Общая информация
Название [Udemy] Practical AI with Python and Reinforcement Learning (07.2021)
Тип
Размер 7.40Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
001 Anaconda and Jupyter Notebook Install and Setup.en.srt 22.34Кб
001 Anaconda and Jupyter Notebook Install and Setup.mp4 98.78Мб
001 Convolutional Neural Networks Section Overview.en.srt 2.69Кб
001 Convolutional Neural Networks Section Overview.mp4 7.51Мб
001 DQN Section Overview.en.srt 3.10Кб
001 DQN Section Overview.mp4 10.11Мб
001 Introduction to Artificial Neural Networks.en.srt 3.41Кб
001 Introduction to Artificial Neural Networks.mp4 9.66Мб
001 Introduction to Classical Q-Learning Overview.en.srt 6.43Кб
001 Introduction to Classical Q-Learning Overview.mp4 22.61Мб
001 Introduction to Matplotlib.en.srt 6.94Кб
001 Introduction to Matplotlib.mp4 21.58Мб
001 Introduction to Numpy Section.en.srt 3.12Кб
001 Introduction to Numpy Section.mp4 11.29Мб
001 Introduction to OpenAI Gym Section.en.srt 1.62Кб
001 Introduction to OpenAI Gym Section.mp4 6.07Мб
001 Overview of Core Concepts for Reinforcement Learning Section.en.srt 2.77Кб
001 Overview of Core Concepts for Reinforcement Learning Section.mp4 10.69Мб
001 Pandas and Scikit-Learn Overview.html 1.11Кб
001 Welcome Message.html 2.72Кб
001 What is Machine Learning, Deep Learning, and Artificial Intelligence_.en.srt 17.00Кб
001 What is Machine Learning, Deep Learning, and Artificial Intelligence_.mp4 54.62Мб
002 Agents, Environments, and Policy.en.srt 18.91Кб
002 Agents, Environments, and Policy.mp4 62.31Мб
002 COURSE_NOTEBOOKS.zip 55.33Мб
002 Course Curriculum Overview.en.srt 15.82Кб
002 Course Curriculum Overview.mp4 43.95Мб
002 History of DQN.en.srt 6.92Кб
002 History of DQN.mp4 28.75Мб
002 History of Q-Learning.en.srt 5.83Кб
002 History of Q-Learning.mp4 27.07Мб
002 Image Filters and Kernels.en.srt 18.65Кб
002 Image Filters and Kernels.mp4 72.33Мб
002 Matplotlib Basics.en.srt 20.39Кб
002 Matplotlib Basics.mp4 53.61Мб
002 Note on Environment Setup.html 1.59Кб
002 NumPy Arrays.en.srt 33.09Кб
002 NumPy Arrays.mp4 109.65Мб
002 OpenAI Overview and History.en.srt 17.81Кб
002 OpenAI Overview and History.mp4 69.73Мб
002 Pandas - Series Part One.en.srt 13.88Кб
002 Pandas - Series Part One.mp4 38.65Мб
002 Perceptron Model.en.srt 15.97Кб
002 Perceptron Model.mp4 48.01Мб
002 Supervised Machine Learning Process.en.srt 20.44Кб
002 Supervised Machine Learning Process.mp4 71.69Мб
003 Convolutional Layers.en.srt 22.05Кб
003 Convolutional Layers.mp4 57.98Мб
003 Course Success and Overview.en.srt 11.97Кб
003 Course Success and Overview.mp4 42.06Мб
003 DQN Theory and Intuition - Part One - Review of Core RL Ideas.en.srt 7.37Кб
003 DQN Theory and Intuition - Part One - Review of Core RL Ideas.mp4 23.94Мб
003 Environment Setup Walkthrough.en.srt 17.36Кб
003 Environment Setup Walkthrough.mp4 71.19Мб
003 Matplotlib - Understanding the Figure Object.en.srt 11.96Кб
003 Matplotlib - Understanding the Figure Object.mp4 25.81Мб
003 Neural Networks.en.srt 11.58Кб
003 Neural Networks.mp4 35.91Мб
003 Numpy Operations - Part One.en.srt 16.85Кб
003 Numpy Operations - Part One.mp4 46.36Мб
003 OpenAI Gym - Documentation Tour.en.srt 23.19Кб
003 OpenAI Gym - Documentation Tour.mp4 146.53Мб
003 Pandas - Series Part Two.en.srt 15.96Кб
003 Pandas - Series Part Two.mp4 45.49Мб
003 Q-Learning Theory - Part One - Table Intuition.en.srt 23.41Кб
003 Q-Learning Theory - Part One - Table Intuition.mp4 77.51Мб
003 Rewards, Discount Factors, and Bellman Equation.en.srt 20.31Кб
003 Rewards, Discount Factors, and Bellman Equation.mp4 56.74Мб
004 Activation Functions.en.srt 17.42Кб
004 Activation Functions.mp4 62.52Мб
004 COURSE_NOTEBOOKS.zip 55.33Мб
004 Deterministic vs. Stochastic Processes.en.srt 8.05Кб
004 Deterministic vs. Stochastic Processes.mp4 27.29Мб
004 DQN Theory and Intuition - Part Two - Neural Networks for RL.en.srt 17.09Кб
004 DQN Theory and Intuition - Part Two - Neural Networks for RL.mp4 46.52Мб
004 Matplotlib - Implementing Figures and Axes.en.srt 21.79Кб
004 Matplotlib - Implementing Figures and Axes.mp4 59.05Мб
004 Numpy Operations - Part Two.en.srt 12.51Кб
004 Numpy Operations - Part Two.mp4 48.64Мб
004 OpenAI Gym - Environment Key Ideas.en.srt 13.53Кб
004 OpenAI Gym - Environment Key Ideas.mp4 37.28Мб
004 Pandas - DataFrames - Part One.en.srt 30.10Кб
004 Pandas - DataFrames - Part One.mp4 114.40Мб
004 Pooling Layers.en.srt 10.99Кб
004 Pooling Layers.mp4 27.64Мб
004 Q-Learning Theory - Part Two - Q Target Equation.en.srt 16.79Кб
004 Q-Learning Theory - Part Two - Q Target Equation.mp4 54.29Мб
005 DQN Theory and Intuition - Part Three - Feedback and Function Approximation.en.srt 31.44Кб
005 DQN Theory and Intuition - Part Three - Feedback and Function Approximation.mp4 88.34Мб
005 Matplotlib - Figure Parameters.en.srt 7.95Кб
005 Matplotlib - Figure Parameters.mp4 23.77Мб
005 MNIST Data Set Overview.en.srt 7.65Кб
005 MNIST Data Set Overview.mp4 24.75Мб
005 Multi-Class Classification Considerations.en.srt 16.84Кб
005 Multi-Class Classification Considerations.mp4 46.07Мб
005 Numpy Exercise Overview.en.srt 2.15Кб
005 Numpy Exercise Overview.mp4 11.54Мб
005 OpenAI Gym - Working with the Environment.en.srt 43.45Кб
005 OpenAI Gym - Working with the Environment.mp4 137.50Мб
005 Pandas - DataFrames - Part Two.en.srt 13.77Кб
005 Pandas - DataFrames - Part Two.mp4 54.04Мб
005 Q-Learning Theory - Part Three - Q-Update Equation.en.srt 11.66Кб
005 Q-Learning Theory - Part Three - Q-Update Equation.mp4 37.52Мб
005 Tabular Reinforcement Learning.html 1.08Кб
006 CNN on MNIST - The Data.en.srt 19.42Кб
006 CNN on MNIST - The Data.mp4 59.81Мб
006 Cost Functions and Gradient Descent.en.srt 28.73Кб
006 Cost Functions and Gradient Descent.mp4 76.00Мб
006 DQN Theory and Intuition - Part Four - Experience Replay.en.srt 29.82Кб
006 DQN Theory and Intuition - Part Four - Experience Replay.mp4 96.01Мб
006 Matplotlib - Subplots Functionality.en.srt 29.70Кб
006 Matplotlib - Subplots Functionality.mp4 96.22Мб
006 Numpy Exercise Solutions.en.srt 11.29Кб
006 Numpy Exercise Solutions.mp4 48.57Мб
006 OpenAI Gym - Agent Interacting with the Environment.en.srt 32.03Кб
006 OpenAI Gym - Agent Interacting with the Environment.mp4 116.41Мб
006 Pandas - DataFrames - Part Three.en.srt 21.39Кб
006 Pandas - DataFrames - Part Three.mp4 89.52Мб
006 Q-Learning Theory - Part Four - Programmatic Q Updates.en.srt 15.36Кб
006 Q-Learning Theory - Part Four - Programmatic Q Updates.mp4 58.17Мб
007 Backpropagation.en.srt 21.84Кб
007 Backpropagation.mp4 57.95Мб
007 CNN on MNIST - Creating and Training the Model.en.srt 26.01Кб
007 CNN on MNIST - Creating and Training the Model.mp4 98.89Мб
007 DQN Theory and Intuition - Part Five - Mapping Key Ideas to Code.en.srt 24.04Кб
007 DQN Theory and Intuition - Part Five - Mapping Key Ideas to Code.mp4 81.49Мб
007 Matplotlib Styling - Legends.en.srt 10.73Кб
007 Matplotlib Styling - Legends.mp4 34.09Мб
007 Pandas - DataFrames - Part Four.en.srt 21.89Кб
007 Pandas - DataFrames - Part Four.mp4 96.75Мб
007 Q-Learning Implementation - Part One - Environment Setup.en.srt 24.10Кб
007 Q-Learning Implementation - Part One - Environment Setup.mp4 88.24Мб
008 CNN on MNIST - Model Evaluation.en.srt 10.10Кб
008 CNN on MNIST - Model Evaluation.mp4 38.47Мб
008 DQN Manual Implementation - Part One - Imports and Environment.en.srt 7.85Кб
008 DQN Manual Implementation - Part One - Imports and Environment.mp4 20.81Мб
008 Matplotlib Styling - Colors and Styles.en.srt 21.85Кб
008 Matplotlib Styling - Colors and Styles.mp4 81.17Мб
008 Q-Learning Implementation - Part Two - Table and Hyperparameters.en.srt 17.27Кб
008 Q-Learning Implementation - Part Two - Table and Hyperparameters.mp4 43.07Мб
008 Scikit-Learn - Using Train-Test-Split.en.srt 18.11Кб
008 Scikit-Learn - Using Train-Test-Split.mp4 60.47Мб
008 TensorFlow vs. Keras Explained.en.srt 3.15Кб
008 TensorFlow vs. Keras Explained.mp4 10.44Мб
009 Advanced Matplotlib Commands (Optional).en.srt 6.74Кб
009 Advanced Matplotlib Commands (Optional).mp4 40.47Мб
009 CNN on CIFAR-10 - The Data.en.srt 18.12Кб
009 CNN on CIFAR-10 - The Data.mp4 64.30Мб
009 DQN Manual Implementation - Part Two - Artificial Neural Network.en.srt 11.51Кб
009 DQN Manual Implementation - Part Two - Artificial Neural Network.mp4 31.92Мб
009 Keras Syntax - Preparing the Data.en.srt 16.18Кб
009 Keras Syntax - Preparing the Data.mp4 50.31Мб
009 Q-Learning Implementation - Part Three - Update Functions.en.srt 25.55Кб
009 Q-Learning Implementation - Part Three - Update Functions.mp4 92.93Мб
009 Scikit-Learn - Using Metrics.en.srt 22.46Кб
009 Scikit-Learn - Using Metrics.mp4 77.29Мб
010 CNN on CIFAR-10 - Evaluating the Model.en.srt 11.31Кб
010 CNN on CIFAR-10 - Evaluating the Model.mp4 45.35Мб
010 DQN Manual Implementation - Part Three - Hyperparameters and Functions.en.srt 27.80Кб
010 DQN Manual Implementation - Part Three - Hyperparameters and Functions.mp4 84.74Мб
010 Keras Syntax - Creating and Training the Model.en.srt 21.45Кб
010 Keras Syntax - Creating and Training the Model.mp4 84.34Мб
010 Matplotlib Exercise Questions Overview.en.srt 9.68Кб
010 Matplotlib Exercise Questions Overview.mp4 50.74Мб
010 Q-Learning Implementation - Part Four - Agent Training.en.srt 26.76Кб
010 Q-Learning Implementation - Part Four - Agent Training.mp4 107.01Мб
011 Downloading Data Set for Real Image Lectures.en.srt 9.05Кб
011 Downloading Data Set for Real Image Lectures.mp4 28.13Мб
011 DQN Manual Implementation - Part Four - Model Training.en.srt 25.66Кб
011 DQN Manual Implementation - Part Four - Model Training.mp4 106.91Мб
011 Keras Syntax - Model Evaluation.en.srt 18.58Кб
011 Keras Syntax - Model Evaluation.mp4 64.78Мб
011 Matplotlib Exercise Questions - Solutions.en.srt 25.55Кб
011 Matplotlib Exercise Questions - Solutions.mp4 123.16Мб
011 Q-Learning Implementation - Part Five - Visualization and Utilization.en.srt 15.99Кб
011 Q-Learning Implementation - Part Five - Visualization and Utilization.mp4 56.57Мб
012 CNN on Real Image Files - Reading in the Data.en.srt 21.73Кб
012 CNN on Real Image Files - Reading in the Data.mp4 80.39Мб
012 Continuous Q-Learning Theory - Part One - Environment Setup.en.srt 20.96Кб
012 Continuous Q-Learning Theory - Part One - Environment Setup.mp4 54.42Мб
012 DQN - Keras-RL2 - Part One - Overview.en.srt 11.76Кб
012 DQN - Keras-RL2 - Part One - Overview.mp4 53.70Мб
012 Keras Regression - Exploratory Data Analysis.en.srt 27.98Кб
012 Keras Regression - Exploratory Data Analysis.mp4 136.97Мб
013 CNN on Real Image Files - Data Generation.en.srt 24.33Кб
013 CNN on Real Image Files - Data Generation.mp4 87.73Мб
013 Continuous Q-Learning Theory - Part Two- Q-Table Shape.en.srt 25.54Кб
013 Continuous Q-Learning Theory - Part Two- Q-Table Shape.mp4 85.71Мб
013 DQN - Keras-RL2 - Part Two - Imports and Environment.en.srt 5.00Кб
013 DQN - Keras-RL2 - Part Two - Imports and Environment.mp4 13.96Мб
013 Keras Regression - EDA Continued.en.srt 19.91Кб
013 Keras Regression - EDA Continued.mp4 76.26Мб
014 CNN on Real Image Files - Creating the Model.en.srt 21.21Кб
014 CNN on Real Image Files - Creating the Model.mp4 90.48Мб
014 Continuous Q-Learning Theory - Part Three - Discretization Theory.en.srt 7.82Кб
014 Continuous Q-Learning Theory - Part Three - Discretization Theory.mp4 24.71Мб
014 DQN - Keras-RL2 - Part Three - Creating the ANN.en.srt 9.01Кб
014 DQN - Keras-RL2 - Part Three - Creating the ANN.mp4 25.99Мб
014 Keras Regression - Data Preprocessing and Model Creation.en.srt 12.73Кб
014 Keras Regression - Data Preprocessing and Model Creation.mp4 46.98Мб
015 CNN on Real Image Files - Model Evaluation.en.srt 12.92Кб
015 CNN on Real Image Files - Model Evaluation.mp4 46.96Мб
015 Continuous Q-Learning - Part Four - Discretization Implementation.en.srt 27.03Кб
015 Continuous Q-Learning - Part Four - Discretization Implementation.mp4 86.19Мб
015 DQN - Keras-RL2 - Part Four - DQN Agent.en.srt 23.13Кб
015 DQN - Keras-RL2 - Part Four - DQN Agent.mp4 84.12Мб
015 Keras Regression - Model Evaluation and Predictions.en.srt 16.94Кб
015 Keras Regression - Model Evaluation and Predictions.mp4 68.93Мб
016 CNN Exercise Project Overview.en.srt 3.99Кб
016 CNN Exercise Project Overview.mp4 17.81Мб
016 Continuous Q-Learning - Part Five - Functions and Hyperparameters.en.srt 16.33Кб
016 Continuous Q-Learning - Part Five - Functions and Hyperparameters.mp4 45.35Мб
016 DQN - Exercise Overview.en.srt 5.89Кб
016 DQN - Exercise Overview.mp4 28.34Мб
016 Keras Classification - EDA and Preprocessing.en.srt 12.24Кб
016 Keras Classification - EDA and Preprocessing.mp4 56.19Мб
017 CNN Exercise Project Solutions.en.srt 12.77Кб
017 CNN Exercise Project Solutions.mp4 55.88Мб
017 Continuous Q-Learning - Part Six - Training and Usage.en.srt 31.74Кб
017 Continuous Q-Learning - Part Six - Training and Usage.mp4 108.80Мб
017 DQN - Exercise Solutions.en.srt 15.45Кб
017 DQN - Exercise Solutions.mp4 62.54Мб
017 Keras Classification - Overfitting and Evaluation.en.srt 25.32Кб
017 Keras Classification - Overfitting and Evaluation.mp4 111.19Мб
018 Keras Classification - Overview of Project Options.en.srt 2.61Кб
018 Keras Classification - Overview of Project Options.mp4 7.86Мб
018 Q-Learning Exercise Project.en.srt 12.45Кб
018 Q-Learning Exercise Project.mp4 66.26Мб
019 Keras Project Notebook Exercise Overview.en.srt 13.11Кб
019 Keras Project Notebook Exercise Overview.mp4 80.57Мб
019 Q-Learning Exercise Project - Solutions.en.srt 33.51Кб
019 Q-Learning Exercise Project - Solutions.mp4 177.07Мб
020 Keras Project Solution - Exploratoy Data Analysis.en.srt 30.04Кб
020 Keras Project Solution - Exploratoy Data Analysis.mp4 143.67Мб
021 Keras Project Solutions - Missing Data - Part One.en.srt 21.81Кб
021 Keras Project Solutions - Missing Data - Part One.mp4 96.76Мб
022 Keras Project Solutions - Dealing with Missing Data - Part Two.en.srt 18.89Кб
022 Keras Project Solutions - Dealing with Missing Data - Part Two.mp4 85.41Мб
023 Keras Project Solutions - Categorical Data.en.srt 27.17Кб
023 Keras Project Solutions - Categorical Data.mp4 125.03Мб
024 Keras Project Solutions - Data Preprocessing.en.srt 5.45Кб
024 Keras Project Solutions - Data Preprocessing.mp4 23.97Мб
025 Keras Project Solutions- Creating and Training the Model.en.srt 6.09Кб
025 Keras Project Solutions- Creating and Training the Model.mp4 29.76Мб
026 Keras Project Solutions - Model Evaluation.en.srt 14.75Кб
026 Keras Project Solutions - Model Evaluation.mp4 63.17Мб
027 Tensorboard.en.srt 30.65Кб
027 Tensorboard.mp4 144.23Мб
033 Advertising.csv 4.11Кб
110 DQNNaturePaper.pdf 4.39Мб
external-assets-links.txt 180б
Статистика распространения по странам
Украина (UA) 4
США (US) 3
Россия (RU) 1
Эстония (EE) 1
Сербия (RS) 1
Всего 10
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент