|
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
| [CourseClub.Me].url |
122б |
| [CourseClub.Me].url |
122б |
| [CourseClub.Me].url |
122б |
| [CourseClub.Me].url |
122б |
| [FreeCourseSite.com].url |
127б |
| [FreeCourseSite.com].url |
127б |
| [FreeCourseSite.com].url |
127б |
| [FreeCourseSite.com].url |
127б |
| [GigaCourse.Com].url |
49б |
| [GigaCourse.Com].url |
49б |
| [GigaCourse.Com].url |
49б |
| [GigaCourse.Com].url |
49б |
| 1.1 Data Links.html |
157б |
| 1.2 Github Link.html |
145б |
| 1. Anaconda Environment Setup.mp4 |
52.64Мб |
| 1. Anaconda Environment Setup.srt |
20.13Кб |
| 1. Beginner's Corner Section Introduction.mp4 |
49.75Мб |
| 1. Beginner's Corner Section Introduction.srt |
15.06Кб |
| 1. Data Links.html |
256б |
| 1. Fine-Tuning Section Introduction.mp4 |
20.16Мб |
| 1. Fine-Tuning Section Introduction.srt |
6.14Кб |
| 1. Get Your Hands Dirty, Practical Coding Experience, Data Links.mp4 |
43.55Мб |
| 1. Get Your Hands Dirty, Practical Coding Experience, Data Links.srt |
11.99Кб |
| 1. How to Code by Yourself (part 1).mp4 |
71.84Мб |
| 1. How to Code by Yourself (part 1).srt |
23.13Кб |
| 1. How to Succeed in this Course (Long Version).mp4 |
17.87Мб |
| 1. How to Succeed in this Course (Long Version).srt |
14.55Кб |
| 1. Implementation Section Introduction.mp4 |
25.60Мб |
| 1. Implementation Section Introduction.srt |
8.49Кб |
| 1. Introduction.mp4 |
34.60Мб |
| 1. Introduction.srt |
5.63Кб |
| 1. Question-Answering Section Introduction.mp4 |
21.52Мб |
| 1. Question-Answering Section Introduction.srt |
6.11Кб |
| 1. Theory Section Introduction.mp4 |
17.14Мб |
| 1. Theory Section Introduction.srt |
6.88Кб |
| 1. Token Classification Section Introduction.mp4 |
35.82Мб |
| 1. Token Classification Section Introduction.srt |
9.59Кб |
| 1. Translation Section Introduction.mp4 |
18.20Мб |
| 1. Translation Section Introduction.srt |
6.35Кб |
| 1. What is the Appendix.mp4 |
16.37Мб |
| 1. What is the Appendix.srt |
3.88Кб |
| 10. Decoder Architecture.mp4 |
49.61Мб |
| 10. Decoder Architecture.srt |
14.61Кб |
| 10. Fine-Tuning Transformers with Custom Dataset.mp4 |
106.85Мб |
| 10. Fine-Tuning Transformers with Custom Dataset.srt |
15.10Кб |
| 10. How to Train a Causal Language Model From Scratch.mp4 |
120.37Мб |
| 10. How to Train a Causal Language Model From Scratch.srt |
20.12Кб |
| 10. Metrics (Code).mp4 |
39.34Мб |
| 10. Metrics (Code).srt |
6.09Кб |
| 10. Named Entity Recognition (NER) in Python.mp4 |
70.24Мб |
| 10. Named Entity Recognition (NER) in Python.srt |
9.63Кб |
| 10. Question-Answering Metrics.mp4 |
16.50Мб |
| 10. Question-Answering Metrics.srt |
4.71Кб |
| 10. Train & Evaluate (Code Preparation).mp4 |
21.27Мб |
| 10. Train & Evaluate (Code Preparation).srt |
5.62Кб |
| 11. Encoder-Decoder Architecture.mp4 |
39.70Мб |
| 11. Encoder-Decoder Architecture.srt |
11.36Кб |
| 11. Hugging Face AutoConfig.mp4 |
40.86Мб |
| 11. Hugging Face AutoConfig.srt |
6.03Кб |
| 11. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 1).mp4 |
93.99Мб |
| 11. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 1).srt |
13.39Кб |
| 11. Model and Trainer (Code Preparation).mp4 |
10.79Мб |
| 11. Model and Trainer (Code Preparation).srt |
2.91Кб |
| 11. Question-Answering Metrics in Python.mp4 |
22.88Мб |
| 11. Question-Answering Metrics in Python.srt |
2.98Кб |
| 11. Text Summarization.mp4 |
24.15Мб |
| 11. Text Summarization.srt |
7.08Кб |
| 11. Train & Evaluate (Code).mp4 |
35.74Мб |
| 11. Train & Evaluate (Code).srt |
4.64Кб |
| 12. BERT.mp4 |
23.25Мб |
| 12. BERT.srt |
6.12Кб |
| 12. Fine-Tuning with Multiple Inputs (Textual Entailment).mp4 |
28.42Мб |
| 12. Fine-Tuning with Multiple Inputs (Textual Entailment).srt |
10.32Кб |
| 12. From Logits to Answers.mp4 |
95.56Мб |
| 12. From Logits to Answers.srt |
27.71Кб |
| 12. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 2).mp4 |
95.19Мб |
| 12. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 2).srt |
14.97Кб |
| 12. Model and Trainer (Code).mp4 |
22.18Мб |
| 12. Model and Trainer (Code).srt |
3.12Кб |
| 12. Text Summarization in Python.mp4 |
45.47Мб |
| 12. Text Summarization in Python.srt |
7.55Кб |
| 12. Translation Section Summary.mp4 |
9.77Мб |
| 12. Translation Section Summary.srt |
3.30Кб |
| 13. Fine-Tuning Transformers with Multiple Inputs in Python.mp4 |
56.66Мб |
| 13. Fine-Tuning Transformers with Multiple Inputs in Python.srt |
6.62Кб |
| 13. From Logits to Answers in Python.mp4 |
120.62Мб |
| 13. From Logits to Answers in Python.srt |
16.89Кб |
| 13. GPT.mp4 |
31.17Мб |
| 13. GPT.srt |
8.65Кб |
| 13. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 3).mp4 |
108.62Мб |
| 13. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 3).srt |
17.47Кб |
| 13. Neural Machine Translation.mp4 |
28.10Мб |
| 13. Neural Machine Translation.srt |
8.15Кб |
| 13. POS Tagging & Custom Datasets (Exercise Prompt).mp4 |
21.33Мб |
| 13. POS Tagging & Custom Datasets (Exercise Prompt).srt |
6.85Кб |
| 14. Computing Metrics.mp4 |
24.94Мб |
| 14. Computing Metrics.srt |
6.62Кб |
| 14. Fine-Tuning Section Summary.mp4 |
15.78Мб |
| 14. Fine-Tuning Section Summary.srt |
4.11Кб |
| 14. GPT-2.mp4 |
29.67Мб |
| 14. GPT-2.srt |
8.27Кб |
| 14. Implementation Section Summary.mp4 |
10.59Мб |
| 14. Implementation Section Summary.srt |
1.99Кб |
| 14. Neural Machine Translation in Python.mp4 |
64.10Мб |
| 14. Neural Machine Translation in Python.srt |
9.72Кб |
| 14. POS Tagging & Custom Datasets (Solution).mp4 |
115.13Мб |
| 14. POS Tagging & Custom Datasets (Solution).srt |
17.90Кб |
| 15. Computing Metrics in Python.mp4 |
44.26Мб |
| 15. Computing Metrics in Python.srt |
6.08Кб |
| 15. GPT-3.mp4 |
23.99Мб |
| 15. GPT-3.srt |
6.57Кб |
| 15. Question Answering.mp4 |
40.10Мб |
| 15. Question Answering.srt |
10.03Кб |
| 15. Token Classification Section Summary.mp4 |
8.04Мб |
| 15. Token Classification Section Summary.srt |
2.60Кб |
| 16. Question Answering in Python.mp4 |
48.15Мб |
| 16. Question Answering in Python.srt |
6.97Кб |
| 16. Theory Section Summary.mp4 |
21.00Мб |
| 16. Theory Section Summary.srt |
6.29Кб |
| 16. Train and Evaluate.mp4 |
14.07Мб |
| 16. Train and Evaluate.srt |
3.32Кб |
| 17. Train and Evaluate in Python.mp4 |
37.80Мб |
| 17. Train and Evaluate in Python.srt |
4.67Кб |
| 17. Zero-Shot Classification.mp4 |
30.12Мб |
| 17. Zero-Shot Classification.srt |
7.60Кб |
| 18. Question-Answering Section Summary.mp4 |
14.24Мб |
| 18. Question-Answering Section Summary.srt |
5.04Кб |
| 18. Zero-Shot Classification in Python.mp4 |
87.61Мб |
| 18. Zero-Shot Classification in Python.srt |
16.41Кб |
| 19. Beginner's Corner Section Summary.mp4 |
23.18Мб |
| 19. Beginner's Corner Section Summary.srt |
6.39Кб |
| 2. Basic Self-Attention.mp4 |
36.97Мб |
| 2. Basic Self-Attention.srt |
12.44Кб |
| 2. BONUS.mp4 |
39.92Мб |
| 2. BONUS.srt |
7.94Кб |
| 2. Data & Tokenizer (Code Preparation).mp4 |
19.34Мб |
| 2. Data & Tokenizer (Code Preparation).mp4 |
24.53Мб |
| 2. Data & Tokenizer (Code Preparation).srt |
6.81Кб |
| 2. Data & Tokenizer (Code Preparation).srt |
7.50Кб |
| 2. Encoder Implementation Plan & Outline.mp4 |
23.02Мб |
| 2. Encoder Implementation Plan & Outline.srt |
8.37Кб |
| 2. Exploring the Dataset (SQuAD).mp4 |
20.16Мб |
| 2. Exploring the Dataset (SQuAD).srt |
5.68Кб |
| 2. From RNNs to Attention and Transformers - Intuition.mp4 |
78.20Мб |
| 2. From RNNs to Attention and Transformers - Intuition.srt |
24.01Кб |
| 2. How to Code by Yourself (part 2).mp4 |
49.14Мб |
| 2. How to Code by Yourself (part 2).srt |
13.24Кб |
| 2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4 |
43.61Мб |
| 2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt |
15.81Кб |
| 2. How to use Github & Extra Coding Tips (Optional).mp4 |
63.90Мб |
| 2. How to use Github & Extra Coding Tips (Optional).srt |
15.71Кб |
| 2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 |
38.96Мб |
| 2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt |
32.69Кб |
| 2. Outline.mp4 |
50.65Мб |
| 2. Outline.srt |
13.51Кб |
| 2. Text Preprocessing and Tokenization Review.mp4 |
63.16Мб |
| 2. Text Preprocessing and Tokenization Review.srt |
18.22Кб |
| 20. Suggestion Box.mp4 |
27.17Мб |
| 20. Suggestion Box.srt |
4.82Кб |
| 3.1 Code Link.html |
125б |
| 3.2 Data Links.html |
157б |
| 3.3 Github Link.html |
145б |
| 3. Data & Tokenizer (Code).mp4 |
42.75Мб |
| 3. Data & Tokenizer (Code).srt |
9.20Кб |
| 3. Exploring the Dataset (SQuAD) in Python.mp4 |
39.85Мб |
| 3. Exploring the Dataset (SQuAD) in Python.srt |
4.66Кб |
| 3. How to Implement Multihead Attention From Scratch.mp4 |
93.41Мб |
| 3. How to Implement Multihead Attention From Scratch.srt |
15.50Кб |
| 3. Machine Learning and AI Prerequisite Roadmap (pt 1).mp4 |
79.66Мб |
| 3. Machine Learning and AI Prerequisite Roadmap (pt 1).srt |
17.14Кб |
| 3. Models and Tokenizers.mp4 |
64.57Мб |
| 3. Models and Tokenizers.srt |
20.60Кб |
| 3. Proof that using Jupyter Notebook is the same as not using it.mp4 |
69.42Мб |
| 3. Proof that using Jupyter Notebook is the same as not using it.srt |
14.92Кб |
| 3. Self-Attention & Scaled Dot-Product Attention.mp4 |
64.27Мб |
| 3. Self-Attention & Scaled Dot-Product Attention.srt |
23.94Кб |
| 3. Sentiment Analysis.mp4 |
53.60Мб |
| 3. Sentiment Analysis.srt |
14.55Кб |
| 3. Things Move Fast.mp4 |
6.09Мб |
| 3. Things Move Fast.srt |
2.36Кб |
| 3. Where to get the code, notebooks, and data.mp4 |
17.77Мб |
| 3. Where to get the code, notebooks, and data.srt |
4.29Кб |
| 4. Are You Beginner, Intermediate, or Advanced All are OK!.mp4 |
26.74Мб |
| 4. Are You Beginner, Intermediate, or Advanced All are OK!.srt |
7.14Кб |
| 4. Attention Efficiency.mp4 |
21.57Мб |
| 4. Attention Efficiency.srt |
5.86Кб |
| 4. Data & Tokenizer (Code).mp4 |
34.12Мб |
| 4. Data & Tokenizer (Code).srt |
6.44Кб |
| 4. How to Implement the Transformer Block From Scratch.mp4 |
14.94Мб |
| 4. How to Implement the Transformer Block From Scratch.srt |
2.36Кб |
| 4. Machine Learning and AI Prerequisite Roadmap (pt 2).mp4 |
108.17Мб |
| 4. Machine Learning and AI Prerequisite Roadmap (pt 2).srt |
23.93Кб |
| 4. Models and Tokenizers in Python.mp4 |
84.26Мб |
| 4. Models and Tokenizers in Python.srt |
14.12Кб |
| 4. Sentiment Analysis in Python.mp4 |
97.05Мб |
| 4. Sentiment Analysis in Python.srt |
21.12Кб |
| 4. Target Alignment (Code Preparation).mp4 |
43.02Мб |
| 4. Target Alignment (Code Preparation).srt |
13.76Кб |
| 4. Using the Tokenizer.mp4 |
34.52Мб |
| 4. Using the Tokenizer.srt |
10.82Кб |
| 5. Aside Seq2Seq Basics (Optional).mp4 |
37.06Мб |
| 5. Aside Seq2Seq Basics (Optional).srt |
15.25Кб |
| 5. Attention Mask.mp4 |
15.11Мб |
| 5. Attention Mask.srt |
5.04Кб |
| 5. Create Tokenized Dataset (Code Preparation).mp4 |
18.34Мб |
| 5. Create Tokenized Dataset (Code Preparation).srt |
5.00Кб |
| 5. How to Implement Positional Encoding From Scratch.mp4 |
35.87Мб |
| 5. How to Implement Positional Encoding From Scratch.srt |
6.26Кб |
| 5. How to Succeed in This Course.mp4 |
41.19Мб |
| 5. How to Succeed in This Course.srt |
13.03Кб |
| 5. Text Generation.mp4 |
57.10Мб |
| 5. Text Generation.srt |
15.45Кб |
| 5. Transfer Learning & Fine-Tuning (pt 1).mp4 |
59.83Мб |
| 5. Transfer Learning & Fine-Tuning (pt 1).srt |
12.69Кб |
| 5. Using the Tokenizer in Python.mp4 |
72.13Мб |
| 5. Using the Tokenizer in Python.srt |
13.08Кб |
| 6. Aligning the Targets.mp4 |
69.08Мб |
| 6. Aligning the Targets.srt |
19.33Кб |
| 6. How to Implement Transformer Encoder From Scratch.mp4 |
27.03Мб |
| 6. How to Implement Transformer Encoder From Scratch.srt |
4.82Кб |
| 6. Model Inputs (Code Preparation).mp4 |
32.41Мб |
| 6. Model Inputs (Code Preparation).srt |
11.21Кб |
| 6. Multi-Head Attention.mp4 |
33.71Мб |
| 6. Multi-Head Attention.srt |
9.35Кб |
| 6. Target Alignment (Code).mp4 |
61.65Мб |
| 6. Target Alignment (Code).srt |
11.86Кб |
| 6. Text Generation in Python.mp4 |
86.35Мб |
| 6. Text Generation in Python.srt |
14.92Кб |
| 6. Transfer Learning & Fine-Tuning (pt 2).mp4 |
49.31Мб |
| 6. Transfer Learning & Fine-Tuning (pt 2).srt |
14.58Кб |
| 7. Aligning the Targets in Python.mp4 |
103.33Мб |
| 7. Aligning the Targets in Python.srt |
18.83Кб |
| 7. Data Collator (Code Preparation).mp4 |
22.10Мб |
| 7. Data Collator (Code Preparation).srt |
4.92Кб |
| 7. Masked Language Modeling (Article Spinner).mp4 |
67.29Мб |
| 7. Masked Language Modeling (Article Spinner).srt |
16.12Кб |
| 7. Model Inputs (Code).mp4 |
51.41Мб |
| 7. Model Inputs (Code).srt |
7.78Кб |
| 7. Train and Evaluate Encoder From Scratch.mp4 |
89.33Мб |
| 7. Train and Evaluate Encoder From Scratch.srt |
12.30Кб |
| 7. Transfer Learning & Fine-Tuning (pt 3).mp4 |
56.66Мб |
| 7. Transfer Learning & Fine-Tuning (pt 3).srt |
13.67Кб |
| 7. Transformer Block.mp4 |
29.50Мб |
| 7. Transformer Block.srt |
9.53Кб |
| 8. Applying the Tokenizer.mp4 |
45.05Мб |
| 8. Applying the Tokenizer.srt |
12.29Кб |
| 8. Data Collator (Code).mp4 |
16.94Мб |
| 8. Data Collator (Code).srt |
3.70Кб |
| 8. Fine-Tuning Sentiment Analysis and the GLUE Benchmark.mp4 |
58.43Мб |
| 8. Fine-Tuning Sentiment Analysis and the GLUE Benchmark.srt |
16.85Кб |
| 8. How to Implement Causal Self-Attention From Scratch.mp4 |
39.20Мб |
| 8. How to Implement Causal Self-Attention From Scratch.srt |
5.68Кб |
| 8. Masked Language Modeling (Article Spinner) in Python.mp4 |
67.09Мб |
| 8. Masked Language Modeling (Article Spinner) in Python.srt |
9.24Кб |
| 8. Positional Encodings.mp4 |
29.03Мб |
| 8. Positional Encodings.srt |
9.46Кб |
| 8. Translation Metrics (BLEU Score & BERT Score) (Code Preparation).mp4 |
19.28Мб |
| 8. Translation Metrics (BLEU Score & BERT Score) (Code Preparation).srt |
4.96Кб |
| 9. Applying the Tokenizer in Python.mp4 |
76.50Мб |
| 9. Applying the Tokenizer in Python.srt |
12.03Кб |
| 9. Encoder Architecture.mp4 |
25.21Мб |
| 9. Encoder Architecture.srt |
8.63Кб |
| 9. Fine-Tuning Sentiment Analysis in Python.mp4 |
130.77Мб |
| 9. Fine-Tuning Sentiment Analysis in Python.srt |
19.29Кб |
| 9. How to Implement a Transformer Decoder (GPT) From Scratch.mp4 |
27.30Мб |
| 9. How to Implement a Transformer Decoder (GPT) From Scratch.srt |
4.86Кб |
| 9. Metrics (Code Preparation).mp4 |
33.44Мб |
| 9. Metrics (Code Preparation).srt |
9.13Кб |
| 9. Named Entity Recognition (NER).mp4 |
22.02Мб |
| 9. Named Entity Recognition (NER).srt |
6.24Кб |
| 9. Translation Metrics (BLEU Score & BERT Score) (Code).mp4 |
43.32Мб |
| 9. Translation Metrics (BLEU Score & BERT Score) (Code).srt |
6.33Кб |