Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
[TGx]Downloaded from torrentgalaxy.to .txt |
585б |
0 |
69.47Кб |
1 |
100.54Кб |
10 |
419.96Кб |
10 - 02 Type Conversion Examples.mp4 |
59.84Мб |
1 - 01 Introduction To Recommender Systems.mp4 |
33.42Мб |
11 |
627.06Кб |
11 - 03 Operators.mp4 |
161.46Мб |
12 |
584.64Кб |
12 - 04 Collections.mp4 |
41.63Мб |
13 |
735.22Кб |
13 - 05 List Examples.mp4 |
109.75Мб |
14 |
572.12Кб |
14 - 06 Tuples Examples.mp4 |
52.40Мб |
15 |
94.24Кб |
15 - 07 Dictionaries Examples.mp4 |
87.28Мб |
16 |
402.52Кб |
16 - 09 Conditionals.mp4 |
38.05Мб |
17 |
494.07Кб |
17 - 10 If Statement Examples.mp4 |
118.03Мб |
18 |
87.79Кб |
18 - 11 Loops.mp4 |
167.03Мб |
19 |
1023.73Кб |
19 - 12 Functions.mp4 |
86.44Мб |
2 |
557.19Кб |
20 |
1006.55Кб |
20 - 13 Parameters And Return Values Examples.mp4 |
78.52Мб |
2 - 02 How To Evaluate Recommender Systems.mp4 |
51.03Мб |
21 |
366.33Кб |
21 - 14 Classes And Objects.mp4 |
223.26Мб |
22 |
120.37Кб |
22 - 15 Inheritance Examples.mp4 |
130.64Мб |
23 |
26.11Кб |
23 - 16 Static Members Examples.mp4 |
78.61Мб |
24 |
474.33Кб |
24 - 17 Summary And Outro.mp4 |
20.84Мб |
25 |
162.35Кб |
25 - Source Code.html |
27б |
26 |
994.02Кб |
26 - 01 Load Data As Pandas Dataframes.mp4 |
95.71Мб |
27 |
410.50Кб |
27 - 02 Merge Movies And Ratings Dataframes.mp4 |
58.60Мб |
28 |
592.01Кб |
28 - 03 Build A Correlation Matrix.mp4 |
45.47Мб |
29 |
802.22Кб |
29 - 04 Test The Recommender.mp4 |
49.61Мб |
3 |
363.55Кб |
30 |
212.39Кб |
3 - 03 Content Based Recommendations.mp4 |
17.88Мб |
30 - Source Files.html |
27б |
30 - SourceFiles.zip |
1.65Мб |
31 |
212.44Кб |
31 - 00 Project Preview.mp4 |
19.30Мб |
32 |
930.71Кб |
32 - 00A What Is Machine Learning.mp4 |
27.70Мб |
33 |
892.63Кб |
33 - 00B Types Of Machine Learning Models.mp4 |
52.53Мб |
34 |
486.30Кб |
34 - 00C What Is Supervised Learning.mp4 |
59.03Мб |
35 |
613.16Кб |
35 - 01 Load Data Into Dataframes.mp4 |
49.77Мб |
36 |
991.54Кб |
36 - 02 Find A Recommendation Based On Different Movie Features.mp4 |
104.47Мб |
37 |
230.91Кб |
37 - 03 Calculate Distance Between Users.mp4 |
34.97Мб |
38 |
396.26Кб |
38 - 04 Find Similar Users With Euclidean Distance.mp4 |
47.44Мб |
39 |
121.31Кб |
39 - Source Files.html |
27б |
39 - SourceFiles.zip |
1.66Мб |
4 |
142.25Кб |
40 |
572.71Кб |
40 - 05 Define Similarity Between Users.mp4 |
37.19Мб |
4 - 04 Neighborhood Based Collaborative Filtering.mp4 |
14.34Мб |
41 |
852.13Кб |
41 - 06 Find Top Similar Users.mp4 |
47.17Мб |
42 |
539.83Кб |
42 - 07 Recommend A Movie Based On User Similarity.mp4 |
42.77Мб |
43 |
315.54Кб |
43 - Source Files.html |
27б |
43 - SourceFiles.zip |
851.30Кб |
44 |
237.43Кб |
44 - 08A What Is K Nearest Neighbours.mp4 |
37.61Мб |
45 |
806.83Кб |
45 - 08B Recommend A Movie With A K Nearest Neighbors Classifier.mp4 |
70.88Мб |
46 |
121.07Кб |
46 - 09 Create A Sample User For Testing.mp4 |
55.09Мб |
47 |
377.59Кб |
47 - 10 Recommend Movies To Sample User.mp4 |
20.54Мб |
48 |
203.85Кб |
48 - Source Files.html |
27б |
48 - SourceFiles.zip |
852.74Кб |
49 |
550.28Кб |
49 - 00 Project Preview.mp4 |
14.23Мб |
5 |
257.46Кб |
50 |
401.70Кб |
50 - 01 Load Data For Machine Learning.mp4 |
105.86Мб |
51 |
975.41Кб |
51 - 02 Process Data For Machine Learning.mp4 |
77.91Мб |
52 |
398.42Кб |
52 - 03 Build Categories.mp4 |
55.79Мб |
53 |
830.73Кб |
53 - Source Files.html |
27б |
53 - SourceFiles.zip |
889.97Кб |
54 |
144.14Кб |
54 - 04A Regression Introduction.mp4 |
35.86Мб |
55 |
30.27Кб |
55 - 04B What Is Regression.mp4 |
85.08Мб |
56 |
123.92Кб |
56 - 04C Build A Ridge Regression Model.mp4 |
72.64Мб |
57 |
589.37Кб |
57 - 05 Evaluate Model Error.mp4 |
48.88Мб |
58 |
154.19Кб |
58 - 06 Visualize Top Features Affecting Rating.mp4 |
58.42Мб |
59 |
304.96Кб |
59 - 07 Build A Lasso Regression Model.mp4 |
55.79Мб |
5 - Source Files.html |
27б |
5 - SourceFiles.zip |
4.60Мб |
6 |
565.84Кб |
60 |
160.52Кб |
60 - 08 Visualize Top Features From Lasso Regression.mp4 |
42.21Мб |
6 - 00 About Mammoth Interactive.mp4 |
8.64Мб |
61 |
475.86Кб |
61 - 09 Determine Which Model Is Best.mp4 |
17.02Мб |
62 |
901.13Кб |
62 - Source Files.html |
27б |
62 - SourceFiles.zip |
1.84Мб |
63 |
718.16Кб |
63 - 01 Load Data For A Neural Network.mp4 |
62.97Мб |
64 |
125.28Кб |
64 - 02 Build A Singular Value Decomposition Algorithm.mp4 |
73.02Мб |
65 |
1001.09Кб |
65 - 03 Calculate Model Error.mp4 |
62.54Мб |
66 |
677.11Кб |
66 - Source Files.html |
27б |
66 - SourceFIles.zip |
1.33Мб |
67 |
787.23Кб |
67 - 01 What Is Deep Learning.mp4 |
34.88Мб |
68 |
990.82Кб |
68 - 02 What Is A Neural Network.mp4 |
39.61Мб |
69 |
369.65Кб |
69 - 03 What Is Unsupervised Learning.mp4 |
40.80Мб |
7 |
143.18Кб |
70 |
413.21Кб |
70 - 04 Build A Neural Network.mp4 |
95.59Мб |
7 - 01 How To Learn Online Effectively.mp4 |
74.00Мб |
71 |
163.04Кб |
71 - 05 Train The Neural Network.mp4 |
87.43Мб |
72 |
350.89Кб |
72 - Source File.html |
27б |
72 - SourceFiles.zip |
683.92Кб |
73 |
355.73Кб |
73 - 00 Project Preview.mp4 |
14.03Мб |
74 |
359.68Кб |
74 - 01 Load Data Into Dataframes.mp4 |
44.69Мб |
75 - 02 Explore Data In Our Dataset.mp4 |
20.12Мб |
76 - 03 Build A Rating Pivot Table.mp4 |
30.85Мб |
77 - 04 Calculate Average Rating Of A Movie.mp4 |
41.88Мб |
78 - 05 Find Ratings For A Movie In Every Slice.mp4 |
40.46Мб |
79 - 06 Find Rating Averages For Every Movie In The Slice.mp4 |
54.13Мб |
8 |
537.80Кб |
80 - 07 Build An Average Ratings Column.mp4 |
91.39Мб |
8 - 00 Intro To Course And Python.mp4 |
57.22Мб |
81 - Source Files.html |
27б |
81 - SourceFiles.zip |
1.65Мб |
9 |
296.22Кб |
9 - 01 Variables.mp4 |
106.45Мб |
TutsNode.net.txt |
63б |