional API.mp4 132.18Мб
006 Data from URLs.html 2.35Кб
006 Exercise_ YouTube Recommendation Engine.en.srt 5.85Кб
006 Exercise_ YouTube Recommendation Engine.mp4 19.43Мб
006 Fitting and evaluating our biggest transfer learning model yet.en.srt 11.94Кб
006 Fitting and evaluating our biggest transfer learning model yet.mp4 70.15Мб
006 Steps in improving a model with TensorFlow part 1.en.srt 7.93Кб
006 Steps in improving a model with TensorFlow part 1.mp4 45.82Мб
006 Types of Data.en.srt 6.71Кб
006 Types of Data.mp4 29.31Мб
006 What is a Tensor_.en.srt 5.19Кб
006 What is a Tensor_.mp4 27.58Мб
006 Writing a preprocessing function to structure our data for modelling.en.srt 27.05Кб
006 Writing a preprocessing function to structure our data for modelling.mp4 218.07Мб
007 Batching and preparing our datasets (to make them run fast).en.srt 19.98Кб
007 Batching and preparing our datasets (to make them run fast).mp4 132.24Мб
007 Building an end to end CNN Model.en.srt 27.06Кб
007 Building an end to end CNN Model.mp4 155.08Мб
007 Building a not very good classification model with TensorFlow.en.srt 16.72Кб
007 Building a not very good classification model with TensorFlow.mp4 125.29Мб
007 Compiling and fitting our first Functional API model.en.srt 16.46Кб
007 Compiling and fitting our first Functional API model.mp4 132.84Мб
007 Describing Data with Pandas.en.srt 14.83Кб
007 Describing Data with Pandas.mp4 75.65Мб
007 NumPy Random Seed.en.srt 10.91Кб
007 NumPy Random Seed.mp4 51.94Мб
007 Performing visual data analysis on our preprocessed text.en.srt 11.34Кб
007 Performing visual data analysis on our preprocessed text.mp4 74.22Мб
007 Plotting the loss curves of our ResNet feature extraction model.en.srt 11.27Кб
007 Plotting the loss curves of our ResNet feature extraction model.mp4 62.09Мб
007 Splitting data into training and validation sets.en.srt 8.17Кб
007 Splitting data into training and validation sets.mp4 59.87Мб
007 Steps in improving a model with TensorFlow part 2.en.srt 13.67Кб
007 Steps in improving a model with TensorFlow part 2.mp4 90.23Мб
007 Types of Evaluation.en.srt 4.73Кб
007 Types of Evaluation.mp4 17.74Мб
007 Types of Machine Learning.en.srt 5.71Кб
007 Types of Machine Learning.mp4 22.81Мб
007 Unfreezing some layers in our base model to prepare for fine-tuning.en.srt 17.30Кб
007 Unfreezing some layers in our base model to prepare for fine-tuning.mp4 100.07Мб
007 What we're going to cover throughout the course.en.srt 7.52Кб
007 What we're going to cover throughout the course.mp4 29.38Мб
008 Are You Getting It Yet_.html 1.03Кб
008 Building and training a pre-trained EfficientNet model on our data.en.srt 14.87Кб
008 Building and training a pre-trained EfficientNet model on our data.mp4 105.92Мб
008 Converting text data to numbers using tokenisation and embeddings (overview).en.srt 13.60Кб
008 Converting text data to numbers using tokenisation and embeddings (overview).mp4 82.30Мб
008 Exploring what happens when we batch and prefetch our data.en.srt 9.76Кб
008 Exploring what happens when we batch and prefetch our data.mp4 63.82Мб
008 Features In Data.en.srt 7.12Кб
008 Features In Data.mp4 36.77Мб
008 Fine-tuning our feature extraction model and evaluating its performance.en.srt 12.36Кб
008 Fine-tuning our feature extraction model and evaluating its performance.mp4 66.23Мб
008 Getting a feature vector from our trained model.en.srt 18.47Кб
008 Getting a feature vector from our trained model.mp4 147.62Мб
008 How to approach this course.en.srt 8.57Кб
008 How to approach this course.mp4 26.17Мб
008 Selecting and Viewing Data with Pandas.en.srt 15.89Кб
008 Selecting and Viewing Data with Pandas.mp4 72.29Мб
008 Steps in improving a model with TensorFlow part 3.en.srt 17.53Кб
008 Steps in improving a model with TensorFlow part 3.mp4 132.94Мб
008 Trying to improve our not very good classification model.en.srt 13.20Кб
008 Trying to improve our not very good classification model.mp4 84.29Мб
008 Turning our target labels into numbers (ML models require numbers).en.srt 19.64Кб
008 Turning our target labels into numbers (ML models require numbers).mp4 117.40Мб
008 Using a GPU to run our CNN model 5x faster.en.srt 13.60Кб
008 Using a GPU to run our CNN model 5x faster.mp4 114.94Мб
008 Viewing Arrays and Matrices.en.srt 14.49Кб
008 Viewing Arrays and Matrices.mp4 70.65Мб
009 Creating a function to view our model's not so good predictions.en.srt 19.77Кб
009 Creating a function to view our model's not so good predictions.mp4 160.55Мб
009 Creating modelling callbacks for our feature extraction model.en.srt 10.23Кб
009 Creating modelling callbacks for our feature extraction model.mp4 60.79Мб
009 Different Types of Transfer Learning.en.srt 16.31Кб
009 Different Types of Transfer Learning.mp4 110.57Мб
009 Drilling into the concept of a feature vector (a learned representation).en.srt 5.60Кб
009 Drilling into the concept of a feature vector (a learned representation).mp4 51.50Мб
009 Evaluating a TensorFlow model part 1 (_visualise, visualise, visualise_).en.srt 10.20Кб
009 Evaluating a TensorFlow model part 1 (_visualise, visualise, visualise_).mp4 66.94Мб
009 Manipulating Arrays.en.srt 17.91Кб
009 Manipulating Arrays.mp4 80.66Мб
009 Model 0_ Creating, fitting and evaluating a baseline model for SkimLit.en.srt 11.97Кб
009 Model 0_ Creating, fitting and evaluating a baseline model for SkimLit.mp4 81.63Мб
009 Modelling - Splitting Data.en.srt 8.08Кб
009 Modelling - Splitting Data.mp4 27.55Мб
009 Need A Refresher_.html 1.79Кб
009 Saving and loading our trained model.en.srt 9.36Кб
009 Saving and loading our trained model.mp4 57.40Мб
009 Selecting and Viewing Data with Pandas Part 2.en.srt 19.75Кб
009 Selecting and Viewing Data with Pandas Part 2.mp4 106.49Мб
009 Setting up a TensorFlow TextVectorization layer to convert text to numbers.en.srt 23.08Кб
009 Setting up a TensorFlow TextVectorization layer to convert text to numbers.mp4 199.93Мб
009 Trying a non-CNN model on our image data.en.srt 12.13Кб
009 Trying a non-CNN model on our image data.mp4 100.55Мб
009 What Is Machine Learning_ Round 2.en.srt 6.48Кб
009 What Is Machine Learning_ Round 2.mp4 25.51Мб
010 Comparing Our Model's Results.en.srt 22.44Кб
010 Comparing Our Model's Results.mp4 143.93Мб
010 Creating your first tensors with TensorFlow and tf.constant().en.srt 25.80Кб
010 Creating your first tensors with TensorFlow and tf.constant().mp4 134.83Мб
010 Downloading and preparing the data for Model 1 (1 percent of training data).en.srt 13.52Кб
010 Downloading and preparing the data for Model 1 (1 percent of training data).mp4 97.80Мб
010 Downloading a pretrained model to make and evaluate predictions with.en.srt 9.27Кб
010 Downloading a pretrained model to make and evaluate predictions with.mp4 78.69Мб
010 Evaluating a TensorFlow model part 2 (the three datasets).en.srt 14.63Кб
010 Evaluating a TensorFlow model part 2 (the three datasets).mp4 81.56Мб
010 Improving our non-CNN model by adding more layers.en.srt 14.56Кб
010 Improving our non-CNN model by adding more layers.mp4 106.47Мб
010 Make our poor classification model work for a regression dataset.en.srt 17.02Кб
010 Make our poor classification model work for a regression dataset.mp4 123.01Мб
010 Manipulating Arrays 2.en.srt 12.53Кб
010 Manipulating Arrays 2.mp4 67.91Мб
010 Manipulating Data.en.srt 19.33Кб
010 Manipulating Data.mp4 104.99Мб
010 Mapping the TextVectorization layer to text data and turning it into numbers.en.srt 16.55Кб
010 Mapping the TextVectorization layer to text data and turning it into numbers.mp4 97.91Мб
010 Modelling - Picking the Model.en.srt 6.45Кб
010 Modelling - Picking the Model.mp4 23.24Мб
010 Preparing our data for deep sequence models.en.srt 13.52Кб
010 Preparing our data for deep sequence models.mp4 85.15Мб
010 Section Review.en.srt 2.28Кб
010 Section Review.mp4 5.55Мб
010 Turning on mixed precision training with TensorFlow.en.srt 14.46Кб
010 Turning on mixed precision training with TensorFlow.mp4 107.71Мб
011 Breaking our CNN model down part 1_ Becoming one with the data.en.srt 13.51Кб
011 Breaking our CNN model down part 1_ Becoming one with the data.mp4 90.92Мб
011 Building a data augmentation layer to use inside our model.en.srt 16.83Кб
011 Building a data augmentation layer to use inside our model.mp4 117.46Мб
011 Creating a feature extraction model capable of using mixed precision training.en.srt 18.12Кб
011 Creating a feature extraction model capable of using mixed precision training.mp4 107.92Мб
011 Creating an Embedding layer to turn tokenised text into embedding vectors.en.srt 18.64Кб
011 Creating an Embedding layer to turn tokenised text into embedding vectors.mp4 135.65Мб
011 Creating a text vectoriser to map our tokens (text) to numbers.en.srt 19.81Кб
011 Creating a text vectoriser to map our tokens (text) to numbers.mp4 129.78Мб
011 Creating tensors with TensorFlow and tf.Variable().en.srt 10.36Кб
011 Creating tensors with TensorFlow and tf.Variable().mp4 70.85Мб
011 Evaluating a TensorFlow model part 3 (getting a model summary).en.srt 22.43Кб
011 Evaluating a TensorFlow model part 3 (getting a model summary).mp4 192.79Мб
011 Making predictions with our trained model on 25,250 test samples.en.srt 16.93Кб
011 Making predictions with our trained model on 25,250 test samples.mp4 115.59Мб
011 Manipulating Data 2.en.srt 15.49Кб
011 Manipulating Data 2.mp4 86.56Мб
011 Modelling - Tuning.en.srt 5.28Кб
011 Modelling - Tuning.mp4 15.98Мб
011 Non-linearity part 1_ Straight lines and non-straight lines.en.srt 14.39Кб
011 Non-linearity part 1_ Straight lines and non-straight lines.mp4 95.61Мб
011 Standard Deviation and Variance.en.srt 10.25Кб
011 Standard Deviation and Variance.mp4 51.13Мб
011 TensorFlow Transfer Learning Part 1 challenge, exercises & extra-curriculum.html 3.37Кб
012 Breaking our CNN model down part 2_ Preparing to load our data.en.srt 17.18Кб
012 Breaking our CNN model down part 2_ Preparing to load our data.mp4 109.47Мб
012 Checking to see if our model is using mixed precision training layer by layer.en.srt 10.71Кб
012 Checking to see if our model is using mixed precision training layer by layer.mp4 87.67Мб
012 Creating a custom token embedding layer with TensorFlow.en.srt 13.15Кб
012 Creating a custom token embedding layer with TensorFlow.mp4 99.51Мб
012 Creating random tensors with TensorFlow.en.srt 13.58Кб
012 Creating random tensors with TensorFlow.mp4 88.45Мб
012 Discussing the various modelling experiments we're going to run.en.srt 14.33Кб
012 Discussing the various modelling experiments we're going to run.mp4 87.60Мб
012 Evaluating a TensorFlow model part 4 (visualising a model's layers).en.srt 9.61Кб
012 Evaluating a TensorFlow model part 4 (visualising a model's layers).mp4 70.28Мб
012 Manipulating Data 3.en.srt 14.58Кб
012 Manipulating Data 3.mp4 91.07Мб
012 Modelling - Comparison.en.srt 13.81Кб
012 Modelling - Comparison.mp4 44.86Мб
012 Non-linearity part 2_ Building our first neural network with non-linearity.en.srt 7.88Кб
012 Non-linearity part 2_ Building our first neural network with non-linearity.mp4 59.00Мб
012 Reshape and Transpose.en.srt 10.10Кб
012 Reshape and Transpose.mp4 53.57Мб
012 Unravelling our test dataset for comparing ground truth labels to predictions.en.srt 8.02Кб
012 Unravelling our test dataset for comparing ground truth labels to predictions.mp4 43.81Мб
012 Visualising what happens when images pass through our data augmentation layer.en.srt 15.06Кб
012 Visualising what happens when images pass through our data augmentation layer.mp4 119.36Мб
013 Assignment_ Pandas Practice.html 2.93Кб
013 Breaking our CNN model down part 3_ Loading our data with ImageDataGenerator.en.srt 14.01Кб
013 Breaking our CNN model down part 3_ Loading our data with ImageDataGenerator.mp4 103.42Мб
013 Building Model 1 (with a data augmentation layer and 1% of training data).en.srt 23.38Кб
013 Building Model 1 (with a data augmentation layer and 1% of training data).mp4 152.95Мб
013 Confirming our model's predictions are in the same order as the test labels.en.srt 7.05Кб
013 Confirming our model's predictions are in the same order as the test labels.mp4 50.54Мб
013 Creating fast loading dataset with the TensorFlow tf.data API.en.srt 13.32Кб
013 Creating fast loading dataset with the TensorFlow tf.data API.mp4 90.64Мб
013 Dot Product vs Element Wise.en.srt 16.58Кб
013 Dot Product vs Element Wise.mp4 83.80Мб
013 Evaluating a TensorFlow model part 5 (visualising a model's predictions).en.srt 12.42Кб
013 Evaluating a TensorFlow model part 5 (visualising a model's predictions).mp4 78.87Мб
013 Model 0_ Building a baseline model to try and improve upon.en.srt 13.14Кб
013 Model 0_ Building a baseline model to try and improve upon.mp4 93.18Мб
013 Non-linearity part 3_ Upgrading our non-linear model with more layers.en.srt 14.98Кб
013 Non-linearity part 3_ Upgrading our non-linear model with more layers.mp4 123.24Мб
013 Overfitting and Underfitting Definitions.html 2.87Кб
013 Shuffling the order of tensors.en.srt 13.19Кб
013 Shuffling the order of tensors.mp4 89.86Мб
013 Training and evaluating a feature extraction model (Food Vision Big™).en.srt 14.67Кб
013 Training and evaluating a feature extraction model (Food Vision Big™).mp4 89.02Мб
014 Breaking our CNN model down part 4_ Building a baseline CNN model.en.srt 11.70Кб
014 Breaking our CNN model down part 4_ Building a baseline CNN model.mp4 85.30Мб
014 Building Model 2 (with a data augmentation layer and 10% of training data).en.srt 24.42Кб
014 Building Model 2 (with a data augmentation layer and 10% of training data).mp4 159.77Мб
014 Creating a confusion matrix for our model's 101 different classes.en.srt 18.34Кб
014 Creating a confusion matrix for our model's 101 different classes.mp4 156.60Мб
014 Creating a function to track and evaluate our model's results.en.srt 17.37Кб
014 Creating a function to track and evaluate our model's results.mp4 148.65Мб
014 Creating tensors from NumPy arrays.en.srt 15.69Кб
014 Creating tensors from NumPy arrays.mp4 101.33Мб
014 Evaluating a TensorFlow model part 6 (common regression evaluation metrics).en.srt 11.60Кб
014 Evaluating a TensorFlow model part 6 (common regression evaluation metrics).mp4 70.37Мб
014 Exercise_ Nut Butter Store Sales.en.srt 18.19Кб
014 Exercise_ Nut Butter Store Sales.mp4 91.26Мб
014 Experimentation.en.srt 5.29Кб
014 Experimentation.mp4 21.29Мб
014 How To Download The Course Assignments.en.srt 11.70Кб
014 How To Download The Course Assignments.mp4 66.79Мб
014 Introducing your Milestone Project 1 challenge_ build a model to beat DeepFood.en.srt 11.70Кб
014 Introducing your Milestone Project 1 challenge_ build a model to beat DeepFood.mp4 89.12Мб
014 Model 1_ Building, fitting and evaluating a Conv1D with token embeddings.en.srt 25.65Кб
014 Model 1_ Building, fitting and evaluating a Conv1D with token embeddings.mp4 168.42Мб
014 Non-linearity part 4_ Modelling our non-linear data once and for all.en.srt 12.52Кб
014 Non-linearity part 4_ Modelling our non-linear data once and for all.mp4 96.62Мб
015 Breaking our CNN model down part 5_ Looking inside a Conv2D layer.en.srt 23.74Кб
015 Breaking our CNN model down part 5_ Looking inside a Conv2D layer.mp4 186.03Мб
015 Comparison Operators.en.srt 5.47Кб
015 Comparison Operators.mp4 26.37Мб
015 Creating a ModelCheckpoint to save our model's weights during training.en.srt 11.21Кб
015 Creating a ModelCheckpoint to save our model's weights during training.mp4 68.98Мб
015 Evaluating a TensorFlow regression model part 7 (mean absolute error).en.srt 8.49Кб
015 Evaluating a TensorFlow regression model part 7 (mean absolute error).mp4 56.09Мб
015 Evaluating every individual class in our dataset.en.srt 20.16Кб
015 Evaluating every individual class in our dataset.mp4 131.77Мб
015 Getting information from your tensors (tensor attributes).en.srt 17.69Кб
015 Getting information from your tensors (tensor attributes).mp4 87.38Мб
015 Milestone Project 1_ Food Vision Big™, exercises and extra-curriculum.html 3.24Кб
015 Model 1_ Building, fitting and evaluating our first deep model on text data.en.srt 29.85Кб
015 Model 1_ Building, fitting and evaluating our first deep model on text data.mp4 207.74Мб
015 Non-linearity part 5_ Replicating non-linear activation functions from scratch.en.srt 19.08Кб
015 Non-linearity part 5_ Replicating non-linear activation functions from scratch.mp4 146.61Мб
015 Preparing a pretrained embedding layer from TensorFlow Hub for Model 2.en.srt 15.62Кб
015 Preparing a pretrained embedding layer from TensorFlow Hub for Model 2.mp4 124.68Мб
015 Tools We Will Use.en.srt 6.31Кб
015 Tools We Will Use.mp4 27.34Мб
016 Breaking our CNN model down part 6_ Compiling and fitting our baseline CNN.en.srt 10.29Кб
016 Breaking our CNN model down part 6_ Compiling and fitting our baseline CNN.mp4 77.08Мб
016 Evaluating a TensorFlow regression model part 7 (mean square error).en.srt 4.06Кб
016 Evaluating a TensorFlow regression model part 7 (mean square error).mp4 32.31Мб
016 Fitting and evaluating Model 2 (and saving its weights using ModelCheckpoint).en.srt 10.27Кб
016 Fitting and evaluating Model 2 (and saving its weights using ModelCheckpoint).mp4 68.15Мб
016 Getting great results in less time by tweaking the learning rate.en.srt 20.18Кб
016 Getting great results in less time by tweaking the learning rate.mp4 136.77Мб
016 Indexing and expanding tensors.en.srt 17.66Кб
016 Indexing and expanding tensors.mp4 86.56Мб
016 Model 2_ Building, fitting and evaluating a Conv1D model with token embeddings.en.srt 16.79Кб
016 Model 2_ Building, fitting and evaluating a Conv1D model with token embeddings.mp4 106.95Мб
016 Optional_ Elements of AI.html 1.83Кб
016 Plotting our model's F1-scores for each separate class.en.srt 11.19Кб
016 Plotting our model's F1-scores for each separate class.mp4 77.93Мб
016 Sorting Arrays.en.srt 9.35Кб
016 Sorting Arrays.mp4 32.82Мб
016 Visualising our model's learned word embeddings with TensorFlow's projector tool.en.srt 30.95Кб
016 Visualising our model's learned word embeddings with TensorFlow's projector tool.mp4 283.21Мб
017 Breaking our CNN model down part 7_ Evaluating our CNN's training curves.en.srt 17.81Кб
017 Breaking our CNN model down part 7_ Evaluating our CNN's training curves.mp4 106.20Мб
017 Creating a character-level tokeniser with TensorFlow's TextVectorization layer.en.srt 31.05Кб
017 Creating a character-level tokeniser with TensorFlow's TextVectorization layer.mp4 197.66Мб
017 Creating a function to load and prepare images for making predictions.en.srt 16.43Кб
017 Creating a function to load and prepare images for making predictions.mp4 109.54Мб
017 High-level overview of Recurrent Neural Networks (RNNs) + where to learn more.en.srt 14.34Кб
017 High-level overview of Recurrent Neural Networks (RNNs) + where to learn more.mp4 96.64Мб
017 Loading and comparing saved weights to our existing trained Model 2.en.srt 10.06Кб
017 Loading and comparing saved weights to our existing trained Model 2.mp4 62.67Мб
017 Manipulating tensors with basic operations.en.srt 7.24Кб
017 Manipulating tensors with basic operations.mp4 45.22Мб
017 Setting up TensorFlow modelling experiments part 1 (start with a simple model).en.srt 18.17Кб
017 Setting up TensorFlow modelling experiments part 1 (start with a simple model).mp4 127.25Мб
017 Turn Images Into NumPy Arrays.en.srt 11.05Кб
017 Turn Images Into NumPy Arrays.mp4 85.98Мб
017 Using the TensorFlow History object to plot a model's loss curves.en.srt 8.72Кб
017 Using the TensorFlow History object to plot a model's loss curves.mp4 62.12Мб
018 Assignment_ NumPy Practice.html 3.05Кб
018 Breaking our CNN model down part 8_ Reducing overfitting with Max Pooling.en.srt 20.02Кб
018 Breaking our CNN model down part 8_ Reducing overfitting with Max Pooling.mp4 130.43Мб
018 Creating a character-level embedding layer with tf.keras.layers.Embedding.en.srt 10.86Кб
018 Creating a character-level embedding layer with tf.keras.layers.Embedding.mp4 77.52Мб
018 Making predictions on our test images and evaluating them.en.srt 24.55Кб
018 Making predictions on our test images and evaluating them.mp4 171.68Мб
018 Matrix multiplication with tensors part 1.en.srt 15.91Кб
018 Matrix multiplication with tensors part 1.mp4 100.85Мб
018 Model 2_ Building, fitting and evaluating our first TensorFlow RNN model (LSTM).en.srt 25.65Кб
018 Model 2_ Building, fitting and evaluating our first TensorFlow RNN model (LSTM).mp4 165.78Мб
018 Preparing Model 3 (our first fine-tuned model).en.srt 26.97Кб
018 Preparing Model 3 (our first fine-tuned model).mp4 198.23Мб
018 Setting up TensorFlow modelling experiments part 2 (increasing complexity).en.srt 16.55Кб
018 Setting up TensorFlow modelling experiments part 2 (increasing complexity).mp4 95.62Мб
018 Using callbacks to find a model's ideal learning rate.en.srt 25.94Кб
018 Using callbacks to find a model's ideal learning rate.mp4 155.88Мб
019 Breaking our CNN model down part 9_ Reducing overfitting with data augmentation.en.srt 9.77Кб
019 Breaking our CNN model down part 9_ Reducing overfitting with data augmentation.mp4 66.08Мб
019 Comparing and tracking your TensorFlow modelling experiments.en.srt 13.70Кб
019 Comparing and tracking your TensorFlow modelling experiments.mp4 92.25Мб
019 Discussing the benefits of finding your model's most wrong predictions.en.srt 9.80Кб
019 Discussing the benefits of finding your model's most wrong predictions.mp4 59.29Мб
019 Fitting and evaluating Model 3 (our first fine-tuned model).en.srt 11.06Кб
019 Fitting and evaluating Model 3 (our first fine-tuned model).mp4 69.16Мб
019 Matrix multiplication with tensors part 2.en.srt 18.10Кб
019 Matrix multiplication with tensors part 2.mp4 107.79Мб
019 Model 3_ Building, fitting and evaluating a Conv1D model on character embeddings.en.srt 19.80Кб
019 Model 3_ Building, fitting and evaluating a Conv1D model on character embeddings.mp4 131.07Мб
019 Model 3_ Building, fitting and evaluating a GRU-cell powered RNN.en.srt 24.87Кб
019 Model 3_ Building, fitting and evaluating a GRU-cell powered RNN.mp4 168.10Мб
019 Optional_ Extra NumPy resources.html 1.91Кб
019 Training and evaluating a model with an ideal learning rate.en.srt 12.39Кб
019 Training and evaluating a model with an ideal learning rate.mp4 89.00Мб
020 Breaking our CNN model down part 10_ Visualizing our augmented data.en.srt 22.45Кб
020 Breaking our CNN model down part 10_ Visualizing our augmented data.mp4 157.61Мб
020 Comparing our model's results before and after fine-tuning.en.srt 14.45Кб
020 Comparing our model's results before and after fine-tuning.mp4 84.17Мб
020 Discussing how we're going to build Model 4 (character + token embeddings).en.srt 9.08Кб
020 Discussing how we're going to build Model 4 (character + token embeddings).mp4 60.31Мб
020 How to save a TensorFlow model.en.srt 11.88Кб
020 How to save a TensorFlow model.mp4 92.29Мб
020 Introducing more classification evaluation methods.en.srt 9.21Кб
020 Introducing more classification evaluation methods.mp4 42.21Мб
020 Matrix multiplication with tensors part 3.en.srt 13.84Кб
020 Matrix multiplication with tensors part 3.mp4 80.62Мб
020 Model 4_ Building, fitting and evaluating a bidirectional RNN model.en.srt 28.30Кб
020 Model 4_ Building, fitting and evaluating a bidirectional RNN model.mp4 167.29Мб
020 Writing code to uncover our model's most wrong predictions.en.srt 17.79Кб
020 Writing code to uncover our model's most wrong predictions.mp4 109.59Мб
021 Breaking our CNN model down part 11_ Training a CNN model on augmented data.en.srt 14.17Кб
021 Breaking our CNN model down part 11_ Training a CNN model on augmented data.mp4 94.06Мб
021 Changing the datatype of tensors.en.srt 9.00Кб
021 Changing the datatype of tensors.mp4 71.39Мб
021 Discussing the intuition behind Conv1D neural networks for text and sequences.en.srt 28.08Кб
021 Discussing the intuition behind Conv1D neural networks for text and sequences.mp4 184.39Мб
021 Downloading and preparing data for our biggest experiment yet (Model 4).en.srt 9.34Кб
021 Downloading and preparing data for our biggest experiment yet (Model 4).mp4 56.68Мб
021 Finding the accuracy of our classification model.en.srt 5.86Кб
021 Finding the accuracy of our classification model.mp4 34.07Мб
021 How to load and use a saved TensorFlow model.en.srt 13.35Кб
021 How to load and use a saved TensorFlow model.mp4 104.36Мб
021 Model 4_ Building a multi-input model (hybrid token + character embeddings).en.srt 23.53Кб
021 Model 4_ Building a multi-input model (hybrid token + character embeddings).mp4 181.85Мб
021 Plotting and visualising the samples our model got most wrong.en.srt 16.14Кб
021 Plotting and visualising the samples our model got most wrong.mp4 125.49Мб
022 (Optional) How to save and download files from Google Colab.en.srt 8.10Кб
022 (Optional) How to save and download files from Google Colab.mp4 67.70Мб
022 Breaking our CNN model down part 12_ Discovering the power of shuffling data.en.srt 14.88Кб
022 Breaking our CNN model down part 12_ Discovering the power of shuffling data.mp4 103.86Мб
022 Creating our first confusion matrix (to see where our model is getting confused).en.srt 12.04Кб
022 Creating our first confusion matrix (to see where our model is getting confused).mp4 65.70Мб
022 Making predictions on and plotting our own custom images.en.srt 15.23Кб
022 Making predictions on and plotting our own custom images.mp4 108.30Мб
022 Model 4_ Plotting and visually exploring different data inputs.en.srt 12.83Кб
022 Model 4_ Plotting and visually exploring different data inputs.mp4 86.56Мб
022 Model 5_ Building, fitting and evaluating a 1D CNN for text.en.srt 15.45Кб
022 Model 5_ Building, fitting and evaluating a 1D CNN for text.mp4 77.75Мб
022 Preparing our final modelling experiment (Model 4).en.srt 15.53Кб
022 Preparing our final modelling experiment (Model 4).mp4 96.42Мб
022 Tensor aggregation (finding the min, max, mean & more).en.srt 13.43Кб
022 Tensor aggregation (finding the min, max, mean & more).mp4 89.58Мб
023 Breaking our CNN model down part 13_ Exploring options to improve our model.en.srt 7.82Кб
023 Breaking our CNN model down part 13_ Exploring options to improve our model.mp4 50.34Мб
023 Crafting multi-input fast loading tf.data datasets for Model 4.en.srt 11.32Кб
023 Crafting multi-input fast loading tf.data datasets for Model 4.mp4 83.83Мб
023 Fine-tuning Model 4 on 100% of the training data and evaluating its results.en.srt 15.54Кб
023 Fine-tuning Model 4 on 100% of the training data and evaluating its results.mp4 96.84Мб
023 Making our confusion matrix prettier.en.srt 19.08Кб
023 Making our confusion matrix prettier.mp4 114.11Мб
023 Putting together what we've learned part 1 (preparing a dataset).en.srt 19.51Кб
023 Putting together what we've learned part 1 (preparing a dataset).mp4 143.51Мб
023 Tensor troubleshooting example (updating tensor datatypes).en.srt 6.93Кб
023 Tensor troubleshooting example (updating tensor datatypes).mp4 69.39Мб
023 Transfer Learning in TensorFlow Part 3 challenge, exercises and extra-curriculum.html 3.21Кб
023 Using TensorFlow Hub for pretrained word embeddings (transfer learning for NLP).en.srt 20.25Кб
023 Using TensorFlow Hub for pretrained word embeddings (transfer learning for NLP).mp4 138.06Мб
024 Comparing our modelling experiment results in TensorBoard.en.srt 16.43Кб
024 Comparing our modelling experiment results in TensorBoard.mp4 95.75Мб
024 Downloading a custom image to make predictions on.en.srt 7.25Кб
024 Downloading a custom image to make predictions on.mp4 53.08Мб
024 Finding the positional minimum and maximum of a tensor (argmin and argmax).en.srt 12.92Кб
024 Finding the positional minimum and maximum of a tensor (argmin and argmax).mp4 96.50Мб
024 Model 4_ Building, fitting and evaluating a hybrid embedding model.en.srt 19.35Кб
024 Model 4_ Building, fitting and evaluating a hybrid embedding model.mp4 139.22Мб
024 Model 6_ Building, training and evaluating a transfer learning model for NLP.en.srt 15.71Кб
024 Model 6_ Building, training and evaluating a transfer learning model for NLP.mp4 99.03Мб
024 Putting things together with multi-class classification part 1_ Getting the data.en.srt 14.33Кб
024 Putting things together with multi-class classification part 1_ Getting the data.mp4 87.22Мб
024 Putting together what we've learned part 2 (building a regression model).en.srt 18.76Кб
024 Putting together what we've learned part 2 (building a regression model).mp4 121.37Мб
025 How to view and delete previous TensorBoard experiments.en.srt 2.93Кб
025 How to view and delete previous TensorBoard experiments.mp4 21.91Мб
025 Model 5_ Adding positional embeddings via feature engineering (overview).en.srt 10.57Кб
025 Model 5_ Adding positional embeddings via feature engineering (overview).mp4 66.23Мб
025 Multi-class classification part 2_ Becoming one with the data.en.srt 10.40Кб
025 Multi-class classification part 2_ Becoming one with the data.mp4 48.65Мб
025 Preparing subsets of data for model 7 (same as model 6 but 10% of data).en.srt 15.93Кб
025 Preparing subsets of data for model 7 (same as model 6 but 10% of data).mp4 91.64Мб
025 Putting together what we've learned part 3 (improving our regression model).en.srt 19.63Кб
025 Putting together what we've learned part 3 (improving our regression model).mp4 155.11Мб
025 Squeezing a tensor (removing all 1-dimension axes).en.srt 4.01Кб
025 Squeezing a tensor (removing all 1-dimension axes).mp4 30.20Мб
025 Writing a helper function to load and preprocessing custom images.en.srt 14.34Кб
025 Writing a helper function to load and preprocessing custom images.mp4 105.15Мб
026 Encoding the line number feature to used with Model 5.en.srt 17.32Кб
026 Encoding the line number feature to used with Model 5.mp4 113.03Мб
026 Making a prediction on a custom image with our trained CNN.en.srt 16.14Кб
026 Making a prediction on a custom image with our trained CNN.mp4 99.90Мб
026 Model 7_ Building, training and evaluating a transfer learning model on 10% data.en.srt 13.43Кб
026 Model 7_ Building, training and evaluating a transfer learning model on 10% data.mp4 100.71Мб
026 Multi-class classification part 3_ Building a multi-class classification model.en.srt 22.06Кб
026 Multi-class classification part 3_ Building a multi-class classification model.mp4 142.80Мб
026 One-hot encoding tensors.en.srt 8.35Кб
026 One-hot encoding tensors.mp4 59.72Мб
026 Preprocessing data with feature scaling part 1 (what is feature scaling_).en.srt 14.48Кб
026 Preprocessing data with feature scaling part 1 (what is feature scaling_).mp4 92.51Мб
026 Transfer Learning in TensorFlow Part 2 challenge, exercises and extra-curriculum.html 3.57Кб
027 Encoding the total lines feature to be used with Model 5.en.srt 10.58Кб
027 Encoding the total lines feature to be used with Model 5.mp4 64.28Мб
027 Fixing our data leakage issue with model 7 and retraining it.en.srt 18.01Кб
027 Fixing our data leakage issue with model 7 and retraining it.mp4 165.94Мб
027 Multi-class classification part 4_ Improving performance with normalisation.en.srt 16.89Кб
027 Multi-class classification part 4_ Improving performance with normalisation.mp4 113.41Мб
027 Multi-class CNN's part 1_ Becoming one with the data.en.srt 23.68Кб
027 Multi-class CNN's part 1_ Becoming one with the data.mp4 140.19Мб
027 Preprocessing data with feature scaling part 2 (normalising our data).en.srt 14.54Кб
027 Preprocessing data with feature scaling part 2 (normalising our data).mp4 97.18Мб
027 Trying out more tensor math operations.en.srt 6.53Кб
027 Trying out more tensor math operations.mp4 55.93Мб
028 Comparing all our modelling experiments evaluation metrics.en.srt 18.60Кб
028 Comparing all our modelling experiments evaluation metrics.mp4 115.92Мб
028 Exploring TensorFlow and NumPy's compatibility.en.srt 7.41Кб
028 Exploring TensorFlow and NumPy's compatibility.mp4 43.74Мб
028 Model 5_ Building the foundations of a tribrid embedding model.en.srt 11.92Кб
028 Model 5_ Building the foundations of a tribrid embedding model.mp4 81.89Мб
028 Multi-class classification part 5_ Comparing normalised and non-normalised data.en.srt 5.66Кб
028 Multi-class classification part 5_ Comparing normalised and non-normalised data.mp4 26.77Мб
028 Multi-class CNN's part 2_ Preparing our data (turning it into tensors).en.srt 10.40Кб
028 Multi-class CNN's part 2_ Preparing our data (turning it into tensors).mp4 72.71Мб
028 Preprocessing data with feature scaling part 3 (fitting a model on scaled data).en.srt 11.45Кб
028 Preprocessing data with feature scaling part 3 (fitting a model on scaled data).mp4 75.72Мб
029 Making sure our tensor operations run really fast on GPUs.en.srt 15.05Кб
029 Making sure our tensor operations run really fast on GPUs.mp4 110.90Мб
029 Model 5_ Completing the build of a tribrid embedding model for sequences.en.srt 18.94Кб
029 Model 5_ Completing the build of a tribrid embedding model for sequences.mp4 152.91Мб
029 Multi-class classification part 6_ Finding the ideal learning rate.en.srt 15.57Кб
029 Multi-class classification part 6_ Finding the ideal learning rate.mp4 73.33Мб
029 Multi-class CNN's part 3_ Building a multi-class CNN model.en.srt 11.14Кб
029 Multi-class CNN's part 3_ Building a multi-class CNN model.mp4 89.24Мб
029 TensorFlow Regression challenge, exercises & extra-curriculum.html 2.89Кб
029 Uploading our model's training logs to TensorBoard and comparing them.en.srt 15.95Кб
029 Uploading our model's training logs to TensorBoard and comparing them.mp4 109.34Мб
030 Multi-class classification part 7_ Evaluating our model.en.srt 17.69Кб
030 Multi-class classification part 7_ Evaluating our model.mp4 119.14Мб
030 Multi-class CNN's part 4_ Fitting a multi-class CNN model to the data.en.srt 9.34Кб
030 Multi-class CNN's part 4_ Fitting a multi-class CNN model to the data.mp4 59.66Мб
030 Saving and loading in a trained NLP model with TensorFlow.en.srt 14.07Кб
030 Saving and loading in a trained NLP model with TensorFlow.mp4 104.88Мб
030 TensorFlow Fundamentals challenge, exercises & extra-curriculum.html 2.86Кб
030 Visually inspecting the architecture of our tribrid embedding model.en.srt 14.38Кб
030 Visually inspecting the architecture of our tribrid embedding model.mp4 107.80Мб
031 Creating multi-level data input pipelines for Model 5 with the tf.data API.en.srt 11.17Кб
031 Creating multi-level data input pipelines for Model 5 with the tf.data API.mp4 99.16Мб
031 Downloading a pretrained model and preparing data to investigate predictions.en.srt 17.18Кб
031 Downloading a pretrained model and preparing data to investigate predictions.mp4 131.00Мб
031 Multi-class classification part 8_ Creating a confusion matrix.en.srt 6.95Кб
031 Multi-class classification part 8_ Creating a confusion matrix.mp4 40.52Мб
031 Multi-class CNN's part 5_ Evaluating our multi-class CNN model.en.srt 7.07Кб
031 Multi-class CNN's part 5_ Evaluating our multi-class CNN model.mp4 41.04Мб
031 Python + Machine Learning Monthly.html 1.66Кб
032 Bringing SkimLit to life!!! (fitting and evaluating Model 5).en.srt 15.49Кб
032 Bringing SkimLit to life!!! (fitting and evaluating Model 5).mp4 115.78Мб
032 LinkedIn Endorsements.html 2.93Кб
032 Multi-class classification part 9_ Visualising random model predictions.en.srt 14.12Кб
032 Multi-class classification part 9_ Visualising random model predictions.mp4 65.68Мб
032 Multi-class CNN's part 6_ Trying to fix overfitting by removing layers.en.srt 17.13Кб
032 Multi-class CNN's part 6_ Trying to fix overfitting by removing layers.mp4 129.83Мб
032 Visualising our model's most wrong predictions.en.srt 12.80Кб
032 Visualising our model's most wrong predictions.mp4 77.07Мб
033 Comparing the performance of all of our modelling experiments.en.srt 12.89Кб
033 Comparing the performance of all of our modelling experiments.mp4 77.95Мб
033 Making and visualising predictions on the test dataset.en.srt 12.14Кб
033 Making and visualising predictions on the test dataset.mp4 76.72Мб
033 Multi-class CNN's part 7_ Trying to fix overfitting with data augmentation.en.srt 17.04Кб
033 Multi-class CNN's part 7_ Trying to fix overfitting with data augmentation.mp4 121.02Мб
033 What _patterns_ is our model learning_.en.srt 21.67Кб
033 What _patterns_ is our model learning_.mp4 127.95Мб
034 Multi-class CNN's part 8_ Things you could do to improve your CNN model.en.srt 6.43Кб
034 Multi-class CNN's part 8_ Things you could do to improve your CNN model.mp4 43.29Мб
034 Saving, loading & testing our best performing model.en.srt 10.42Кб
034 Saving, loading & testing our best performing model.mp4 83.63Мб
034 TensorFlow classification challenge, exercises & extra-curriculum.html 3.40Кб
034 Understanding the concept of the speed_score tradeoff.en.srt 19.39Кб
034 Understanding the concept of the speed_score tradeoff.mp4 130.63Мб
035 Congratulations and your challenge before heading to the next module.en.srt 17.88Кб
035 Congratulations and your challenge before heading to the next module.mp4 135.69Мб
035 Multi-class CNN's part 9_ Making predictions with our model on custom images.en.srt 12.47Кб
035 Multi-class CNN's part 9_ Making predictions with our model on custom images.mp4 118.98Мб
035 NLP Fundamentals in TensorFlow challenge, exercises and extra-curriculum.html 3.08Кб
036 Milestone Project 2 (SkimLit) challenge, exercises and extra-curriculum.html 2.46Кб
036 Saving and loading our trained CNN model.en.srt 9.44Кб
036 Saving and loading our trained CNN model.mp4 69.28Мб
037 TensorFlow computer vision and CNNs challenge, exercises & extra-curriculum.html 3.44Кб
1 38б
10 420.84Кб
100 78.21Кб
101 871.47Кб
102 1.01Мб
103 1.12Мб
104 1.42Мб
105 1.64Мб
106 141.06Кб
107 592.13Кб
108 1.04Мб
109 690.11Кб
11 329.22Кб
110 1.15Мб
111 1.29Мб
112 1.45Мб
113 1.93Мб
114 101.61Кб
115 500.69Кб
116 561.93Кб
117 864.35Кб
118 998.02Кб
119 95.36Кб
12 1.58Мб
120 205.27Кб
121 835.74Кб
122 1.16Мб
123 1.36Мб
124 1.38Мб
125 1.50Мб
126 1.58Мб
127 256.63Кб
128 389.02Кб
129 403.55Кб
13 1.90Мб
130 585.56Кб
131 1.11Мб
132 1.94Мб
133 839.36Кб
134 1.49Мб
135 1.71Мб
136 1.75Мб
137 370.42Кб
138 760.67Кб
139 951.41Кб
14 723.09Кб
140 1.08Мб
141 1.36Мб
142 1.77Мб
143 1.84Мб
144 141.64Кб
145 434.51Кб
146 637.72Кб
147 774.58Кб
148 904.34Кб
149 1003.84Кб
15 56.98Кб
150 1.00Мб
151 1.55Мб
152 1.85Мб
153 337.61Кб
154 411.95Кб
155 634.83Кб
156 799.17Кб
157 1.44Мб
158 1.44Мб
159 1.44Мб
16 227.09Кб
160 20.02Кб
161 716.66Кб
162 871.61Кб
163 1.71Мб
164 1.83Мб
165 172.59Кб
166 208.46Кб
167 381.83Кб
168 1.59Мб
169 1.70Мб
17 1.45Мб
170 111.70Кб
171 374.43Кб
172 448.05Кб
173 1.34Мб
174 1.38Мб
175 1.59Мб
176 1.03Мб
177 1.13Мб
178 1.31Мб
179 49.68Кб
18 1.69Мб
180 72.78Кб
181 257.30Кб
182 495.17Кб
183 945.69Кб
184 952.51Кб
185 1.22Мб
186 1.28Мб
187 1.35Мб
188 1.79Мб
189 291.54Кб
19 231.26Кб
190 358.95Кб
191 1019.77Кб
192 1.78Мб
193 685.31Кб
194 1.07Мб
195 1.19Мб
196 1.29Мб
197 1.71Мб
198 626.59Кб
199 1014.99Кб
2 13б
20 400.43Кб
200 1.15Мб
201 1.35Мб
202 1.63Мб
203 1.72Мб
204 1.85Мб
205 621.97Кб
206 739.32Кб
207 855.64Кб
208 858.98Кб
209 1.02Мб
21 1.40Мб
210 1.85Мб
211 92.68Кб
212 304.50Кб
213 1.06Мб
214 1.16Мб
215 1.21Мб
216 1.77Мб
217 1.77Мб
218 1.92Мб
219 199.20Кб
22 124.10Кб
220 302.71Кб
221 323.97Кб
222 1.72Мб
223 1.73Мб
224 186.67Кб
225 584.98Кб
226 1.33Мб
227 1.68Мб
228 1.88Мб
229 1.91Мб
23 916.43Кб
230 549.24Кб
231 1.21Мб
232 1.54Мб
233 1.69Мб
234 1.94Мб
235 135.71Кб
236 289.38Кб
237 352.02Кб
238 728.95Кб
239 1021.53Кб
24 945.47Кб
240 1.00Мб
241 1.97Мб
242 441.00Кб
243 610.43Кб
244 1.32Мб
245 1.91Мб
246 76.55Кб
247 436.54Кб
248 940.68Кб
249 60.42Кб
25 1.05Мб
250 511.79Кб
251 888.74Кб
252 1016.88Кб
253 1.29Мб
254 1.46Мб
255 1.66Мб
256 1.35Мб
257 180.74Кб
258 401.52Кб
259 796.25Кб
26 1.09Мб
260 1.14Мб
261 195.35Кб
262 269.55Кб
263 722.88Кб
264 1.44Мб
265 1.69Мб
266 1.79Мб
267 490.33Кб
268 985.06Кб
269 1.39Мб
27 1.35Мб
270 1.44Мб
271 1.48Мб
272 113.15Кб
273 1.86Мб
274 1.23Мб
275 1.83Мб
276 1.93Мб
277 1.18Мб
278 1.69Мб
279 926.97Кб
28 1.62Мб
280 1.51Мб
281 1.80Мб
282 631.48Кб
283 703.09Кб
284 1.69Мб
285 432.18Кб
286 463.15Кб
287 549.52Кб
288 679.13Кб
289 1.14Мб
29 389.08Кб
290 1.23Мб
291 1.55Мб
292 1.63Мб
293 1.83Мб
294 498.26Кб
295 559.37Кб
296 773.93Кб
297 1.19Мб
298 90.71Кб
299 723.90Кб
3 11б
30 1.39Мб
300 339.93Кб
301 579.58Кб
302 261.51Кб
303 16.26Кб
304 132.05Кб
305 670.13Кб
306 684.87Кб
307 623.51Кб
308 1.13Мб
309 748.12Кб
31 1.97Мб
319 pandas-anatomy-of-a-dataframe.png 333.24Кб
32 69.27Кб
322 car-sales.csv 369б
324 car-sales-missing-data.csv 287б
325 pandas-anatomy-of-a-dataframe.png 333.24Кб
33 498.79Кб
34 1.20Мб
345 numpy-images.zip 7.27Мб
35 1.81Мб
36 801.33Кб
37 1.94Мб
38 1.23Мб
39 322.23Кб
4 185.54Кб
40 361.32Кб
41 392.00Кб
42 1.17Мб
43 1.06Мб
44 1.16Мб
45 1.33Мб
46 1.76Мб
47 1.76Мб
48 1.81Мб
49 1.82Мб
5 1.21Мб
50 232.10Кб
51 467.04Кб
52 955.14Кб
53 1.00Мб
54 1.37Мб
55 1.57Мб
56 178.64Кб
57 221.34Кб
58 52.12Кб
59 766.96Кб
6 1.97Мб
60 523.70Кб
61 722.23Кб
62 1.32Мб
63 1.97Мб
64 781.82Кб
65 1011.34Кб
66 648.66Кб
67 1007.62Кб
68 656.03Кб
69 883.01Кб
7 1.61Мб
70 1.02Мб
71 557.29Кб
72 619.21Кб
73 1.16Мб
74 1.29Мб
75 81.40Кб
76 229.96Кб
77 415.21Кб
78 1.06Мб
79 1.89Мб
8 153.18Кб
80 607.14Кб
81 991.24Кб
82 1.27Мб
83 1.10Мб
84 1.43Мб
85 420.75Кб
86 468.42Кб
87 539.67Кб
88 675.33Кб
89 1.70Мб
9 198.20Кб
90 78.12Кб
91 205.67Кб
92 217.52Кб
93 299.35Кб
94 860.68Кб
95 1.05Мб
96 1.51Мб
97 1.53Мб
98 1.80Мб
99 1.92Мб
external-assets-links.txt 113б
external-assets-links.txt 94б
external-assets-links.txt 130б
external-assets-links.txt 108б
external-assets-links.txt 135б
external-assets-links.txt 207б
external-assets-links.txt 130б
external-assets-links.txt 1.10Кб
external-assets-links.txt 1.02Кб
external-assets-links.txt 149б
TutsNode.com.txt 63б
Статистика распространения по странам
США (US) 3
Россия (RU) 1
Индонезия (ID) 1
Франция (FR) 1
Индия (IN) 1
Всего 7
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент