Общая информация
Название [CourseClub.NET] UDACITY - NLP Foundations Nanodegree
Тип
Размер 1.05Гб
Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[CourseClub.NET].url 123б
[DesireCourse.Com].url 51б
007. When do MLPs (not) work well .html 7.29Кб
008. Mini Project Training an MLP on MNIST.html 10.23Кб
01. Additional NLP Lessons.html 5.21Кб
01. AIND NLP L2 HS 04 Modeling V2-RGrGi-eKhOQ.en.vtt 1.14Кб
01. AIND NLP L2 HS 04 Modeling V2-RGrGi-eKhOQ.mp4 2.86Мб
01. AIND NLP L2 HS 04 Modeling V2-RGrGi-eKhOQ.zh-CN.vtt 1.03Кб
01. Feature Extraction.html 4.67Кб
01. Feature Extraction-Bd6TJB8eVLQ.en.vtt 1.10Кб
01. Feature Extraction-Bd6TJB8eVLQ.mp4 2.26Мб
01. Feature Extraction-Bd6TJB8eVLQ.zh-CN.vtt 970б
01. Intro.html 7.56Кб
01. Intro.html 5.61Кб
01. Intro.html 6.09Кб
01. Introducing Alexis.html 7.14Кб
01. Introducing Alexis-38ExGpdyvJI.en.vtt 694б
01. Introducing Alexis-38ExGpdyvJI.mp4 2.05Мб
01. Introducing Alexis-38ExGpdyvJI.pt-BR.vtt 599б
01. Introducing Alexis-38ExGpdyvJI.zh-CN.vtt 615б
01. Introducing Jay.html 5.22Кб
01. Introducing Jay Alammar.html 5.79Кб
01. Introducing Jeremy.html 8.39Кб
01. Introducing Jeremy-U7RmFpVevis.en.vtt 875б
01. Introducing Jeremy-U7RmFpVevis.mp4 2.52Мб
01. Introducing Jeremy-U7RmFpVevis.zh-CN.vtt 804б
01. Introduction.html 8.98Кб
01. Introduction-ZWRZvOXiC28.en.vtt 3.53Кб
01. Introduction-ZWRZvOXiC28.mp4 12.77Мб
01. Introduction-ZWRZvOXiC28.zh-CN.vtt 3.10Кб
01. Intro to LSTM.html 5.83Кб
01. Modeling.html 4.62Кб
01. Natural Language Processing-UQBxJzoCp-I.en.vtt 1.17Кб
01. Natural Language Processing-UQBxJzoCp-I.mp4 3.39Мб
01. Natural Language Processing-UQBxJzoCp-I.zh-CN.vtt 1.03Кб
01. NLP and Pipelines.html 4.40Кб
01. NLP Overview.html 5.28Кб
01. Overview.html 4.79Кб
01. Overview.html 5.03Кб
01. Text Processing.html 5.11Кб
01. Text Processing-6LO6I5M18PQ.en.vtt 1.18Кб
01. Text Processing-6LO6I5M18PQ.mp4 1.77Мб
01. Text Processing-6LO6I5M18PQ.zh-CN.vtt 1.06Кб
01. Welcome to NLP-g-AlFF61p0I.en.vtt 1.64Кб
01. Welcome to NLP-g-AlFF61p0I.mp4 4.97Мб
01. Welcome to NLP-g-AlFF61p0I.zh-CN.vtt 1.49Кб
02. Applications of CNNs.html 12.27Кб
02. Applications of CNNs-HrYNL_1SV2Y.en.vtt 5.37Кб
02. Applications of CNNs-HrYNL_1SV2Y.mp4 17.70Мб
02. Applications of CNNs-HrYNL_1SV2Y.pt-BR.vtt 5.66Кб
02. Applications of CNNs-HrYNL_1SV2Y.zh-CN.vtt 4.70Кб
02. Bag of Words.html 4.64Кб
02. Bag Of Words-A7M1z8yLl0w.en.vtt 4.72Кб
02. Bag Of Words-A7M1z8yLl0w.mp4 4.01Мб
02. Bag Of Words-A7M1z8yLl0w.zh-CN.vtt 4.13Кб
02. Classification Problems 1.html 10.30Кб
02. Classsification Example-Dh625piH7Z0.en.vtt 2.70Кб
02. Classsification Example-Dh625piH7Z0.mp4 2.07Мб
02. Classsification Example-Dh625piH7Z0.pt-BR.vtt 2.51Кб
02. Classsification Example-Dh625piH7Z0.zh-CN.vtt 2.37Кб
02. Coding Exercises.html 5.51Кб
02. Embeddings Intro.html 6.48Кб
02. Getting Started.html 4.55Кб
02. How NLP Pipelines Work.html 4.40Кб
02. Installing TensorFlow.html 7.98Кб
02. Introduction.html 4.97Кб
02. Introduction-erwnzFD7AeE.en.vtt 2.34Кб
02. Introduction-erwnzFD7AeE.mp4 2.22Мб
02. Introduction-erwnzFD7AeE.pt-BR.vtt 2.17Кб
02. Introduction-erwnzFD7AeE.zh-CN.vtt 2.01Кб
02. Introduction to GPU Workspaces.html 14.95Кб
02. IntroToRNNs Render-64HSG6HAfEI.en-US.vtt 4.46Кб
02. IntroToRNNs Render-64HSG6HAfEI.mp4 3.99Мб
02. IntroToRNNs Render-64HSG6HAfEI.pt.vtt 4.38Кб
02. IntroToRNNs Render-64HSG6HAfEI.zh-CN.vtt 3.88Кб
02. Jay's Introduction-HPOzAlXhuxQ.en.vtt 5.72Кб
02. Jay's Introduction-HPOzAlXhuxQ.mp4 5.81Мб
02. Jay's Introduction-HPOzAlXhuxQ.pt-BR.vtt 5.58Кб
02. Jay's Introduction-HPOzAlXhuxQ.zh-CN.vtt 5.15Кб
02. Jay Introduction.html 5.03Кб
02. Language Model.html 173.32Кб
02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.en.vtt 1.74Кб
02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.mp4 1.28Мб
02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.zh-CN.vtt 1.53Кб
02. Review of RNNs.html 5.80Кб
02. RNN vs LSTM.html 5.06Кб
02. RNN Vs LSTM-70MgF-IwAr8.en.vtt 4.71Кб
02. RNN Vs LSTM-70MgF-IwAr8.mp4 3.58Мб
02. RNN Vs LSTM-70MgF-IwAr8.pt-BR.vtt 4.24Кб
02. RNN Vs LSTM-70MgF-IwAr8.zh-CN.vtt 4.22Кб
02. Section 1 Introduction-_zo6RiwmDCk.en.vtt 2.16Кб
02. Section 1 Introduction-_zo6RiwmDCk.mp4 4.72Мб
02. Section 1 Introduction-_zo6RiwmDCk.zh-CN.vtt 1.78Кб
02. Section 1 Motivation for RNNs.html 8.22Кб
02. Sentiment Prediction-uGN3rZJRiMY.en.vtt 8.66Кб
02. Sentiment Prediction-uGN3rZJRiMY.mp4 11.25Мб
02. Sentiment Prediction-uGN3rZJRiMY.pt-BR.vtt 7.33Кб
02. Sentiment Prediction-uGN3rZJRiMY.zh-CN.vtt 8.00Кб
02. Sentiment RNN.html 4.66Кб
02. Structured Languages.html 8.23Кб
02. Structured Languages-NsmqUIHlk6U.en.vtt 1.79Кб
02. Structured Languages-NsmqUIHlk6U.mp4 5.36Мб
02. Structured Languages-NsmqUIHlk6U.zh-CN.vtt 1.51Кб
02-guide-how-transfer-learning-v3-01.png 251.26Кб
02-guide-how-transfer-learning-v3-02.png 219.27Кб
02-guide-how-transfer-learning-v3-03.png 228.93Кб
02-guide-how-transfer-learning-v3-04.png 255.16Кб
02-guide-how-transfer-learning-v3-05.png 232.52Кб
02-guide-how-transfer-learning-v3-06.png 259.12Кб
02-guide-how-transfer-learning-v3-07.png 233.30Кб
02-guide-how-transfer-learning-v3-08.png 241.57Кб
02-guide-how-transfer-learning-v3-09.png 228.05Кб
02-guide-how-transfer-learning-v3-10.png 241.76Кб
03. Applications.html 5.01Кб
03. Applications seq2seq-tDJBDwriJYQ.en.vtt 2.63Кб
03. Applications seq2seq-tDJBDwriJYQ.mp4 2.48Мб
03. Applications seq2seq-tDJBDwriJYQ.pt-BR.vtt 2.50Кб
03. Applications seq2seq-tDJBDwriJYQ.zh-CN.vtt 2.41Кб
03. Basics of LSTM.html 5.07Кб
03. Capturing Text Data.html 5.77Кб
03. Capturing Text Data-Z4mnMN1ApG4.en.vtt 1.77Кб
03. Capturing Text Data-Z4mnMN1ApG4.mp4 2.37Мб
03. Capturing Text Data-Z4mnMN1ApG4.zh-CN.vtt 1.57Кб
03. Classification Example-46PywnGa_cQ.en.vtt 1.76Кб
03. Classification Example-46PywnGa_cQ.mp4 1.62Мб
03. Classification Example-46PywnGa_cQ.pt-BR.vtt 1.60Кб
03. Classification Example-46PywnGa_cQ.zh-CN.vtt 1.65Кб
03. Classification Problems 2.html 9.17Кб
03. Data Preprocessing.html 4.66Кб
03. Data Preprocessing-h4-LwZU9_k8.en.vtt 5.33Кб
03. Data Preprocessing-h4-LwZU9_k8.mp4 6.86Мб
03. Data Preprocessing-h4-LwZU9_k8.pt-BR.vtt 4.56Кб
03. Data Preprocessing-h4-LwZU9_k8.zh-CN.vtt 4.45Кб
03. Grammar.html 7.00Кб
03. Grammar-Jw3dA7xmoQ4.en.vtt 727б
03. Grammar-Jw3dA7xmoQ4.mp4 2.14Мб
03. Grammar-Jw3dA7xmoQ4.zh-CN.vtt 617б
03. Hello, Tensor World!.html 8.14Кб
03. How Computers Interpret Images.html 8.37Кб
03. How Computers Interpret Images-V4f6p6uRhu8.en.vtt 5.52Кб
03. How Computers Interpret Images-V4f6p6uRhu8.mp4 6.18Мб
03. How Computers Interpret Images-V4f6p6uRhu8.pt-BR.vtt 5.95Кб
03. How Computers Interpret Images-V4f6p6uRhu8.zh-CN.vtt 4.91Кб
03. Implementing Word2Vec.html 5.03Кб
03. Implementing Word2Vec-7M431_f9HgE.en.vtt 16.86Кб
03. Implementing Word2Vec-7M431_f9HgE.mp4 23.33Мб
03. Implementing Word2Vec-7M431_f9HgE.pt-BR.vtt 17.23Кб
03. Implementing Word2Vec-7M431_f9HgE.zh-CN.vtt 14.27Кб
03. Learning Rate.html 5.52Кб
03. Learning Rate-HLMjeDez7ps.en.vtt 11.68Кб
03. Learning Rate-HLMjeDez7ps.mp4 9.62Мб
03. Learning Rate-HLMjeDez7ps.pt-BR.vtt 10.29Кб
03. Learning Rate-HLMjeDez7ps.zh-CN.vtt 10.11Кб
03. LSTM Basics-gjb68a4XsqE.en.vtt 5.21Кб
03. LSTM Basics-gjb68a4XsqE.mp4 4.03Мб
03. LSTM Basics-gjb68a4XsqE.pt-BR.vtt 5.06Кб
03. LSTM Basics-gjb68a4XsqE.zh-CN.vtt 4.59Кб
03. LSTMs-RYbSHogZetc.en.vtt 7.07Кб
03. LSTMs-RYbSHogZetc.mp4 6.87Мб
03. LSTMs-RYbSHogZetc.pt.vtt 7.39Кб
03. LSTMs-RYbSHogZetc.zh-CN.vtt 6.46Кб
03. Motivation for RNNs.html 9.23Кб
03. Motivation for RNNs-vPhD02WxMk8.en.vtt 6.16Кб
03. Motivation for RNNs-vPhD02WxMk8.mp4 5.73Мб
03. Motivation for RNNs-vPhD02WxMk8.zh-CN.vtt 5.51Кб
03. NLP Machine Translation Workspace.html 5.01Кб
03. Review of LSTMs.html 5.48Кб
03. Sentiment Analysis.html 8.24Кб
03. Tasks.html 7.29Кб
03. Text Processing.html 4.59Кб
03. Text Processing-pqheVyctkNQ.en.vtt 2.63Кб
03. Text Processing-pqheVyctkNQ.mp4 2.96Мб
03. Text Processing-pqheVyctkNQ.zh-CN.vtt 2.30Кб
03. TF-IDF.html 4.60Кб
03. TF-IDF-XZBiBIRcACE.en.vtt 2.38Кб
03. TF-IDF-XZBiBIRcACE.mp4 2.05Мб
03. TF-IDF-XZBiBIRcACE.zh-CN.vtt 2.07Кб
04. Architecture encoder decoder-dkHdEAJnV_w.en.vtt 5.45Кб
04. Architecture encoder decoder-dkHdEAJnV_w.mp4 4.49Мб
04. Architecture encoder decoder-dkHdEAJnV_w.pt-BR.vtt 4.92Кб
04. Architecture encoder decoder-dkHdEAJnV_w.zh-CN.vtt 4.82Кб
04. Architecture of LSTM.html 5.11Кб
04. Architectures.html 5.05Кб
04. Bookworm (Optional).html 4.32Кб
04. Character-Wise RNN-dXl3eWCGLdU.en.vtt 3.33Кб
04. Character-Wise RNN-dXl3eWCGLdU.mp4 2.88Мб
04. Character-Wise RNN-dXl3eWCGLdU.pt-BR.vtt 3.66Кб
04. Character-Wise RNN-dXl3eWCGLdU.zh-CN.vtt 3.04Кб
04. Character-wise RNNs.html 5.56Кб
04. Creating Testing Sets.html 4.99Кб
04. Creating Testing Sets-BRBbrNLz1ho.en.vtt 2.02Кб
04. Creating Testing Sets-BRBbrNLz1ho.mp4 2.13Мб
04. Creating Testing Sets-BRBbrNLz1ho.pt-BR.vtt 1.74Кб
04. Creating Testing Sets-BRBbrNLz1ho.zh-CN.vtt 1.68Кб
04. Feature Extraction.html 4.64Кб
04. Feature Extraction-UgENzCmfFWE.en.vtt 3.82Кб
04. Feature Extraction-UgENzCmfFWE.mp4 3.47Мб
04. Feature Extraction-UgENzCmfFWE.zh-CN.vtt 3.34Кб
04. Learning Rate.html 6.99Кб
04. Linear Boundaries.html 9.85Кб
04. Linear Boundaries-X-uMlsBi07k.en.vtt 3.85Кб
04. Linear Boundaries-X-uMlsBi07k.mp4 3.85Мб
04. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt 3.67Кб
04. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt 3.36Кб
04. LSTM Architecture-ycwthhdx8ws.en.vtt 1.49Кб
04. LSTM Architecture-ycwthhdx8ws.mp4 1.07Мб
04. LSTM Architecture-ycwthhdx8ws.pt-BR.vtt 1.46Кб
04. LSTM Architecture-ycwthhdx8ws.zh-CN.vtt 1.34Кб
04. MLPs for Image Classification.html 7.64Кб
04. MLPs For Image Classification-TIFStebu530.en.vtt 3.82Кб
04. MLPs For Image Classification-TIFStebu530.mp4 4.40Мб
04. MLPs For Image Classification-TIFStebu530.pt-BR.vtt 4.06Кб
04. MLPs For Image Classification-TIFStebu530.zh-CN.vtt 3.42Кб
04. One-Hot Encoding.html 4.66Кб
04. One-Hot Encoding-a0j1CDXFYZI.en.vtt 1.40Кб
04. One-Hot Encoding-a0j1CDXFYZI.mp4 1.08Мб
04. One-Hot Encoding-a0j1CDXFYZI.zh-CN.vtt 1.21Кб
04. Quiz Read Text Files.html 7.24Кб
04. Quiz TensorFlow Linear Function.html 20.97Кб
04. Subsampling Solution.html 5.02Кб
04. Subsampling Solution-MAUM_mV_lj8.en.vtt 5.99Кб
04. Subsampling Solution-MAUM_mV_lj8.mp4 9.65Мб
04. Subsampling Solution-MAUM_mV_lj8.pt-BR.vtt 6.27Кб
04. Subsampling Solution-MAUM_mV_lj8.zh-CN.vtt 5.04Кб
04. Topic Modeling.html 17.29Кб
04. Unstructured Text.html 7.50Кб
04. Unstructured Text-OmwSdaec5vU.en.vtt 1.74Кб
04. Unstructured Text-OmwSdaec5vU.mp4 4.63Мб
04. Unstructured Text-OmwSdaec5vU.zh-CN.vtt 1.55Кб
04. Vanilla learning and structured input-oAt0eYD5_Tc.en.vtt 6.63Кб
04. Vanilla learning and structured input-oAt0eYD5_Tc.mp4 5.78Мб
04. Vanilla learning and structured input-oAt0eYD5_Tc.zh-CN.vtt 5.92Кб
04. Vanilla supervised learners and structured input.html 8.31Кб
05. 09 Higher Dimensions-eBHunImDmWw.en.vtt 2.95Кб
05. 09 Higher Dimensions-eBHunImDmWw.mp4 2.59Мб
05. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt 2.66Кб
05. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt 2.38Кб
05. Architecture in More Depth-rdAo4MqLbEk.en.vtt 5.17Кб
05. Architecture in More Depth-rdAo4MqLbEk.mp4 5.35Мб
05. Architecture in More Depth-rdAo4MqLbEk.pt-BR.vtt 5.02Кб
05. Architecture in More Depth-rdAo4MqLbEk.zh-CN.vtt 4.56Кб
05. Architectures in More Depth.html 5.07Кб
05. Building the RNN.html 4.84Кб
05. Building The RNN 1-XTD6slf64fM.en.vtt 13.87Кб
05. Building The RNN 1-XTD6slf64fM.mp4 19.11Мб
05. Building The RNN 1-XTD6slf64fM.pt-BR.vtt 12.30Кб
05. Building The RNN 1-XTD6slf64fM.zh-CN.vtt 12.07Кб
05. Categorical Cross-Entropy.html 8.46Кб
05. Categorical Cross-Entropy-3sDYifgjFck.en.vtt 4.82Кб
05. Categorical Cross-Entropy-3sDYifgjFck.mp4 5.42Мб
05. Categorical Cross-Entropy-3sDYifgjFck.pt-BR.vtt 5.13Кб
05. Categorical Cross-Entropy-3sDYifgjFck.zh-CN.vtt 4.24Кб
05. Cleaning.html 5.55Кб
05. Cleaning-qawXp9DPV6I.en.vtt 8.29Кб
05. Cleaning-qawXp9DPV6I.mp4 19.59Мб
05. Cleaning-qawXp9DPV6I.zh-CN.vtt 7.47Кб
05. Counting Words.html 8.77Кб
05. Higher Dimensions.html 10.30Кб
05. Learn Gate-aVHVI7ovbHY.en.vtt 2.63Кб
05. Learn Gate-aVHVI7ovbHY.mp4 2.22Мб
05. Learn Gate-aVHVI7ovbHY.pt-BR.vtt 2.66Кб
05. Learn Gate-aVHVI7ovbHY.zh-CN.vtt 2.51Кб
05. Making Batches.html 4.98Кб
05. Making Batches-jx7qwdw-94k.en.vtt 4.50Кб
05. Making Batches-jx7qwdw-94k.mp4 7.73Мб
05. Making Batches-jx7qwdw-94k.pt-BR.vtt 4.51Кб
05. Making Batches-jx7qwdw-94k.zh-CN.vtt 3.77Кб
05. Minibatch Size.html 5.24Кб
05. Minibatch Size-GrrO1NFxaW8.en.vtt 5.36Кб
05. Minibatch Size-GrrO1NFxaW8.mp4 4.78Мб
05. Minibatch Size-GrrO1NFxaW8.pt-BR.vtt 4.77Кб
05. Minibatch Size-GrrO1NFxaW8.zh-CN.vtt 4.77Кб
05. Modeling.html 4.31Кб
05. Modeling-P4w_2rkxBvE.en.vtt 1.29Кб
05. Modeling-P4w_2rkxBvE.mp4 1.19Мб
05. Modeling-P4w_2rkxBvE.zh-CN.vtt 1.09Кб
05. Quiz TensorFlow Softmax.html 8.32Кб
05. Search and Ranking.html 6.18Кб
05. Section 2 Introduction-behe53793wo.en.vtt 606б
05. Section 2 Introduction-behe53793wo.mp4 1.36Мб
05. Section 2 Introduction-behe53793wo.zh-CN.vtt 528б
05. Section 2 Motivating and Modelling Recursive Sequences.html 8.27Кб
05. Sequence Batching.html 5.55Кб
05. Sequence-Batching-Z4OiyU0Cldg.en.vtt 2.09Кб
05. Sequence-Batching-Z4OiyU0Cldg.mp4 2.29Мб
05. Sequence-Batching-Z4OiyU0Cldg.pt-BR.vtt 2.33Кб
05. Sequence-Batching-Z4OiyU0Cldg.zh-CN.vtt 1.92Кб
05. The Learn Gate.html 5.64Кб
05. Word Embeddings.html 4.65Кб
05. Word Embeddings-4mM_S9L2_JQ.en.vtt 1.55Кб
05. Word Embeddings-4mM_S9L2_JQ.mp4 1.22Мб
05. Word Embeddings-4mM_S9L2_JQ.zh-CN.vtt 1.26Кб
06. Batches Solution.html 5.00Кб
06. Batches Solution-DdfR0RjSC-Q.en.vtt 2.64Кб
06. Batches Solution-DdfR0RjSC-Q.mp4 3.88Мб
06. Batches Solution-DdfR0RjSC-Q.pt-BR.vtt 2.50Кб
06. Batches Solution-DdfR0RjSC-Q.zh-CN.vtt 2.40Кб
06. Character-wise RNN Notebook.html 5.86Кб
06. Context Is Everything.html 5.77Кб
06. Context-J-4pfu2w1C0.en.vtt 2.12Кб
06. Context-J-4pfu2w1C0.mp4 4.62Мб
06. Context-J-4pfu2w1C0.zh-CN.vtt 1.97Кб
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt 5.89Кб
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4 5.13Мб
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt 5.61Кб
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt 4.98Кб
06. Forget Gate-iWxpfxLUPSU.en.vtt 1.26Кб
06. Forget Gate-iWxpfxLUPSU.mp4 1.04Мб
06. Forget Gate-iWxpfxLUPSU.pt-BR.vtt 1.33Кб
06. Forget Gate-iWxpfxLUPSU.zh-CN.vtt 1.12Кб
06. How do we model an ordered sequence-LYcB8iV2bGE.en.vtt 5.53Кб
06. How do we model an ordered sequence-LYcB8iV2bGE.mp4 5.94Мб
06. How do we model an ordered sequence-LYcB8iV2bGE.zh-CN.vtt 4.97Кб
06. Machine Translation.html 19.67Кб
06. Model Validation in Keras.html 7.64Кб
06. Model Validation in Keras-002jNXSM6CU.en.vtt 5.51Кб
06. Model Validation in Keras-002jNXSM6CU.mp4 5.20Мб
06. Model Validation in Keras-002jNXSM6CU.pt-BR.vtt 6.07Кб
06. Model Validation in Keras-002jNXSM6CU.zh-CN.vtt 4.74Кб
06. Motivating and modeling recursive sequences.html 8.30Кб
06. Normalization.html 5.80Кб
06. Normalization-eOV2UUY8vtM.en.vtt 3.24Кб
06. Normalization-eOV2UUY8vtM.mp4 3.13Мб
06. Normalization-eOV2UUY8vtM.zh-CN.vtt 2.88Кб
06. Number Of Iterations-TTdHpSb4DV8.en.vtt 1.63Кб
06. Number Of Iterations-TTdHpSb4DV8.mp4 1.46Мб
06. Number Of Iterations-TTdHpSb4DV8.pt-BR.vtt 1.53Кб
06. Number Of Iterations-TTdHpSb4DV8.zh-CN.vtt 1.50Кб
06. Number of Training Iterations Epochs.html 7.70Кб
06. Perceptrons.html 10.24Кб
06. Preprocessing.html 5.53Кб
06. Preprocessing-ktQW6p9pOS4.en.vtt 7.27Кб
06. Preprocessing-ktQW6p9pOS4.mp4 8.88Мб
06. Preprocessing-ktQW6p9pOS4.pt-BR.vtt 6.81Кб
06. Preprocessing-ktQW6p9pOS4.zh-CN.vtt 6.40Кб
06. Quiz TensorFlow Cross Entropy.html 8.68Кб
06. The Forget Gate.html 5.57Кб
06. Training the Network.html 4.67Кб
06. Training The Network-nknJ3Xu3ld0.en.vtt 6.38Кб
06. Training The Network-nknJ3Xu3ld0.mp4 8.41Мб
06. Training The Network-nknJ3Xu3ld0.pt-BR.vtt 5.70Кб
06. Training The Network-nknJ3Xu3ld0.zh-CN.vtt 5.42Кб
06. Word2Vec.html 4.61Кб
06. Word2Vec-7jjappzGRe0.en.vtt 3.42Кб
06. Word2Vec-7jjappzGRe0.mp4 2.98Мб
06. Word2Vec-7jjappzGRe0.zh-CN.vtt 2.85Кб
07. Building the Network.html 5.02Кб
07. Building The Network-fhSb5c6UX6M.en.vtt 5.14Кб
07. Building The Network-fhSb5c6UX6M.mp4 8.09Мб
07. Building The Network-fhSb5c6UX6M.pt-BR.vtt 5.00Кб
07. Building The Network-fhSb5c6UX6M.zh-CN.vtt 4.12Кб
07. GloVe.html 4.59Кб
07. GloVe-KK3PMIiIn8o.en.vtt 4.21Кб
07. GloVe-KK3PMIiIn8o.mp4 3.81Мб
07. GloVe-KK3PMIiIn8o.zh-CN.vtt 3.60Кб
07. Implementing a Character-wise RNN.html 5.66Кб
07. Implementing a Character-wise RNN-KPCMn_jg2oY.en.vtt 9.94Кб
07. Implementing a Character-wise RNN-KPCMn_jg2oY.mp4 13.63Мб
07. Implementing a Character-wise RNN-KPCMn_jg2oY.pt-BR.vtt 10.69Кб
07. Implementing a Character-wise RNN-KPCMn_jg2oY.zh-CN.vtt 8.71Кб
07. Natural Language Processing-sQiURKPFXNM.en.vtt 4.41Кб
07. Natural Language Processing-sQiURKPFXNM.mp4 15.48Мб
07. Natural Language Processing-sQiURKPFXNM.zh-CN.vtt 4.03Кб
07. NLP and IBM Watson.html 5.34Кб
07. NLP Resources.html 5.51Кб
07. Number of Hidden Units Layers.html 5.90Кб
07. Number Of Hidden Units Layers-IkGAIQH5wH8.en.vtt 3.23Кб
07. Number Of Hidden Units Layers-IkGAIQH5wH8.mp4 3.40Мб
07. Number Of Hidden Units Layers-IkGAIQH5wH8.pt-BR.vtt 3.02Кб
07. Number Of Hidden Units Layers-IkGAIQH5wH8.zh-CN.vtt 2.82Кб
07. Quiz Mini-batch.html 24.76Кб
07. Remember Gate-0qlm86HaXuU.en.vtt 734б
07. Remember Gate-0qlm86HaXuU.mp4 676.91Кб
07. Remember Gate-0qlm86HaXuU.pt-BR.vtt 700б
07. Remember Gate-0qlm86HaXuU.zh-CN.vtt 632б
07. Sentiment RNN 2-V9YGGjmoHS0.en.vtt 17.68Кб
07. Sentiment RNN 2-V9YGGjmoHS0.mp4 23.11Мб
07. Sentiment RNN 2-V9YGGjmoHS0.pt-BR.vtt 15.77Кб
07. Sentiment RNN 2-V9YGGjmoHS0.zh-CN.vtt 14.72Кб
07. Sequence to sequence in TensorFlow.html 7.92Кб
07. Simple recursive examples.html 8.44Кб
07. Simple recursive examples-F4-CBqMsd_Y.en.vtt 8.06Кб
07. Simple recursive examples-F4-CBqMsd_Y.mp4 7.53Мб
07. Simple recursive examples-F4-CBqMsd_Y.zh-CN.vtt 7.15Кб
07. Solutions.html 4.63Кб
07. The Remember Gate.html 5.47Кб
07. Tokenization.html 5.39Кб
07. Tokenization-4Ieotbeh4u8.en.vtt 2.89Кб
07. Tokenization-4Ieotbeh4u8.mp4 3.22Мб
07. Tokenization-4Ieotbeh4u8.zh-CN.vtt 2.59Кб
07. When do MLPs (not) work well .html 7.29Кб
07. When do MLPs (not) work well-deMeuLdZN3Q.en.vtt 3.61Кб
07. When do MLPs (not) work well-deMeuLdZN3Q.mp4 5.54Мб
07. When do MLPs (not) work well-deMeuLdZN3Q.pt-BR.vtt 3.84Кб
07. When do MLPs (not) work well-deMeuLdZN3Q.zh-CN.vtt 3.11Кб
07. Why Neural Networks.html 9.16Кб
07. Why Neural Networks-zAkzOZntK6Y.en.vtt 1.38Кб
07. Why Neural Networks-zAkzOZntK6Y.mp4 982.27Кб
07. Why Neural Networks-zAkzOZntK6Y.pt-BR.vtt 1.27Кб
07. Why Neural Networks-zAkzOZntK6Y.zh-CN.vtt 1.18Кб
08. AND And OR Perceptrons-45K5N0P9wJk.en.vtt 3.00Кб
08. AND And OR Perceptrons-45K5N0P9wJk.mp4 2.68Мб
08. AND And OR Perceptrons-45K5N0P9wJk.pt-BR.vtt 3.15Кб
08. AND And OR Perceptrons-45K5N0P9wJk.zh-CN.vtt 2.48Кб
08. Applications of NLP.html 5.31Кб
08. Applications of NLP-33dq-H6U4AI.en.vtt 7.00Кб
08. Applications of NLP-33dq-H6U4AI.mp4 27.97Мб
08. Applications of NLP-33dq-H6U4AI.zh-CN.vtt 6.12Кб
08. Batching Data Solution.html 5.59Кб
08. Batching Data Solution-o3nBxHJLQcc.en.vtt 4.31Кб
08. Batching Data Solution-o3nBxHJLQcc.mp4 5.08Мб
08. Batching Data Solution-o3nBxHJLQcc.pt-BR.vtt 4.33Кб
08. Batching Data Solution-o3nBxHJLQcc.zh-CN.vtt 3.70Кб
08. Embeddings for Deep Learning.html 4.73Кб
08. Embeddings For Deep Learning-gj8u1KG0H2w.en.vtt 5.11Кб
08. Embeddings For Deep Learning-gj8u1KG0H2w.mp4 4.70Мб
08. Embeddings For Deep Learning-gj8u1KG0H2w.zh-CN.vtt 4.70Кб
08. Epochs.html 12.63Кб
08. Inputs.html 15.19Кб
08. LSTM 7 Use Gate-5Ifolm1jTdY.en.vtt 1.75Кб
08. LSTM 7 Use Gate-5Ifolm1jTdY.mp4 1.50Мб
08. LSTM 7 Use Gate-5Ifolm1jTdY.pt-BR.vtt 1.73Кб
08. LSTM 7 Use Gate-5Ifolm1jTdY.zh-CN.vtt 1.50Кб
08. Mini Project Training an MLP on MNIST.html 10.23Кб
08. Negative Sampling.html 5.00Кб
08. Negative Sampling-gW17AHBKbHY.en.vtt 2.55Кб
08. Negative Sampling-gW17AHBKbHY.mp4 4.16Мб
08. Negative Sampling-gW17AHBKbHY.pt-BR.vtt 2.36Кб
08. Negative Sampling-gW17AHBKbHY.zh-CN.vtt 2.19Кб
08. NLP Summary-B9ul8fsQYOA.en.vtt 688б
08. NLP Summary-B9ul8fsQYOA.mp4 1.38Мб
08. NLP Summary-B9ul8fsQYOA.zh-CN.vtt 624б
08. Perceptrons as Logical Operators.html 20.42Кб
08. Quiz Split Sentences.html 8.08Кб
08. Recursive or not Part 1.html 9.40Кб
08. RNN Hyperparameters.html 11.21Кб
08. RNN Hyperparameters-yQvnv7l_aUo.en.vtt 3.87Кб
08. RNN Hyperparameters-yQvnv7l_aUo.mp4 4.12Мб
08. RNN Hyperparameters-yQvnv7l_aUo.pt-BR.vtt 3.71Кб
08. RNN Hyperparameters-yQvnv7l_aUo.zh-CN.vtt 3.62Кб
08. Summary.html 4.55Кб
08. The Use Gate.html 5.69Кб
08. XOR Perceptron-TF83GfjYLdw.en.vtt 1.01Кб
08. XOR Perceptron-TF83GfjYLdw.mp4 947.00Кб
08. XOR Perceptron-TF83GfjYLdw.pt-BR.vtt 1.00Кб
08. XOR Perceptron-TF83GfjYLdw.zh-CN.vtt 1021б
09. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt 4.11Кб
09. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4 3.66Мб
09. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt 4.17Кб
09. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt 3.50Кб
09. Building the Network Solution.html 5.09Кб
09. Building The Network Solution-pkBAhQ2Ki-8.en.vtt 4.06Кб
09. Building The Network Solution-pkBAhQ2Ki-8.mp4 7.34Мб
09. Building The Network Solution-pkBAhQ2Ki-8.pt-BR.vtt 4.03Кб
09. Building The Network Solution-pkBAhQ2Ki-8.zh-CN.vtt 3.34Кб
09. Challenges in NLP.html 5.26Кб
09. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt 420б
09. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4 260.01Кб
09. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt 364б
09. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt 390б
09. Further Reading.html 5.48Кб
09. Lab TensorFlow Neural Network.html 10.27Кб
09. Local Connectivity.html 6.95Кб
09. Local Connectivity-z9wiDg0w-Dc.en.vtt 8.95Кб
09. Local Connectivity-z9wiDg0w-Dc.mp4 13.09Мб
09. Local Connectivity-z9wiDg0w-Dc.pt-BR.vtt 9.29Кб
09. Local Connectivity-z9wiDg0w-Dc.zh-CN.vtt 7.62Кб
09. LSTM Cell.html 5.50Кб
09. LSTM Cell-ajC-5uWB8S4.en.vtt 6.06Кб
09. LSTM Cell-ajC-5uWB8S4.mp4 7.79Мб
09. LSTM Cell-ajC-5uWB8S4.pt-BR.vtt 6.21Кб
09. LSTM Cell-ajC-5uWB8S4.zh-CN.vtt 5.30Кб
09. NLP H 8-LMvKyA3ZBZE.en.vtt 8.38Кб
09. NLP H 8-LMvKyA3ZBZE.mp4 30.44Мб
09. NLP H 8-LMvKyA3ZBZE.zh-CN.vtt 7.42Кб
09. Perceptron Algorithm--zhTROHtscQ.en.vtt 2.64Кб
09. Perceptron Algorithm--zhTROHtscQ.mp4 1.92Мб
09. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt 2.41Кб
09. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt 2.35Кб
09. Perceptron Trick.html 12.87Кб
09. Putting it All Together.html 5.15Кб
09. Putting It All Together-IF8FlKW-Zo0.en.vtt 2.42Кб
09. Putting It All Together-IF8FlKW-Zo0.mp4 1.58Мб
09. Putting It All Together-IF8FlKW-Zo0.pt-BR.vtt 2.36Кб
09. Putting It All Together-IF8FlKW-Zo0.zh-CN.vtt 2.13Кб
09. Recursive or not Part 2.html 9.55Кб
09. RNN Hyperparameters.html 6.16Кб
09. Stop Word Removal.html 5.12Кб
09. Stop Word Removal-WAU_Ij0GJbw.en.vtt 1.59Кб
09. Stop Word Removal-WAU_Ij0GJbw.mp4 1.96Мб
09. Stop Word Removal-WAU_Ij0GJbw.zh-CN.vtt 1.40Кб
09. t-SNE.html 4.59Кб
09. T-SNE-xxcK8oZ6_WE.en.vtt 2.17Кб
09. T-SNE-xxcK8oZ6_WE.mp4 5.56Мб
09. T-SNE-xxcK8oZ6_WE.zh-CN.vtt 1.84Кб
10. Convolutional Layers (Part 1).html 6.98Кб
10. Convolutional Layers-h5R_JvdUrUI.en.vtt 7.22Кб
10. Convolutional Layers-h5R_JvdUrUI.mp4 8.04Мб
10. Convolutional Layers-h5R_JvdUrUI.pt-BR.vtt 7.57Кб
10. Convolutional Layers-h5R_JvdUrUI.zh-CN.vtt 6.10Кб
10. LSTM Cell Solution.html 5.56Кб
10. LSTM Cell Solution-X4uA0dq_4jA.en.vtt 3.13Кб
10. LSTM Cell Solution-X4uA0dq_4jA.mp4 3.55Мб
10. LSTM Cell Solution-X4uA0dq_4jA.pt-BR.vtt 3.06Кб
10. LSTM Cell Solution-X4uA0dq_4jA.zh-CN.vtt 2.82Кб
10. NLP Services.html 7.51Кб
10. NLP Services-vTupzLkpxJU.en.vtt 5.00Кб
10. NLP Services-vTupzLkpxJU.mp4 16.49Мб
10. NLP Services-vTupzLkpxJU.zh-CN.vtt 4.41Кб
10. Part-of-Speech Tagging.html 5.68Кб
10. Part-of-Speech Tagging-WFEu8bXI5OA.en.vtt 1.67Кб
10. Part-of-Speech Tagging-WFEu8bXI5OA.mp4 2.15Мб
10. Part-of-Speech Tagging-WFEu8bXI5OA.zh-CN.vtt 1.48Кб
10. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.en.vtt 3.45Кб
10. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.mp4 2.87Мб
10. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt 3.27Кб
10. Perceptron Algorithm.html 16.48Кб
10. Quiz.html 6.85Кб
10. Recursive or not Part 3.html 9.38Кб
10. Sequence to Sequence in TensorFlow.html 5.19Кб
10. Sources & References.html 5.98Кб
10. Training Results.html 5.00Кб
10. Training Results-uISA5ns47s8.en.vtt 4.36Кб
10. Training Results-uISA5ns47s8.mp4 9.78Мб
10. Training Results-uISA5ns47s8.pt-BR.vtt 4.38Кб
10. Training Results-uISA5ns47s8.zh-CN.vtt 3.83Кб
10. Two-layer Neural Network.html 7.32Кб
11. Convolutional Layers (Part 2).html 7.75Кб
11. Convolutional Layers-RnM1D-XI--8.en.vtt 9.99Кб
11. Convolutional Layers-RnM1D-XI--8.mp4 19.81Мб
11. Convolutional Layers-RnM1D-XI--8.pt-BR.vtt 11.00Кб
11. Convolutional Layers-RnM1D-XI--8.zh-CN.vtt 8.71Кб
11. Getting Started with Watson.html 6.49Кб
11. Getting Started with Watson-9LTS9JfGNzM.en.vtt 13.99Кб
11. Getting Started with Watson-9LTS9JfGNzM.mp4 21.81Мб
11. Getting Started with Watson-9LTS9JfGNzM.zh-CN.vtt 12.55Кб
11. Graphical model representations of recursive sequences-OS9yQCTzCkg.en.vtt 8.40Кб
11. Graphical model representations of recursive sequences-OS9yQCTzCkg.mp4 7.63Мб
11. Graphical model representations of recursive sequences-OS9yQCTzCkg.zh-CN.vtt 7.57Кб
11. Named Entity Recognition.html 5.16Кб
11. Named Entity Recognition-QUQu2nsE7vE.en.vtt 1.10Кб
11. Named Entity Recognition-QUQu2nsE7vE.mp4 1.17Мб
11. Named Entity Recognition-QUQu2nsE7vE.zh-CN.vtt 1.00Кб
11. Non-Linear Regions.html 9.13Кб
11. Non-Linear Regions-B8UrWnHh1Wc.en.vtt 1.77Кб
11. Non-Linear Regions-B8UrWnHh1Wc.mp4 1.33Мб
11. Non-Linear Regions-B8UrWnHh1Wc.pt-BR.vtt 1.51Кб
11. Non-Linear Regions-B8UrWnHh1Wc.zh-CN.vtt 1.57Кб
11. Other architectures.html 5.51Кб
11. Other Architectures-MsxFDuYlTuQ.en.vtt 2.31Кб
11. Other Architectures-MsxFDuYlTuQ.mp4 1.71Мб
11. Other Architectures-MsxFDuYlTuQ.pt-BR.vtt 2.45Кб
11. Other Architectures-MsxFDuYlTuQ.zh-CN.vtt 2.04Кб
11. Quiz TensorFlow ReLUs.html 8.94Кб
11. RNN Output.html 5.51Кб
11. RNN Output-RkanDkcrTxs.en.vtt 5.73Кб
11. RNN Output-RkanDkcrTxs.mp4 8.92Мб
11. RNN Output-RkanDkcrTxs.pt-BR.vtt 5.64Кб
11. RNN Output-RkanDkcrTxs.zh-CN.vtt 5.14Кб
11. Ways of thinking about recursivity.html 8.35Кб
12. A simple model for my savings account balance-JQ2Nzzxx5oQ.en.vtt 9.61Кб
12. A simple model for my savings account balance-JQ2Nzzxx5oQ.mp4 9.01Мб
12. A simple model for my savings account balance-JQ2Nzzxx5oQ.zh-CN.vtt 8.70Кб
12. Deep Neural Network in TensorFlow.html 11.15Кб
12. Deploying a Bluemix Application.html 5.89Кб
12. Deploying a Bluemix Application-YF2SgUXzk9k.en.vtt 1.21Кб
12. Deploying a Bluemix Application-YF2SgUXzk9k.mp4 2.85Мб
12. Deploying a Bluemix Application-YF2SgUXzk9k.zh-CN.vtt 1.08Кб
12. Driving a recursive sequence.html 8.30Кб
12. Error Functions.html 9.11Кб
12. Error Functions-YfUUunxWIJw.en.vtt 790б
12. Error Functions-YfUUunxWIJw.mp4 3.54Мб
12. Error Functions-YfUUunxWIJw.pt-BR.vtt 804б
12. Error Functions-YfUUunxWIJw.zh-CN.vtt 739б
12. Network Loss.html 5.52Кб
12. Network Loss-itu-uNK4brc.en.vtt 3.08Кб
12. Network Loss-itu-uNK4brc.mp4 4.28Мб
12. Network Loss-itu-uNK4brc.pt-BR.vtt 3.16Кб
12. Network Loss-itu-uNK4brc.zh-CN.vtt 2.71Кб
12. Outro LSTM.html 5.03Кб
12. Stemming and Lemmatization.html 5.17Кб
12. Stemming And Lemmatization-7Gjf81u5hmw.en.vtt 4.77Кб
12. Stemming And Lemmatization-7Gjf81u5hmw.mp4 4.93Мб
12. Stemming And Lemmatization-7Gjf81u5hmw.zh-CN.vtt 4.26Кб
12. Stride and Padding.html 6.95Кб
12. Stride and Padding-0r9o8hprDXQ.en.vtt 4.41Кб
12. Stride and Padding-0r9o8hprDXQ.mp4 7.98Мб
12. Stride and Padding-0r9o8hprDXQ.pt-BR.vtt 4.55Кб
12. Stride and Padding-0r9o8hprDXQ.zh-CN.vtt 3.74Кб
13. Convolutional Layers in Keras.html 11.30Кб
13. Error Functions-jfKShxGAbok.en.vtt 9.45Кб
13. Error Functions-jfKShxGAbok.mp4 7.21Мб
13. Error Functions-jfKShxGAbok.pt-BR.vtt 9.14Кб
13. Error Functions-jfKShxGAbok.zh-CN.vtt 8.35Кб
13. Log-loss Error Function.html 10.74Кб
13. Output and Loss Solutions.html 5.61Кб
13. Output And Loss Solutions-CT8hcU7FmGc.en.vtt 3.45Кб
13. Output And Loss Solutions-CT8hcU7FmGc.mp4 4.69Мб
13. Output And Loss Solutions-CT8hcU7FmGc.pt-BR.vtt 3.21Кб
13. Output And Loss Solutions-CT8hcU7FmGc.zh-CN.vtt 3.05Кб
13. Save and Restore TensorFlow Models.html 14.22Кб
13. Section summary.html 8.19Кб
13. Summarizing recursivity-l1H8dfGW2A4.en.vtt 1.39Кб
13. Summarizing recursivity-l1H8dfGW2A4.mp4 1.73Мб
13. Summarizing recursivity-l1H8dfGW2A4.zh-CN.vtt 1.27Кб
13. Summary.html 5.06Кб
13. Summary-zKYEvRd2XmI.en.vtt 1.11Кб
13. Summary-zKYEvRd2XmI.mp4 977.95Кб
13. Summary-zKYEvRd2XmI.zh-CN.vtt 984б
13. Towards Augmented Intelligence.html 5.38Кб
13. Towards Augmented Intelligence-6y2B8VKoGTw.en.vtt 3.31Кб
13. Towards Augmented Intelligence-6y2B8VKoGTw.mp4 12.37Мб
13. Towards Augmented Intelligence-6y2B8VKoGTw.zh-CN.vtt 3.02Кб
14. [Preview] Project Bookworm.html 11.03Кб
14. Build the Network.html 5.55Кб
14. Build The Network-RVNjDlWTBQU.en.vtt 4.09Кб
14. Build The Network-RVNjDlWTBQU.mp4 7.10Мб
14. Build The Network-RVNjDlWTBQU.pt-BR.vtt 4.00Кб
14. Build The Network-RVNjDlWTBQU.zh-CN.vtt 3.45Кб
14. Discrete vs. Continuous-Rm2KxFaPiJg.en.vtt 5.70Кб
14. Discrete vs. Continuous-Rm2KxFaPiJg.mp4 5.35Мб
14. Discrete vs. Continuous-Rm2KxFaPiJg.pt-BR.vtt 5.67Кб
14. Discrete vs. Continuous-Rm2KxFaPiJg.zh-CN.vtt 4.67Кб
14. Discrete vs Continuous.html 11.35Кб
14. Discrete vs Continuous-rdP-RPDFkl0.en.vtt 551б
14. Discrete vs Continuous-rdP-RPDFkl0.mp4 2.26Мб
14. Discrete vs Continuous-rdP-RPDFkl0.pt-BR.vtt 584б
14. Discrete vs Continuous-rdP-RPDFkl0.zh-CN.vtt 481б
14. Finetuning.html 9.67Кб
14. Quiz Dimensionality.html 15.55Кб
14. Section 3 Injecting recursivity into a learner (the lazy wa.html 8.28Кб
14. Section 3 Introduction-VyE6NcPbX9Q.en.vtt 594б
14. Section 3 Introduction-VyE6NcPbX9Q.mp4 1.49Мб
14. Section 3 Introduction-VyE6NcPbX9Q.zh-CN.vtt 510б
15. AIND RNN 3 0-jXdIx18dIa0.en.vtt 3.19Кб
15. AIND RNN 3 0-jXdIx18dIa0.mp4 2.84Мб
15. AIND RNN 3 0-jXdIx18dIa0.zh-CN.vtt 2.92Кб
15. Build The Network And Results-hu8iMMqajmQ.en.vtt 7.81Кб
15. Build The Network And Results-hu8iMMqajmQ.mp4 13.27Мб
15. Build The Network And Results-hu8iMMqajmQ.pt-BR.vtt 7.64Кб
15. Build The Network And Results-hu8iMMqajmQ.zh-CN.vtt 6.85Кб
15. Build the Network Solution.html 5.63Кб
15. DL 18 Q Softmax V2-RC_A9Tu99y4.en.vtt 5.37Кб
15. DL 18 Q Softmax V2-RC_A9Tu99y4.mp4 4.01Мб
15. DL 18 Q Softmax V2-RC_A9Tu99y4.pt-BR.vtt 5.06Кб
15. DL 18 Q Softmax V2-RC_A9Tu99y4.zh-CN.vtt 4.37Кб
15. DL 18 S Softmax-n8S-v_LCTms.en.vtt 2.59Кб
15. DL 18 S Softmax-n8S-v_LCTms.mp4 1.95Мб
15. DL 18 S Softmax-n8S-v_LCTms.pt-BR.vtt 2.52Кб
15. DL 18 S Softmax-n8S-v_LCTms.zh-CN.vtt 2.30Кб
15. Injecting Recursivity into a Learner (the lazy way).html 8.22Кб
15. Pooling Layers.html 7.21Кб
15. Pooling Layers-OkkIZNs7Cyc.en.vtt 5.40Кб
15. Pooling Layers-OkkIZNs7Cyc.mp4 5.82Мб
15. Pooling Layers-OkkIZNs7Cyc.pt-BR.vtt 5.81Кб
15. Pooling Layers-OkkIZNs7Cyc.zh-CN.vtt 4.64Кб
15. Quiz - Softmax-NNoezNnAMTY.en.vtt 495б
15. Quiz - Softmax-NNoezNnAMTY.mp4 1.73Мб
15. Quiz - Softmax-NNoezNnAMTY.pt-BR.vtt 501б
15. Quiz - Softmax-NNoezNnAMTY.zh-CN.vtt 548б
15. Quiz TensorFlow Dropout.html 13.20Кб
15. Softmax.html 13.31Кб
16. A first example.html 8.16Кб
16. AIND RNN 3 1 1-NMZ4fU2CuHg.en.vtt 3.70Кб
16. AIND RNN 3 1 1-NMZ4fU2CuHg.mp4 3.75Мб
16. AIND RNN 3 1 1-NMZ4fU2CuHg.zh-CN.vtt 3.41Кб
16. Max Pooling Layers in Keras.html 10.08Кб
16. One-Hot Encoding.html 9.12Кб
16. One-Hot Encoding-AePvjhyvsBo.en.vtt 2.23Кб
16. One-Hot Encoding-AePvjhyvsBo.mp4 1.65Мб
16. One-Hot Encoding-AePvjhyvsBo.pt-BR.vtt 2.03Кб
16. One-Hot Encoding-AePvjhyvsBo.zh-CN.vtt 2.02Кб
16. RNN Resources.html 5.78Кб
17. 3 1 2 Introducing A Parameterized Formula-I72EOcAroFk.en.vtt 3.64Кб
17. 3 1 2 Introducing A Parameterized Formula-I72EOcAroFk.mp4 3.90Мб
17. 3 1 2 Introducing A Parameterized Formula-I72EOcAroFk.zh-CN.vtt 3.42Кб
17. CNNs for Image Classification.html 9.96Кб
17. CNNs For Image Classification-l9vg_1YUlzg.en.vtt 11.37Кб
17. CNNs For Image Classification-l9vg_1YUlzg.mp4 18.16Мб
17. CNNs For Image Classification-l9vg_1YUlzg.pt-BR.vtt 12.21Кб
17. CNNs For Image Classification-l9vg_1YUlzg.zh-CN.vtt 9.72Кб
17. Maximum Likelihood.html 11.45Кб
17. Maximum Likelihood 1-1yJx-QtlvNI.en.vtt 1.64Кб
17. Maximum Likelihood 1-1yJx-QtlvNI.mp4 5.75Мб
17. Maximum Likelihood 1-1yJx-QtlvNI.pt-BR.vtt 1.61Кб
17. Maximum Likelihood 1-1yJx-QtlvNI.zh-CN.vtt 1.43Кб
17. Maximum Likelihood 2-6nUUeQ9AeUA.en.vtt 4.41Кб
17. Maximum Likelihood 2-6nUUeQ9AeUA.mp4 3.85Мб
17. Maximum Likelihood 2-6nUUeQ9AeUA.pt-BR.vtt 4.49Кб
17. Maximum Likelihood 2-6nUUeQ9AeUA.zh-CN.vtt 3.67Кб
17. Setting up the example.html 8.28Кб
18. AIND RNN 3 1 3-R1T3JXi_jKY.en.vtt 3.17Кб
18. AIND RNN 3 1 3-R1T3JXi_jKY.mp4 3.26Мб
18. AIND RNN 3 1 3-R1T3JXi_jKY.zh-CN.vtt 2.88Кб
18. CNNs in Keras Practical Example.html 8.72Кб
18. CNNs in Keras Practical Example-faFvmGDwXX0.en.vtt 5.39Кб
18. CNNs in Keras Practical Example-faFvmGDwXX0.mp4 8.71Мб
18. CNNs in Keras Practical Example-faFvmGDwXX0.pt-BR.vtt 6.12Кб
18. CNNs in Keras Practical Example-faFvmGDwXX0.zh-CN.vtt 4.78Кб
18. Maximizing Probabilities.html 10.92Кб
18. Quiz - Cross 1--xxrisIvD0E.en.vtt 918б
18. Quiz - Cross 1--xxrisIvD0E.mp4 3.02Мб
18. Quiz - Cross 1--xxrisIvD0E.pt-BR.vtt 947б
18. Quiz - Cross 1--xxrisIvD0E.zh-CN.vtt 813б
18. Quiz Cross Entropy-njq6bYrPqSU.en.vtt 2.30Кб
18. Quiz Cross Entropy-njq6bYrPqSU.mp4 1.86Мб
18. Quiz Cross Entropy-njq6bYrPqSU.pt-BR.vtt 2.28Кб
18. Quiz Cross Entropy-njq6bYrPqSU.zh-CN.vtt 2.07Кб
18. Windowing the example sequence.html 8.19Кб
19. AIND RNN 3 1 4-XYljYztPvUs.en.vtt 3.30Кб
19. AIND RNN 3 1 4-XYljYztPvUs.mp4 3.35Мб
19. AIND RNN 3 1 4-XYljYztPvUs.zh-CN.vtt 3.04Кб
19. Cross-Entropy 1.html 9.36Кб
19. Cross Entropy 1-iREoPUrpXvE.en.vtt 4.81Кб
19. Cross Entropy 1-iREoPUrpXvE.mp4 4.22Мб
19. Cross Entropy 1-iREoPUrpXvE.pt-BR.vtt 5.00Кб
19. Cross Entropy 1-iREoPUrpXvE.zh-CN.vtt 4.11Кб
19. Mini Project CNNs in Keras.html 7.75Кб
19. Using Keras for fitting.html 8.17Кб
20. AIND RNN 3 1 5-6LgdU4avFSk.en.vtt 2.63Кб
20. AIND RNN 3 1 5-6LgdU4avFSk.mp4 2.61Мб
20. AIND RNN 3 1 5-6LgdU4avFSk.zh-CN.vtt 2.35Кб
20. Cross-Entropy 2.html 11.61Кб
20. CrossEntropy V1-1BnhC6e0TFw.en.vtt 8.03Кб
20. CrossEntropy V1-1BnhC6e0TFw.mp4 6.61Мб
20. CrossEntropy V1-1BnhC6e0TFw.pt-BR.vtt 7.81Кб
20. CrossEntropy V1-1BnhC6e0TFw.zh-CN.vtt 6.66Кб
20. Formula For Cross 1-qvr_ego_d6w.en.vtt 607б
20. Formula For Cross 1-qvr_ego_d6w.mp4 2.08Мб
20. Formula For Cross 1-qvr_ego_d6w.pt-BR.vtt 719б
20. Formula For Cross 1-qvr_ego_d6w.zh-CN.vtt 545б
20. Image Augmentation in Keras.html 8.77Кб
20. Image Augmentation in Keras-odStujZq3GY.en.vtt 8.22Кб
20. Image Augmentation in Keras-odStujZq3GY.mp4 10.26Мб
20. Image Augmentation in Keras-odStujZq3GY.pt-BR.vtt 8.49Кб
20. Image Augmentation in Keras-odStujZq3GY.zh-CN.vtt 7.02Кб
20. Using a regressor as a generative model.html 8.37Кб
21. 3 2 0 Example 2-2qYjlOV4Vi0.en.vtt 1.09Кб
21. 3 2 0 Example 2-2qYjlOV4Vi0.mp4 1.14Мб
21. 3 2 0 Example 2-2qYjlOV4Vi0.zh-CN.vtt 1016б
21. A second example.html 8.16Кб
21. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.en.vtt 4.72Кб
21. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.mp4 4.14Мб
21. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.pt-BR.vtt 4.54Кб
21. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.zh-CN.vtt 4.01Кб
21. Mini Project Image Augmentation in Keras.html 7.83Кб
21. Multi-Class Cross Entropy.html 10.29Кб
22. AIND RNN 3 2 1-ZFWOCob2gZ8.en.vtt 2.57Кб
22. AIND RNN 3 2 1-ZFWOCob2gZ8.mp4 2.87Мб
22. AIND RNN 3 2 1-ZFWOCob2gZ8.zh-CN.vtt 2.43Кб
22. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.en.vtt 1.62Кб
22. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.mp4 1.49Мб
22. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.pt-BR.vtt 1.42Кб
22. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.zh-CN.vtt 1.46Кб
22. Error Function-V5kkHldUlVU.en.vtt 4.87Кб
22. Error Function-V5kkHldUlVU.mp4 4.84Мб
22. Error Function-V5kkHldUlVU.pt-BR.vtt 5.19Кб
22. Error Function-V5kkHldUlVU.zh-CN.vtt 4.15Кб
22. Groundbreaking CNN Architectures.html 8.18Кб
22. Groundbreaking CNN Architectures-ddrB-mhMfkY.en.vtt 3.94Кб
22. Groundbreaking CNN Architectures-ddrB-mhMfkY.mp4 8.09Мб
22. Groundbreaking CNN Architectures-ddrB-mhMfkY.pt-BR.vtt 4.26Кб
22. Groundbreaking CNN Architectures-ddrB-mhMfkY.zh-CN.vtt 3.52Кб
22. Logistic Regression.html 10.78Кб
22. Setting up the second example.html 8.19Кб
23. AIND RNN 3 2 2-R4ACff0v7Vk.en.vtt 3.82Кб
23. AIND RNN 3 2 2-R4ACff0v7Vk.mp4 3.76Мб
23. AIND RNN 3 2 2-R4ACff0v7Vk.zh-CN.vtt 3.49Кб
23. Gradient Descent.html 16.99Кб
23. Gradient Descent-rhVIF-nigrY.en.vtt 3.85Кб
23. Gradient Descent-rhVIF-nigrY.mp4 3.76Мб
23. Gradient Descent-rhVIF-nigrY.pt-BR.vtt 3.98Кб
23. Visualizing CNNs (Part 1).html 9.17Кб
23. Visualizing CNNs-mnqS_EhEZVg.en.vtt 3.87Кб
23. Visualizing CNNs-mnqS_EhEZVg.mp4 9.20Мб
23. Visualizing CNNs-mnqS_EhEZVg.pt-BR.vtt 3.83Кб
23. Visualizing CNNs-mnqS_EhEZVg.zh-CN.vtt 3.33Кб
23. Wrapping up the second example.html 8.19Кб
24. 3 3 Twists On Example 2 (1)-Xf1oAaTd42w.en.vtt 5.82Кб
24. 3 3 Twists On Example 2 (1)-Xf1oAaTd42w.mp4 5.36Мб
24. 3 3 Twists On Example 2 (1)-Xf1oAaTd42w.zh-CN.vtt 5.34Кб
24. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.en.vtt 4.27Кб
24. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.mp4 3.20Мб
24. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.pt-BR.vtt 4.24Кб
24. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.zh-CN.vtt 3.60Кб
24. Interesting twists on the second example.html 8.26Кб
24. Perceptron vs Gradient Descent.html 9.50Кб
24. Visualizing CNNs (Part 2).html 13.65Кб
25. 3 4 Example 4-UfOUisfQPZc.en.vtt 5.56Кб
25. 3 4 Example 4-UfOUisfQPZc.mp4 4.46Мб
25. 3 4 Example 4-UfOUisfQPZc.zh-CN.vtt 5.01Кб
25. Continuous Perceptrons.html 9.16Кб
25. Continuous Perceptrons-07-JJ-aGEfM.en.vtt 1.33Кб
25. Continuous Perceptrons-07-JJ-aGEfM.mp4 1.13Мб
25. Continuous Perceptrons-07-JJ-aGEfM.pt-BR.vtt 1.31Кб
25. Continuous Perceptrons-07-JJ-aGEfM.zh-CN.vtt 1.15Кб
25. Real time series example.html 8.17Кб
25. Transfer Learning.html 18.01Кб
25. Transfer Learning-LHG5FltaR6I.en.vtt 6.00Кб
25. Transfer Learning-LHG5FltaR6I.mp4 13.32Мб
25. Transfer Learning-LHG5FltaR6I.pt-BR.vtt 6.51Кб
25. Transfer Learning-LHG5FltaR6I.zh-CN.vtt 5.39Кб
26. 3 5 Summary-imv4cLtF38o.en.vtt 1.97Кб
26. 3 5 Summary-imv4cLtF38o.mp4 1.68Мб
26. 3 5 Summary-imv4cLtF38o.zh-CN.vtt 1.80Кб
26. Non-linear Data.html 9.11Кб
26. Non-Linear Data-F7ZiE8PQiSc.en.vtt 633б
26. Non-Linear Data-F7ZiE8PQiSc.mp4 2.14Мб
26. Non-Linear Data-F7ZiE8PQiSc.pt-BR.vtt 600б
26. Non-Linear Data-F7ZiE8PQiSc.zh-CN.vtt 624б
26. Section summary.html 8.15Кб
26. Transfer Learning in Keras.html 8.42Кб
26. Transfer Learning in Keras-HsIAznMM1LA.en.vtt 6.11Кб
26. Transfer Learning in Keras-HsIAznMM1LA.mp4 12.92Мб
26. Transfer Learning in Keras-HsIAznMM1LA.pt-BR.vtt 6.77Кб
26. Transfer Learning in Keras-HsIAznMM1LA.zh-CN.vtt 5.69Кб
27. Introduction to Section 4-xx4PxKWVmHo.en.vtt 869б
27. Introduction to Section 4-xx4PxKWVmHo.mp4 1.99Мб
27. Introduction to Section 4-xx4PxKWVmHo.zh-CN.vtt 815б
27. Non-Linear Models.html 9.13Кб
27. Non-Linear Models-HWuBKCZsCo8.en.vtt 1.30Кб
27. Non-Linear Models-HWuBKCZsCo8.mp4 1.13Мб
27. Non-Linear Models-HWuBKCZsCo8.pt-BR.vtt 1.39Кб
27. Non-Linear Models-HWuBKCZsCo8.zh-CN.vtt 1.12Кб
27. Section 4 Injecting Recursivity into Learners the Smart Way.html 8.29Кб
28. 29 Neural Network Architecture 2-FWN3Sw5fFoM.en.vtt 3.02Кб
28. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4 2.83Мб
28. 29 Neural Network Architecture 2-FWN3Sw5fFoM.pt-BR.vtt 3.34Кб
28. 29 Neural Network Architecture 2-FWN3Sw5fFoM.zh-CN.vtt 2.76Кб
28. Coding up a crazy recursive sequence.html 9.05Кб
28. Combinando modelos-Boy3zHVrWB4.en.vtt 5.29Кб
28. Combinando modelos-Boy3zHVrWB4.mp4 4.73Мб
28. Combinando modelos-Boy3zHVrWB4.pt-BR.vtt 5.29Кб
28. Combinando modelos-Boy3zHVrWB4.zh-CN.vtt 4.61Кб
28. Layers-pg99FkXYK0M.en.vtt 3.40Кб
28. Layers-pg99FkXYK0M.mp4 3.11Мб
28. Layers-pg99FkXYK0M.pt-BR.vtt 3.29Кб
28. Layers-pg99FkXYK0M.zh-CN.vtt 3.04Кб
28. Multiclass Classification-uNTtvxwfox0.en.vtt 2.08Кб
28. Multiclass Classification-uNTtvxwfox0.mp4 1.88Мб
28. Multiclass Classification-uNTtvxwfox0.pt-BR.vtt 2.12Кб
28. Multiclass Classification-uNTtvxwfox0.zh-CN.vtt 1.82Кб
28. Neural Network Architecture.html 13.70Кб
29. DL 41 Feedforward FIX V2-hVCuvMGOfyY.en.vtt 6.17Кб
29. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4 5.33Мб
29. DL 41 Feedforward FIX V2-hVCuvMGOfyY.pt-BR.vtt 6.76Кб
29. DL 41 Feedforward FIX V2-hVCuvMGOfyY.zh-CN.vtt 5.33Кб
29. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.en.vtt 1.97Кб
29. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4 1.72Мб
29. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.pt-BR.vtt 2.12Кб
29. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.zh-CN.vtt 1.69Кб
29. Feedforward.html 10.39Кб
29. Flaws with the FNN approach.html 8.23Кб
29. Flaws with the FNN approach-sUXrzpAkF9A.en.vtt 8.66Кб
29. Flaws with the FNN approach-sUXrzpAkF9A.mp4 7.18Мб
29. Flaws with the FNN approach-sUXrzpAkF9A.zh-CN.vtt 7.88Кб
2d-simplex.svg 8.81Кб
30. Backpropagation.html 13.18Кб
30. Backpropagation V2-1SmY3TZTyUk.en.vtt 7.21Кб
30. Backpropagation V2-1SmY3TZTyUk.mp4 6.52Мб
30. Backpropagation V2-1SmY3TZTyUk.pt-BR.vtt 7.17Кб
30. Backpropagation V2-1SmY3TZTyUk.zh-CN.vtt 6.39Кб
30. Calculating The Gradient 1 -tVuZDbUrzzI.en.vtt 3.41Кб
30. Calculating The Gradient 1 -tVuZDbUrzzI.mp4 3.31Мб
30. Calculating The Gradient 1 -tVuZDbUrzzI.pt-BR.vtt 3.44Кб
30. Calculating The Gradient 1 -tVuZDbUrzzI.zh-CN.vtt 2.88Кб
30. Chain Rule-YAhIBOnbt54.en.vtt 1.65Кб
30. Chain Rule-YAhIBOnbt54.mp4 1.46Мб
30. Chain Rule-YAhIBOnbt54.pt-BR.vtt 1.73Кб
30. Chain Rule-YAhIBOnbt54.zh-CN.vtt 1.42Кб
30. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.en.vtt 6.16Кб
30. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4 5.69Мб
30. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.pt-BR.vtt 6.50Кб
30. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.zh-CN.vtt 5.05Кб
30. RNN fundamental derivations.html 8.24Кб
30. RNNs 4 2 Basic RNN Derivation-Y3-YuSbhbQM.en.vtt 11.00Кб
30. RNNs 4 2 Basic RNN Derivation-Y3-YuSbhbQM.mp4 8.65Мб
30. RNNs 4 2 Basic RNN Derivation-Y3-YuSbhbQM.zh-CN.vtt 9.87Кб
31. Formulating a Least Squares loss.html 8.30Кб
31. Keras.html 19.14Кб
31. RNNs 4 3 Formulating A Least Squares Loss-F5PVwVrEVHY.en.vtt 3.51Кб
31. RNNs 4 3 Formulating A Least Squares Loss-F5PVwVrEVHY.mp4 3.43Мб
31. RNNs 4 3 Formulating A Least Squares Loss-F5PVwVrEVHY.zh-CN.vtt 3.30Кб
32. Mini Project Students Admissions in Keras.html 14.94Кб
32. RNNs 4 4 RNN Properties- Memory-0B8O2eNv2DY.en.vtt 5.03Кб
32. RNNs 4 4 RNN Properties- Memory-0B8O2eNv2DY.mp4 4.41Мб
32. RNNs 4 4 RNN Properties- Memory-0B8O2eNv2DY.zh-CN.vtt 4.47Кб
32. RNNs and memory.html 8.22Кб
33. Lesson Plan Week 2.html 8.95Кб
33. RNNs 4 5 RNN Properties- Graphical Models-LON9wniFUiE.en.vtt 2.52Кб
33. RNNs 4 5 RNN Properties- Graphical Models-LON9wniFUiE.mp4 2.24Мб
33. RNNs 4 5 RNN Properties- Graphical Models-LON9wniFUiE.zh-CN.vtt 2.23Кб
33. RNNs and graphical models.html 8.28Кб
34. RNN Technical Issues.html 8.67Кб
34. Technical Issues-6Bpu_XydW2k.en.vtt 2.16Кб
34. Technical Issues-6Bpu_XydW2k.mp4 1.88Мб
34. Technical Issues-6Bpu_XydW2k.zh-CN.vtt 1.93Кб
34. Training Optimization.html 9.16Кб
34. Training Optimization-UiGKhx9pUYc.en.vtt 824б
34. Training Optimization-UiGKhx9pUYc.mp4 2.96Мб
34. Training Optimization-UiGKhx9pUYc.pt-BR.vtt 874б
34. Training Optimization-UiGKhx9pUYc.zh-CN.vtt 840б
35. Batch vs Stochastic Gradient Descent.html 9.73Кб
35. Batch Vs Stochastic Gradient Descent-2p58rVgqsgo.en.vtt 4.64Кб
35. Batch Vs Stochastic Gradient Descent-2p58rVgqsgo.mp4 3.95Мб
35. Batch Vs Stochastic Gradient Descent-2p58rVgqsgo.pt-BR.vtt 4.63Кб
35. Batch Vs Stochastic Gradient Descent-2p58rVgqsgo.zh-CN.vtt 4.10Кб
35. Section & Course Summary-gYCL4RBvzRM.en.vtt 3.67Кб
35. Section & Course Summary-gYCL4RBvzRM.mp4 3.02Мб
35. Section & Course Summary-gYCL4RBvzRM.zh-CN.vtt 3.37Кб
35. Section and course summary .html 8.24Кб
36. Learning Rate Decay.html 9.11Кб
36. Learning Rate-TwJ8aSZoh2U.en.vtt 1.12Кб
36. Learning Rate-TwJ8aSZoh2U.mp4 927.05Кб
36. Learning Rate-TwJ8aSZoh2U.pt-BR.vtt 1.26Кб
36. Learning Rate-TwJ8aSZoh2U.zh-CN.vtt 1020б
36. Outro.html 8.10Кб
36. Outro-LurBj_gmFwk.en.vtt 1.06Кб
36. Outro-LurBj_gmFwk.mp4 2.43Мб
36. Outro-LurBj_gmFwk.zh-CN.vtt 1.06Кб
37. Testing.html 9.45Кб
37. Testing-EeBZpb-PSac.en.vtt 2.41Кб
37. Testing-EeBZpb-PSac.mp4 2.00Мб
37. Testing-EeBZpb-PSac.pt-BR.vtt 2.37Кб
37. Testing-EeBZpb-PSac.zh-CN.vtt 1.99Кб
38. Overfitting and Underfitting.html 9.20Кб
38. Underfitting And Overfitting-xj4PlXMsN-Y.en.vtt 7.49Кб
38. Underfitting And Overfitting-xj4PlXMsN-Y.mp4 6.42Мб
38. Underfitting And Overfitting-xj4PlXMsN-Y.pt-BR.vtt 8.15Кб
38. Underfitting And Overfitting-xj4PlXMsN-Y.zh-CN.vtt 6.54Кб
39. Early Stopping.html 9.15Кб
39. Model Complexity Graph-NnS0FJyVcDQ.en.vtt 5.32Кб
39. Model Complexity Graph-NnS0FJyVcDQ.mp4 4.90Мб
39. Model Complexity Graph-NnS0FJyVcDQ.pt-BR.vtt 5.52Кб
39. Model Complexity Graph-NnS0FJyVcDQ.zh-CN.vtt 4.65Кб
40. DL 53 Q Regularization-KxROxcRsHL8.en.vtt 1.15Кб
40. DL 53 Q Regularization-KxROxcRsHL8.mp4 1.01Мб
40. DL 53 Q Regularization-KxROxcRsHL8.pt-BR.vtt 1.16Кб
40. DL 53 Q Regularization-KxROxcRsHL8.zh-CN.vtt 1.02Кб
40. Regularization.html 10.14Кб
41. Regularization 2.html 9.11Кб
41. Regularization-ndYnUrx8xvs.en.vtt 8.07Кб
41. Regularization-ndYnUrx8xvs.mp4 7.57Мб
41. Regularization-ndYnUrx8xvs.pt-BR.vtt 8.78Кб
41. Regularization-ndYnUrx8xvs.zh-CN.vtt 6.96Кб
42. Dropout.html 9.63Кб
42. Dropout-Ty6K6YiGdBs.en.vtt 4.71Кб
42. Dropout-Ty6K6YiGdBs.mp4 4.22Мб
42. Dropout-Ty6K6YiGdBs.pt-BR.vtt 4.66Кб
42. Dropout-Ty6K6YiGdBs.zh-CN.vtt 4.06Кб
43. Vanishing Gradient.html 9.13Кб
43. Vanishing Gradient-W_JJm_5syFw.en.vtt 1.46Кб
43. Vanishing Gradient-W_JJm_5syFw.mp4 1.32Мб
43. Vanishing Gradient-W_JJm_5syFw.pt-BR.vtt 1.56Кб
43. Vanishing Gradient-W_JJm_5syFw.zh-CN.vtt 1.24Кб
44. Other Activation Functions.html 9.95Кб
44. Other Activation Functions-kA-1vUt6cvQ.en.vtt 2.68Кб
44. Other Activation Functions-kA-1vUt6cvQ.mp4 2.30Мб
44. Other Activation Functions-kA-1vUt6cvQ.pt-BR.vtt 2.55Кб
44. Other Activation Functions-kA-1vUt6cvQ.zh-CN.vtt 2.34Кб
45. Local Minima.html 9.09Кб
45. Local Minima-gF_sW_nY-xw.en.vtt 1.14Кб
45. Local Minima-gF_sW_nY-xw.mp4 819.86Кб
45. Local Minima-gF_sW_nY-xw.pt-BR.vtt 1.05Кб
45. Local Minima-gF_sW_nY-xw.zh-CN.vtt 1.01Кб
46. Random Restart.html 9.11Кб
46. Random Restart-idyBBCzXiqg.en.vtt 466б
46. Random Restart-idyBBCzXiqg.mp4 394.99Кб
46. Random Restart-idyBBCzXiqg.pt-BR.vtt 478б
46. Random Restart-idyBBCzXiqg.zh-CN.vtt 419б
47. Momentum.html 9.07Кб
47. Momentum-r-rYz_PEWC8.en.vtt 2.50Кб
47. Momentum-r-rYz_PEWC8.mp4 2.14Мб
47. Momentum-r-rYz_PEWC8.pt-BR.vtt 2.70Кб
47. Momentum-r-rYz_PEWC8.zh-CN.vtt 2.21Кб
48. Optimizers in Keras.html 9.90Кб
49. Error Functions Around the World.html 9.23Кб
49. Error Functions Around the World-34AAcTECu2A.en.vtt 1.17Кб
49. Error Functions Around the World-34AAcTECu2A.mp4 1.73Мб
49. Error Functions Around the World-34AAcTECu2A.pt-BR.vtt 1.08Кб
49. Error Functions Around the World-34AAcTECu2A.zh-CN.vtt 1.06Кб
50. Keras Lab-a50un22BsLI.en.vtt 586б
50. Keras Lab-a50un22BsLI.mp4 2.19Мб
50. Keras Lab-a50un22BsLI.pt-BR.vtt 574б
50. Keras Lab-a50un22BsLI.zh-CN.vtt 540б
50. Mini Project Intro.html 9.09Кб
51. Mini Project IMDB Data in Keras.html 12.93Кб
52. Outro.html 9.05Кб
52. Outro-HZt6bf73bOo.en.vtt 802б
52. Outro-HZt6bf73bOo.mp4 3.02Мб
52. Outro-HZt6bf73bOo.pt-BR.vtt 857б
52. Outro-HZt6bf73bOo.zh-CN.vtt 731б
all-ranks.png 308.47Кб
and-quiz.png 265.78Кб
and-to-or.png 606.14Кб
arpan-c-circle.png 309.09Кб
arpan-c-circle.png 309.09Кб
bookworm-hero2-1200x900.jpeg 471.33Кб
bootstrap.min.css 137.63Кб
bootstrap.min.js 49.84Кб
codecogseqn-43.gif 7.96Кб
codecogseqn-49.gif 2.09Кб
codecogseqn-58.gif 919б
codecogseqn-60-2.png 8.94Кб
conv-dims.png 28.55Кб
convolution-schematic.gif 63.63Кб
Course Index.rar 7.50Кб
cross-entropy-diagram.png 62.67Кб
data.json 38.04Кб
data.json 9.21Кб
data.json 159.79Кб
data.json 98.41Кб
data.json 115.44Кб
data.json 43.75Кб
data.json 21.88Кб
data.json 17.77Кб
data.json 26.76Кб
data.json 10.34Кб
data.json 5.89Кб
data.json 22.73Кб
data.json 9.36Кб
data.json 215.16Кб
data.json 23.37Кб
data.json 14.00Кб
data.json 26.57Кб
data.png 49.54Кб
diagonal-line-1.png 5.76Кб
diagonal-line-2.png 6.62Кб
download-repo.png 366.63Кб
dropout-node.jpeg 62.69Кб
f3iwvmld-400x400.jpg 26.43Кб
full-padding-no-strides-transposed.gif 221.74Кб
grid-layer-1.png 35.30Кб
index.html 3.98Кб
index.html 3.10Кб
index.html 6.82Кб
index.html 5.23Кб
index.html 4.10Кб
index.html 6.35Кб
index.html 3.71Кб
index.html 4.06Кб
index.html 3.64Кб
index.html 3.36Кб
index.html 3.24Кб
index.html 3.80Кб
index.html 3.44Кб
index.html 3.38Кб
index.html 3.34Кб
index.html 3.64Кб
index.html 3.64Кб
jquery.mCustomScrollbar.concat.min.js 44.41Кб
jquery.mCustomScrollbar.min.css 41.83Кб
jquery-3.3.1.min.js 84.89Кб
jupyter-logo.png 5.78Кб
KaTeX_AMS-Regular.ttf 69.75Кб
KaTeX_AMS-Regular.woff 39.26Кб
KaTeX_AMS-Regular.woff2 32.43Кб
KaTeX_Caligraphic-Bold.ttf 19.13Кб
KaTeX_Caligraphic-Bold.woff 11.85Кб
KaTeX_Caligraphic-Bold.woff2 10.35Кб
KaTeX_Caligraphic-Regular.ttf 18.52Кб
KaTeX_Caligraphic-Regular.woff 11.59Кб
KaTeX_Caligraphic-Regular.woff2 10.17Кб
KaTeX_Fraktur-Bold.ttf 35.13Кб
KaTeX_Fraktur-Bold.woff 22.84Кб
KaTeX_Fraktur-Bold.woff2 20.01Кб
KaTeX_Fraktur-Regular.ttf 33.84Кб
KaTeX_Fraktur-Regular.woff 22.31Кб
KaTeX_Fraktur-Regular.woff2 19.39Кб
KaTeX_Main-Bold.ttf 60.27Кб
KaTeX_Main-Bold.woff 35.89Кб
KaTeX_Main-Bold.woff2 29.90Кб
KaTeX_Main-BoldItalic.ttf 43.77Кб
KaTeX_Main-BoldItalic.woff 25.61Кб
KaTeX_Main-BoldItalic.woff2 21.67Кб
KaTeX_Main-Italic.ttf 46.83Кб
KaTeX_Main-Italic.woff 26.56Кб
KaTeX_Main-Italic.woff2 22.52Кб
KaTeX_Main-Regular.ttf 68.43Кб
KaTeX_Main-Regular.woff 38.52Кб
KaTeX_Main-Regular.woff2 32.09Кб
KaTeX_Math-BoldItalic.ttf 38.81Кб
KaTeX_Math-BoldItalic.woff 22.65Кб
KaTeX_Math-BoldItalic.woff2 19.57Кб
KaTeX_Math-Italic.ttf 40.48Кб
KaTeX_Math-Italic.woff 23.26Кб
KaTeX_Math-Italic.woff2 19.95Кб
KaTeX_SansSerif-Bold.ttf 33.23Кб
KaTeX_SansSerif-Bold.woff 18.72Кб
KaTeX_SansSerif-Bold.woff2 15.62Кб
KaTeX_SansSerif-Italic.ttf 30.57Кб
KaTeX_SansSerif-Italic.woff 17.70Кб
KaTeX_SansSerif-Italic.woff2 14.86Кб
KaTeX_SansSerif-Regular.ttf 29.45Кб
KaTeX_SansSerif-Regular.woff 16.39Кб
KaTeX_SansSerif-Regular.woff2 13.70Кб
KaTeX_Script-Regular.ttf 24.28Кб
KaTeX_Script-Regular.woff 13.53Кб
KaTeX_Script-Regular.woff2 11.99Кб
KaTeX_Size1-Regular.ttf 12.86Кб
KaTeX_Size1-Regular.woff 6.82Кб
KaTeX_Size1-Regular.woff2 5.69Кб
KaTeX_Size2-Regular.ttf 12.12Кб
KaTeX_Size2-Regular.woff 6.53Кб
KaTeX_Size2-Regular.woff2 5.43Кб
KaTeX_Size3-Regular.ttf 8.16Кб
KaTeX_Size3-Regular.woff 4.66Кб
KaTeX_Size3-Regular.woff2 3.77Кб
KaTeX_Size4-Regular.ttf 11.02Кб
KaTeX_Size4-Regular.woff 6.30Кб
KaTeX_Size4-Regular.woff2 5.06Кб
KaTeX_Typewriter-Regular.ttf 35.46Кб
KaTeX_Typewriter-Regular.woff 20.43Кб
KaTeX_Typewriter-Regular.woff2 17.13Кб
katex.min.css 21.56Кб
katex.min.js 231.26Кб
layer-1-grid.png 45.73Кб
layers.png 286.10Кб
linear-equation.gif 1.23Кб
linear-relationships.png 112.35Кб
mat-headshot.png 179.99Кб
mat-headshot.png 179.99Кб
mat-headshot.png 179.99Кб
maxpool.jpeg 37.07Кб
meme.png 209.05Кб
meme.png 209.05Кб
mnist-012.png 20.21Кб
multi-layer.png 214.34Кб
nlp-m1-l4-language-model.002.png 102.14Кб
nlp-m1-l4-language-model.005.png 119.65Кб
nlp-m1-l4-language-model.006.png 148.41Кб
nlp-m1-l4-language-model.007.png 115.36Кб
nlp-m1-l4-machine-translation.002.png 174.11Кб
nlp-m1-l4-machine-translation.003.png 105.45Кб
nlp-m1-l4-machine-translation.004.png 124.31Кб
nlp-m1-l4-machine-translation.005.png 120.84Кб
nlp-m1-l4-machine-translation.006.png 62.46Кб
nlp-m1-l4-machine-translation.007.png 136.30Кб
nlp-m1-l4-machine-translation.008.png 142.59Кб
nlp-m1-l4-machine-translation.009.png 76.07Кб
nlp-m1-l4-search-and-ranking.002.png 214.08Кб
nlp-m1-l4-search-and-ranking.003.png 99.49Кб
nlp-m1-l4-sentiment-analysis.002.png 93.39Кб
nlp-m1-l4-sentiment-analysis.003.png 59.41Кб
nlp-m1-l4-sentiment-analysis.004-cropped.png 69.94Кб
nlp-m1-l4-topic-modeling.002.png 108.52Кб
nlp-m1-l4-topic-modeling.003.png 218.87Кб
nlp-m1-l4-topic-modeling.004.png 207.38Кб
nlp-m1-l4-topic-modeling.005.png 153.18Кб
nlp-m1-l4-topic-modeling.006.png 149.46Кб
nlp-m1-l4-topic-modeling.008.png 137.49Кб
nmn.png 54.15Кб
notmnist.png 54.15Кб
or-quiz.png 393.62Кб
perceptronquiz.png 93.69Кб
plyr.css 23.62Кб
plyr.polyfilled.min.js 126.16Кб
points.png 63.17Кб
pooling-dims.png 29.17Кб
Project Description - Machine Translation.html 8.01Кб
Project Rubric - Machine Translation.html 8.22Кб
regularization-quiz.png 87.90Кб
relu-network.png 31.09Кб
rnn9.png 169.87Кб
rubric.json 7.58Кб
screen-shot-2016-11-24-at-12.08.11-pm.png 2.90Мб
screen-shot-2016-11-24-at-12.09.02-pm.png 3.09Мб
screen-shot-2016-11-24-at-12.09.24-pm.png 3.49Мб
screen-shot-2017-11-16-at-4.26.22-pm.png 41.24Кб
screen-shot-2017-11-16-at-4.27.58-pm.png 27.77Кб
screen-shot-2017-11-16-at-4.31.41-pm.png 44.91Кб
screen-shot-2017-11-16-at-5.54.40-pm.png 71.35Кб
sequence-to-sequence-embedding-encoder-decoder.png 21.96Кб
sequence-to-sequence-high-level-encoder-decoder.png 11.54Кб
sequence-to-sequence-unrolled-encoder-decoder.png 22.50Кб
session.png 30.85Кб
sigmoid-derivative.gif 2.09Кб
softmax-input-output.png 52.45Кб
student-acceptance.png 20.47Кб
student-quiz.png 748.98Кб
styles.css 3.76Кб
summary.png 93.72Кб
tensorflow.png 85.28Кб
two-layer-network.png 17.15Кб
udacimak.png 461.07Кб
watson-logo.png 190.30Кб
watson-logo.png 190.30Кб
weights-0-1-2.png 24.61Кб
workspaces-gpu.png 145.50Кб
workspaces-jupyter.png 83.54Кб
workspaces-menu.png 93.96Кб
workspaces-new.png 85.21Кб
workspaces-notebook.png 142.90Кб
workspaces-submit.png 146.20Кб
workspaces-terminal.png 46.91Кб
xor.png 214.95Кб
xor-quiz.png 94.14Кб
Статистика распространения по странам
Всего 0
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент