Общая информация
Название [GigaCourse.Com] Udemy - Machine Learning & Deep Learning in Python & R
Тип
Размер 13.15Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[CourseClub.ME].url 122б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
1. ACF and PACF.mp4 41.23Мб
1. ACF and PACF.srt 8.65Кб
1. Basics of Decision Trees.mp4 42.64Мб
1. Basics of Decision Trees.srt 11.27Кб
1. Basic Terminologies.mp4 40.42Мб
1. Basic Terminologies.srt 10.81Кб
1. Boosting.mp4 30.58Мб
1. Boosting.srt 7.81Кб
1. Classification tree.mp4 28.20Мб
1. Classification tree.srt 6.72Кб
1. CNN Introduction.mp4 51.16Мб
1. CNN Introduction.srt 8.13Кб
1. CNN model in Python - Preprocessing.mp4 40.63Мб
1. CNN model in Python - Preprocessing.srt 5.74Кб
1. CNN on MNIST Fashion Dataset - Model Architecture.mp4 7.35Мб
1. CNN on MNIST Fashion Dataset - Model Architecture.srt 2.38Кб
1. Content flow.mp4 8.64Мб
1. Content flow.srt 1.74Кб
1. Data Loading in Python.mp4 108.87Мб
1. Data Loading in Python.srt 17.69Кб
1. Ensemble technique 1 - Bagging.mp4 28.14Мб
1. Ensemble technique 1 - Bagging.srt 7.27Кб
1. Ensemble technique 2 - Random Forests.mp4 18.20Мб
1. Ensemble technique 2 - Random Forests.srt 4.59Кб
1. Gathering Business Knowledge.mp4 22.29Мб
1. Gathering Business Knowledge.srt 4.14Кб
1. ILSVRC.mp4 20.93Мб
1. ILSVRC.srt 4.60Кб
1. Importing Data into R.mp4 53.67Мб
1. Importing Data into R.srt 8.90Кб
1. Installing Keras and Tensorflow.mp4 22.79Мб
1. Installing Keras and Tensorflow.srt 3.01Кб
1. Installing Python and Anaconda.mp4 16.27Мб
1. Installing Python and Anaconda.srt 2.65Кб
1. Installing R and R studio.mp4 35.71Мб
1. Installing R and R studio.srt 6.79Кб
1. Introduction.mp4 29.40Мб
1. Introduction.mp4 12.27Мб
1. Introduction.srt 4.49Кб
1. Introduction.srt 2.18Кб
1. Introduction to Machine Learning.mp4 109.18Мб
1. Introduction to Machine Learning.srt 19.73Кб
1. Introduction to Neural Networks and Course flow.mp4 29.07Мб
1. Introduction to Neural Networks and Course flow.srt 4.77Кб
1. Keras and Tensorflow.mp4 14.92Мб
1. Keras and Tensorflow.srt 3.78Кб
1. Kernel Based Support Vector Machines.mp4 40.12Мб
1. Kernel Based Support Vector Machines.srt 6.71Кб
1. Linear Discriminant Analysis.mp4 40.96Мб
1. Linear Discriminant Analysis.srt 11.89Кб
1. Logistic Regression.mp4 32.93Мб
1. Logistic Regression.srt 8.64Кб
1. Project - Data Augmentation Preprocessing.mp4 41.42Мб
1. Project - Data Augmentation Preprocessing.srt 7.25Кб
1. Project in R - Data Preprocessing.mp4 87.76Мб
1. Project in R - Data Preprocessing.srt 11.89Кб
1. Project - Introduction.mp4 49.39Мб
1. Project - Introduction.srt 7.49Кб
1. Project - Transfer Learning - VGG16 (Implementation).mp4 101.57Мб
1. Project - Transfer Learning - VGG16 (Implementation).srt 14.18Кб
1. Regression and Classification Models.mp4 4.04Мб
1. Regression and Classification Models.srt 810б
1. SARIMA model.mp4 39.03Мб
1. SARIMA model.srt 7.87Кб
1. Support Vector classifiers.mp4 56.17Мб
1. Support Vector classifiers.srt 10.85Кб
1. Test-Train Split.mp4 39.30Мб
1. Test-Train Split.srt 10.59Кб
1. Test Train Split in Python.mp4 57.42Мб
1. Test Train Split in Python.srt 12.05Кб
1. The Data and the Data Dictionary.mp4 79.01Мб
1. The Data and the Data Dictionary.srt 9.32Кб
1. The final milestone!.mp4 11.85Мб
1. The final milestone!.srt 1.73Кб
1. The Problem Statement.mp4 9.37Мб
1. The Problem Statement.srt 1.66Кб
1. Three Classifiers and the problem statement.mp4 20.34Мб
1. Three Classifiers and the problem statement.srt 3.93Кб
1. Types of Data.mp4 21.76Мб
1. Types of Data.srt 5.04Кб
1. Understanding the results of classification models.mp4 41.64Мб
1. Understanding the results of classification models.srt 7.52Кб
1. White Noise.mp4 11.37Мб
1. White Noise.srt 2.52Кб
10. Classification model - Standardizing the data.mp4 9.72Мб
10. Classification model - Standardizing the data.srt 1.89Кб
10. Evaluating performance of model.mp4 35.17Мб
10. Evaluating performance of model.srt 9.38Кб
10. Exponential Smoothing.mp4 8.39Мб
10. Exponential Smoothing.srt 2.10Кб
10. Multiple Linear Regression in Python.mp4 69.74Мб
10. Multiple Linear Regression in Python.srt 14.29Кб
10. Outlier Treatment in Python.mp4 70.26Мб
10. Outlier Treatment in Python.srt 14.12Кб
10. Test-Train split in Python.mp4 24.87Мб
10. Test-Train split in Python.srt 6.17Кб
10. Using Functional API for complex architectures.mp4 92.11Мб
10. Using Functional API for complex architectures.srt 12.95Кб
10. Variable transformation and Deletion in Python.mp4 29.26Мб
10. Variable transformation and Deletion in Python.srt 4.31Кб
10. Working with Seaborn Library of Python.mp4 40.37Мб
10. Working with Seaborn Library of Python.srt 8.24Кб
11. Evaluating model performance in Python.mp4 9.02Мб
11. Evaluating model performance in Python.srt 2.66Кб
11. Multiple Linear Regression in R.mp4 62.38Мб
11. Multiple Linear Regression in R.srt 9.19Кб
11. Outlier Treatment in R.mp4 30.74Мб
11. Outlier Treatment in R.srt 4.89Кб
11. Saving - Restoring Models and Using Callbacks.mp4 151.59Мб
11. Saving - Restoring Models and Using Callbacks.srt 20.83Кб
11. Splitting Data into Test and Train Set in R.mp4 43.98Мб
11. Splitting Data into Test and Train Set in R.srt 5.83Кб
11. SVM Based classification model.mp4 64.13Мб
11. SVM Based classification model.srt 12.39Кб
11. Variable transformation in R.mp4 38.03Мб
11. Variable transformation in R.srt 6.77Кб
12. Creating Decision tree in Python.mp4 17.87Мб
12. Creating Decision tree in Python.srt 4.31Кб
12. Dummy variable creation in Python.mp4 26.37Мб
12. Dummy variable creation in Python.srt 6.15Кб
12. Hyperparameter Tuning.mp4 60.63Мб
12. Hyper Parameter Tuning.mp4 57.74Мб
12. Hyperparameter Tuning.srt 9.81Кб
12. Hyper Parameter Tuning.srt 10.79Кб
12. Missing Value Imputation.mp4 25.00Мб
12. Missing Value Imputation.srt 4.23Кб
12. Predicting probabilities, assigning classes and making Confusion Matrix in R.mp4 55.70Мб
12. Predicting probabilities, assigning classes and making Confusion Matrix in R.srt 7.41Кб
12. Test-train split.mp4 41.88Мб
12. Test-train split.srt 10.88Кб
13. Bias Variance trade-off.mp4 25.09Мб
13. Bias Variance trade-off.srt 6.95Кб
13. Building a Regression Tree in R.mp4 103.34Мб
13. Building a Regression Tree in R.srt 15.50Кб
13. Dummy variable creation in R.mp4 44.36Мб
13. Dummy variable creation in R.srt 6.48Кб
13. Missing Value Imputation in Python.mp4 23.42Мб
13. Missing Value Imputation in Python.srt 4.77Кб
13. Polynomial Kernel with Hyperparameter Tuning.mp4 22.92Мб
13. Polynomial Kernel with Hyperparameter Tuning.srt 4.49Кб
14. Evaluating model performance in Python.mp4 16.44Мб
14. Evaluating model performance in Python.srt 4.73Кб
14. Missing Value imputation in R.mp4 26.01Мб
14. Missing Value imputation in R.srt 4.06Кб
14. Radial Kernel with Hyperparameter Tuning.mp4 37.21Мб
14. Radial Kernel with Hyperparameter Tuning.srt 7.26Кб
14. Test train split in Python.mp4 44.88Мб
14. Test train split in Python.srt 8.74Кб
15. Plotting decision tree in Python.mp4 21.48Мб
15. Plotting decision tree in Python.srt 5.29Кб
15. Seasonality in Data.mp4 17.02Мб
15. Seasonality in Data.srt 3.97Кб
15. Test-Train Split in R.mp4 75.60Мб
15. Test-Train Split in R.srt 9.36Кб
16. Bi-variate analysis and Variable transformation.mp4 100.40Мб
16. Bi-variate analysis and Variable transformation.srt 19.33Кб
16. Pruning a tree.mp4 18.46Мб
16. Pruning a tree.srt 4.54Кб
16. Regression models other than OLS.mp4 16.55Мб
16. Regression models other than OLS.srt 4.75Кб
17. Pruning a tree in Python.mp4 73.50Мб
17. Pruning a tree in Python.srt 10.72Кб
17. Subset selection techniques.mp4 79.07Мб
17. Subset selection techniques.srt 13.68Кб
17. Variable transformation and deletion in Python.mp4 44.12Мб
17. Variable transformation and deletion in Python.srt 9.02Кб
18. Pruning a Tree in R.mp4 82.10Мб
18. Pruning a Tree in R.srt 9.66Кб
18. Subset selection in R.mp4 63.53Мб
18. Subset selection in R.srt 8.22Кб
18. Variable transformation in R.mp4 55.43Мб
18. Variable transformation in R.srt 9.94Кб
19. Non-usable variables.mp4 20.25Мб
19. Non-usable variables.srt 6.03Кб
19. Shrinkage methods Ridge and Lasso.mp4 33.34Мб
19. Shrinkage methods Ridge and Lasso.srt 8.98Кб
2. ARIMA model - Basics.mp4 21.37Мб
2. ARIMA model - Basics.srt 5.10Кб
2. Basic Equations and Ordinary Least Squares (OLS) method.mp4 43.37Мб
2. Basic Equations and Ordinary Least Squares (OLS) method.srt 10.44Кб
2. Basics of R and R studio.mp4 38.85Мб
2. Basics of R and R studio.srt 11.97Кб
2. Building a Machine Learning Model.mp4 39.48Мб
2. Building a Machine Learning Model.srt 10.25Кб
2. CNN model in Python - structure and Compile.mp4 43.26Мб
2. CNN model in Python - structure and Compile.srt 7.27Кб
2. CNN Project in R - Structure and Compile.mp4 46.12Мб
2. CNN Project in R - Structure and Compile.srt 5.55Кб
2. Congratulations & About your certificate.html 1.60Кб
2. Course Resources.html 370б
2. Data Exploration.mp4 20.51Мб
2. Data Exploration.srt 3.88Кб
2. Data for the project.html 232б
2. Data Import in Python.mp4 22.06Мб
2. Data Import in Python.srt 5.28Кб
2. Data Normalization and Test-Train Split.mp4 111.78Мб
2. Data Normalization and Test-Train Split.srt 12.87Кб
2. Data Preprocessing.mp4 67.03Мб
2. Data Preprocessing.srt 7.46Кб
2. Ensemble technique 1 - Bagging in Python.mp4 77.30Мб
2. Ensemble technique 1 - Bagging in Python.srt 12.28Кб
2. Ensemble technique 2 - Random Forests in Python.mp4 46.70Мб
2. Ensemble technique 2 - Random Forests in Python.srt 6.69Кб
2. Ensemble technique 3a - Boosting in Python.mp4 39.88Мб
2. Ensemble technique 3a - Boosting in Python.srt 5.44Кб
2. Gradient Descent.mp4 60.34Мб
2. Gradient Descent.srt 12.70Кб
2. Installing Tensorflow and Keras.mp4 20.06Мб
2. Installing Tensorflow and Keras.srt 4.14Кб
2. LDA in Python.mp4 11.40Мб
2. LDA in Python.srt 2.57Кб
2. LeNET.mp4 7.00Мб
2. LeNET.srt 1.85Кб
2. Limitations of Support Vector Classifiers.mp4 10.80Мб
2. Limitations of Support Vector Classifiers.srt 1.62Кб
2. Naive (Persistence) model in Python.mp4 43.38Мб
2. Naive (Persistence) model in Python.srt 8.17Кб
2. Perceptron.mp4 44.75Мб
2. Perceptron.srt 10.22Кб
2. Project - Data Augmentation Training and Results.mp4 53.04Мб
2. Project - Data Augmentation Training and Results.srt 6.81Кб
2. Project - Transfer Learning - VGG16 (Performance).mp4 64.11Мб
2. Project - Transfer Learning - VGG16 (Performance).srt 8.81Кб
2. Random Walk.mp4 21.17Мб
2. Random Walk.srt 4.59Кб
2. SARIMA model in Python.mp4 66.23Мб
2. SARIMA model in Python.srt 11.58Кб
2. Stride.mp4 16.58Мб
2. Stride.srt 3.01Кб
2. Summary of the three models.mp4 22.22Мб
2. Summary of the three models.srt 5.96Кб
2. Test-Train Split.mp4 50.48Мб
2. Test-Train Split.srt 6.04Кб
2. Test-Train Split in Python.mp4 33.10Мб
2. Test-Train Split in Python.srt 7.39Кб
2. The Concept of a Hyperplane.mp4 29.42Мб
2. The Concept of a Hyperplane.srt 5.31Кб
2. The Data set for Classification problem.mp4 18.57Мб
2. The Data set for Classification problem.srt 1.91Кб
2. The Data set for the Regression problem.mp4 37.20Мб
2. The Data set for the Regression problem.srt 3.28Кб
2. This is a milestone!.mp4 20.66Мб
2. This is a milestone!.srt 3.78Кб
2. Time Series Forecasting - Use cases.mp4 25.92Мб
2. Time Series Forecasting - Use cases.srt 2.51Кб
2. Time Series - Visualization Basics.mp4 63.72Мб
2. Time Series - Visualization Basics.srt 10.25Кб
2. Training a Simple Logistic Model in Python.mp4 47.87Мб
2. Training a Simple Logistic Model in Python.srt 10.63Кб
2. Types of Statistics.mp4 10.94Мб
2. Types of Statistics.srt 3.17Кб
2. Understanding a Regression Tree.mp4 43.72Мб
2. Understanding a Regression Tree.srt 11.91Кб
2. Why can't we use Linear Regression.mp4 16.94Мб
2. Why can't we use Linear Regression.srt 5.49Кб
20. Dummy variable creation Handling qualitative data.mp4 36.81Мб
20. Dummy variable creation Handling qualitative data.srt 5.77Кб
20. Ridge regression and Lasso in Python.mp4 128.85Мб
20. Ridge regression and Lasso in Python.srt 20.90Кб
21. Dummy variable creation in Python.mp4 26.53Мб
21. Dummy variable creation in Python.srt 6.21Кб
21. Ridge regression and Lasso in R.mp4 103.43Мб
21. Ridge regression and Lasso in R.srt 12.38Кб
22. Dummy variable creation in R.mp4 43.99Мб
22. Dummy variable creation in R.srt 6.09Кб
22. Heteroscedasticity.mp4 14.49Мб
22. Heteroscedasticity.srt 2.82Кб
23. Correlation Analysis.mp4 71.60Мб
23. Correlation Analysis.srt 11.91Кб
24. Correlation Analysis in Python.mp4 55.30Мб
24. Correlation Analysis in Python.srt 6.96Кб
25. Correlation Matrix in R.mp4 83.13Мб
25. Correlation Matrix in R.srt 9.58Кб
26. Quiz.html 170б
3. Activation Functions.mp4 34.62Мб
3. Activation Functions.srt 8.17Кб
3. ARIMA model in Python.mp4 74.44Мб
3. ARIMA model in Python.srt 14.30Кб
3. Assessing accuracy of predicted coefficients.mp4 92.11Мб
3. Assessing accuracy of predicted coefficients.srt 17.40Кб
3. Auto Regression Model - Basics.mp4 16.89Мб
3. Auto Regression Model - Basics.srt 3.64Кб
3. Back Propagation.mp4 122.20Мб
3. Back Propagation.srt 24.77Кб
3. Bagging in R.mp4 58.96Мб
3. Bagging in R.srt 7.13Кб
3. Building,Compiling and Training.mp4 130.74Мб
3. Building,Compiling and Training.srt 16.27Кб
3. Classification tree in Python Preprocessing.mp4 45.38Мб
3. Classification tree in Python Preprocessing.srt 8.92Кб
3. CNN model in Python - Training and results.mp4 55.15Мб
3. CNN model in Python - Training and results.srt 6.41Кб
3. Creating Model Architecture.mp4 71.60Мб
3. Creating Model Architecture.srt 6.29Кб
3. Dataset for classification.mp4 56.19Мб
3. Dataset for classification.srt 7.90Кб
3. Decomposing Time Series in Python.mp4 59.84Мб
3. Decomposing Time Series in Python.srt 10.43Кб
3. Describing data Graphically.mp4 65.40Мб
3. Describing data Graphically.srt 12.77Кб
3. Forecasting model creation - Steps.mp4 10.11Мб
3. Forecasting model creation - Steps.srt 2.92Кб
3. Gradient Boosting in R.mp4 69.09Мб
3. Gradient Boosting in R.srt 8.55Кб
3. Importing data for regression model.mp4 25.84Мб
3. Importing data for regression model.srt 5.88Кб
3. Importing the dataset into R.mp4 13.47Мб
3. Importing the dataset into R.srt 2.81Кб
3. Linear Discriminant Analysis in R.mp4 74.36Мб
3. Linear Discriminant Analysis in R.srt 10.22Кб
3. Maximum Margin Classifier.mp4 22.48Мб
3. Maximum Margin Classifier.srt 3.46Кб
3. More about test-train split.html 559б
3. Opening Jupyter Notebook.mp4 65.19Мб
3. Opening Jupyter Notebook.srt 9.84Кб
3. Packages in R.mp4 82.95Мб
3. Packages in R.srt 12.24Кб
3. Padding.mp4 31.63Мб
3. Padding.srt 4.95Кб
3. Project - Data Preprocessing in Python.mp4 71.83Мб
3. Project - Data Preprocessing in Python.srt 9.16Кб
3. Project in R - Training.mp4 24.58Мб
3. Project in R - Training.srt 3.16Кб
3. Stationary time Series.mp4 5.58Мб
3. Stationary time Series.srt 1.70Кб
3. Test-Train Split in R.mp4 74.23Мб
3. Test-Train Split in R.srt 9.81Кб
3. The Dataset and the Data Dictionary.mp4 69.29Мб
3. The Dataset and the Data Dictionary.srt 8.75Кб
3. The stopping criteria for controlling tree growth.mp4 13.98Мб
3. The stopping criteria for controlling tree growth.srt 3.51Кб
3. Time Series - Visualization in Python.mp4 165.20Мб
3. Time Series - Visualization in Python.srt 28.94Кб
3. Training a Simple Logistic model in R.mp4 25.57Мб
3. Training a Simple Logistic model in R.srt 4.21Кб
3. Using Grid Search in Python.mp4 80.67Мб
3. Using Grid Search in Python.srt 13.69Кб
3. VGG16NET.mp4 10.35Мб
3. VGG16NET.srt 1.98Кб
4. ARIMA model with Walk Forward Validation in Python.mp4 32.15Мб
4. ARIMA model with Walk Forward Validation in Python.srt 6.20Кб
4. Assessing Model Accuracy RSE and R squared.mp4 43.60Мб
4. Assessing Model Accuracy RSE and R squared.srt 8.37Кб
4. Auto Regression Model creation in Python.mp4 53.49Мб
4. Auto Regression Model creation in Python.srt 10.20Кб
4. Classification SVM model using Linear Kernel.mp4 139.16Мб
4. Classification SVM model using Linear Kernel.srt 17.75Кб
4. Classification tree in Python Training.mp4 82.72Мб
4. Classification tree in Python Training.srt 14.51Кб
4. Comparison - Pooling vs Without Pooling in Python.mp4 57.97Мб
4. Comparison - Pooling vs Without Pooling in Python.srt 5.56Кб
4. Compiling and training.mp4 32.20Мб
4. Compiling and training.srt 3.14Кб
4. Differencing.mp4 32.35Мб
4. Differencing.srt 6.69Кб
4. EDD in Python.mp4 77.63Мб
4. EDD in Python.srt 17.77Кб
4. Ensemble technique 3b - AdaBoost in Python.mp4 30.54Мб
4. Ensemble technique 3b - AdaBoost in Python.srt 4.42Кб
4. Evaluating and Predicting.mp4 99.28Мб
4. Evaluating and Predicting.srt 10.11Кб
4. Filters and Feature maps.mp4 52.71Мб
4. Filters and Feature maps.srt 7.58Кб
4. Forecasting model creation - Steps 1 (Goal).mp4 34.50Мб
4. Forecasting model creation - Steps 1 (Goal).srt 6.43Кб
4. GoogLeNet.mp4 21.37Мб
4. GoogLeNet.srt 3.22Кб
4. Importing Data in Python.mp4 27.84Мб
4. Importing Data in Python.srt 6.45Кб
4. Inputting data part 1 Inbuilt datasets of R.mp4 40.74Мб
4. Inputting data part 1 Inbuilt datasets of R.srt 4.65Кб
4. Introduction to Jupyter.mp4 40.92Мб
4. Introduction to Jupyter.srt 13.20Кб
4. K-Nearest Neighbors classifier.mp4 75.42Мб
4. K-Nearest Neighbors classifier.srt 9.98Кб
4. Limitations of Maximum Margin Classifier.mp4 10.61Мб
4. Limitations of Maximum Margin Classifier.srt 2.64Кб
4. Measures of Centers.mp4 38.58Мб
4. Measures of Centers.srt 7.87Кб
4. Normalization and Test-Train split.mp4 44.20Мб
4. Normalization and Test-Train split.srt 6.12Кб
4. Project in R - Model Performance.mp4 23.18Мб
4. Project in R - Model Performance.srt 2.51Кб
4. Project - Training CNN model in Python.mp4 65.98Мб
4. Project - Training CNN model in Python.srt 9.15Кб
4. Python - Creating Perceptron model.mp4 86.56Мб
4. Python - Creating Perceptron model.srt 15.71Кб
4. Random Forest in R.mp4 30.72Мб
4. Random Forest in R.srt 4.77Кб
4. Result of Simple Logistic Regression.mp4 26.94Мб
4. Result of Simple Logistic Regression.srt 5.90Кб
4. Some Important Concepts.mp4 62.18Мб
4. Some Important Concepts.srt 13.65Кб
4. The Data set for this part.mp4 37.26Мб
4. The Data set for this part.srt 3.28Кб
4. Time Series - Feature Engineering Basics.mp4 59.48Мб
4. Time Series - Feature Engineering Basics.srt 11.76Кб
4. X-y Split.mp4 15.18Мб
4. X-y Split.srt 4.24Кб
5. AdaBoosting in R.mp4 88.67Мб
5. AdaBoosting in R.srt 10.51Кб
5. ANN with NeuralNets Package.mp4 84.42Мб
5. ANN with NeuralNets Package.srt 8.44Кб
5. Arithmetic operators in Python Python Basics.mp4 12.74Мб
5. Arithmetic operators in Python Python Basics.srt 4.44Кб
5. Auto Regression with Walk Forward validation in Python.mp4 49.60Мб
5. Auto Regression with Walk Forward validation in Python.srt 8.79Кб
5. Building a classification Tree in R.mp4 85.10Мб
5. Building a classification Tree in R.srt 10.13Кб
5. Channels.mp4 67.77Мб
5. Channels.srt 6.24Кб
5. Differencing in Python.mp4 113.01Мб
5. Differencing in Python.srt 15.73Кб
5. Different ways to create ANN using Keras.mp4 10.82Мб
5. Different ways to create ANN using Keras.srt 1.98Кб
5. EDD in R.mp4 66.52Мб
5. EDD in R.srt 11.37Кб
5. Hyperparameter.mp4 45.36Мб
5. Hyperparameter.srt 9.32Кб
5. Hyperparameter Tuning for Linear Kernel.mp4 60.50Мб
5. Hyperparameter Tuning for Linear Kernel.srt 6.95Кб
5. Importing the Data set into Python.mp4 25.85Мб
5. Importing the Data set into Python.srt 5.88Кб
5. Importing the dataset into R.mp4 13.12Мб
5. Importing the dataset into R.srt 2.81Кб
5. Inputting data part 2 Manual data entry.mp4 25.52Мб
5. Inputting data part 2 Manual data entry.srt 3.35Кб
5. K-Nearest Neighbors in Python Part 1.mp4 37.23Мб
5. K-Nearest Neighbors in Python Part 1.srt 5.83Кб
5. Logistic with multiple predictors.mp4 8.53Мб
5. Logistic with multiple predictors.srt 2.96Кб
5. Measures of Dispersion.mp4 22.85Мб
5. Measures of Dispersion.srt 5.23Кб
5. Model Performance.mp4 68.08Мб
5. Model Performance.srt 6.56Кб
5. Project in Python - model results.mp4 21.02Мб
5. Project in Python - model results.srt 2.90Кб
5. Project in R - Data Augmentation.mp4 56.38Мб
5. Project in R - Data Augmentation.srt 7.86Кб
5. Simple Linear Regression in Python.mp4 63.43Мб
5. Simple Linear Regression in Python.srt 13.13Кб
5. Test-Train Split.mp4 24.87Мб
5. Test-Train Split.srt 6.17Кб
5. Time Series - Basic Notations.mp4 62.48Мб
5. Time Series - Basic Notations.srt 9.65Кб
5. Time Series - Feature Engineering in Python.mp4 112.69Мб
5. Time Series - Feature Engineering in Python.srt 19.25Кб
5. Transfer Learning.mp4 29.99Мб
5. Transfer Learning.srt 5.44Кб
6. Advantages and Disadvantages of Decision Trees.mp4 6.86Мб
6. Advantages and Disadvantages of Decision Trees.srt 1.70Кб
6. Building Regression Model with Functional API.mp4 131.13Мб
6. Building Regression Model with Functional API.srt 13.54Кб
6. Building the Neural Network using Keras.mp4 79.11Мб
6. Building the Neural Network using Keras.srt 12.92Кб
6. Comparison - Pooling vs Without Pooling in R.mp4 44.60Мб
6. Comparison - Pooling vs Without Pooling in R.srt 4.17Кб
6. Ensemble technique 3c - XGBoost in Python.mp4 75.01Мб
6. Ensemble technique 3c - XGBoost in Python.srt 11.43Кб
6. Importing the Data set into R.mp4 43.70Мб
6. Importing the Data set into R.srt 7.24Кб
6. Inputting data part 3 Importing from CSV or Text files.mp4 60.11Мб
6. Inputting data part 3 Importing from CSV or Text files.srt 7.03Кб
6. K-Nearest Neighbors in Python Part 2.mp4 42.36Мб
6. K-Nearest Neighbors in Python Part 2.srt 6.93Кб
6. Moving Average model -Basics.mp4 24.10Мб
6. Moving Average model -Basics.srt 5.01Кб
6. Outlier treatment in Python.mp4 47.32Мб
6. Outlier treatment in Python.srt 9.55Кб
6. Polynomial Kernel with Hyperparameter Tuning.mp4 83.14Мб
6. Polynomial Kernel with Hyperparameter Tuning.srt 11.49Кб
6. PoolingLayer.mp4 46.88Мб
6. PoolingLayer.srt 5.85Кб
6. Project in R - Validation Performance.mp4 23.69Мб
6. Project in R - Validation Performance.srt 2.58Кб
6. Project - Transfer Learning - VGG16.mp4 129.10Мб
6. Project - Transfer Learning - VGG16.srt 20.43Кб
6. Simple Linear Regression in R.mp4 40.83Мб
6. Simple Linear Regression in R.srt 9.26Кб
6. Standardizing the data.mp4 38.41Мб
6. Standardizing the data.srt 6.51Кб
6. Strings in Python Python Basics.mp4 64.44Мб
6. Strings in Python Python Basics.srt 17.97Кб
6. Time Series - Upsampling and Downsampling.mp4 16.96Мб
6. Time Series - Upsampling and Downsampling.srt 4.30Кб
6. Training multiple predictor Logistic model in Python.mp4 26.25Мб
6. Training multiple predictor Logistic model in Python.srt 6.01Кб
6. Univariate analysis and EDD.mp4 24.19Мб
6. Univariate analysis and EDD.srt 3.97Кб
7. Compiling and Training the Neural Network model.mp4 81.63Мб
7. Compiling and Training the Neural Network model.srt 10.03Кб
7. Complex Architectures using Functional API.mp4 79.57Мб
7. Complex Architectures using Functional API.srt 8.87Кб
7. Creating Barplots in R.mp4 96.74Мб
7. Creating Barplots in R.srt 15.00Кб
7. EDD in Python.mp4 61.81Мб
7. EDD in Python.srt 11.61Кб
7. K-Nearest Neighbors in R.mp4 64.85Мб
7. K-Nearest Neighbors in R.srt 8.98Кб
7. Lists, Tuples and Directories Python Basics.mp4 60.33Мб
7. Lists, Tuples and Directories Python Basics.srt 20.11Кб
7. Missing value treatment in Python.mp4 17.93Мб
7. Missing value treatment in Python.srt 3.73Кб
7. Moving Average model in Python.mp4 56.65Мб
7. Moving Average model in Python.srt 9.59Кб
7. Multiple Linear Regression.mp4 34.32Мб
7. Multiple Linear Regression.srt 6.30Кб
7. Outlier Treatment in R.mp4 25.37Мб
7. Outlier Treatment in R.srt 4.80Кб
7. Radial Kernel with Hyperparameter Tuning.mp4 56.68Мб
7. Radial Kernel with Hyperparameter Tuning.srt 7.19Кб
7. SVM based Regression Model in Python.mp4 67.64Мб
7. SVM based Regression Model in Python.srt 10.45Кб
7. Time Series - Upsampling and Downsampling in Python.mp4 100.67Мб
7. Time Series - Upsampling and Downsampling in Python.srt 17.62Кб
7. Training multiple predictor Logistic model in R.mp4 15.78Мб
7. Training multiple predictor Logistic model in R.srt 2.02Кб
7. XGBoosting in R.mp4 161.30Мб
7. XGBoosting in R.srt 18.43Кб
8. Confusion Matrix.mp4 21.10Мб
8. Confusion Matrix.srt 4.91Кб
8. Creating Histograms in R.mp4 42.02Мб
8. Creating Histograms in R.srt 6.14Кб
8. Dummy Variable creation in Python.mp4 24.94Мб
8. Dummy Variable creation in Python.srt 5.34Кб
8. EDD in R.mp4 96.98Мб
8. EDD in R.srt 13.19Кб
8. Evaluating performance and Predicting using Keras.mp4 69.91Мб
8. Evaluating performance and Predicting using Keras.srt 9.81Кб
8. Missing Value Imputation in Python.mp4 22.56Мб
8. Missing Value Imputation in Python.srt 4.83Кб
8. Saving - Restoring Models and Using Callbacks.mp4 216.03Мб
8. Saving - Restoring Models and Using Callbacks.srt 21.38Кб
8. SVM based Regression Model in R.mp4 106.12Мб
8. SVM based Regression Model in R.srt 12.05Кб
8. The Data set for the Classification problem.mp4 18.56Мб
8. The Data set for the Classification problem.srt 1.91Кб
8. The F - statistic.mp4 55.99Мб
8. The F - statistic.srt 9.66Кб
8. Time Series - Power Transformation.mp4 14.86Мб
8. Time Series - Power Transformation.srt 2.67Кб
8. Working with Numpy Library of Python.mp4 43.88Мб
8. Working with Numpy Library of Python.srt 11.85Кб
9. Building Neural Network for Regression Problem.mp4 155.90Мб
9. Building Neural Network for Regression Problem.srt 23.75Кб
9. Classification model - Preprocessing.mp4 45.38Мб
9. Classification model - Preprocessing.srt 8.92Кб
9. Creating Confusion Matrix in Python.mp4 51.25Мб
9. Creating Confusion Matrix in Python.srt 10.85Кб
9. Dependent- Independent Data split in Python.mp4 15.18Мб
9. Dependent- Independent Data split in Python.srt 4.24Кб
9. Interpreting results of Categorical variables.mp4 22.50Мб
9. Interpreting results of Categorical variables.srt 5.91Кб
9. Missing Value imputation in R.mp4 19.05Мб
9. Missing Value imputation in R.srt 4.10Кб
9. Moving Average.mp4 38.71Мб
9. Moving Average.srt 7.79Кб
9. Outlier Treatment.mp4 24.50Мб
9. Outlier Treatment.srt 5.09Кб
9. Working with Pandas Library of Python.mp4 46.88Мб
9. Working with Pandas Library of Python.srt 10.12Кб
Статистика распространения по странам
Россия (RU) 2
Румыния (RO) 1
США (US) 1
Мексика (MX) 1
ЮАР (ZA) 1
Всего 6
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент