Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
001 Anaconda and Jupyter Notebook Install and Setup.en.srt |
22.34Кб |
001 Anaconda and Jupyter Notebook Install and Setup.mp4 |
98.78Мб |
001 Convolutional Neural Networks Section Overview.en.srt |
2.69Кб |
001 Convolutional Neural Networks Section Overview.mp4 |
7.51Мб |
001 DQN Section Overview.en.srt |
3.10Кб |
001 DQN Section Overview.mp4 |
10.11Мб |
001 Introduction to Artificial Neural Networks.en.srt |
3.41Кб |
001 Introduction to Artificial Neural Networks.mp4 |
9.66Мб |
001 Introduction to Classical Q-Learning Overview.en.srt |
6.43Кб |
001 Introduction to Classical Q-Learning Overview.mp4 |
22.61Мб |
001 Introduction to Matplotlib.en.srt |
6.94Кб |
001 Introduction to Matplotlib.mp4 |
21.58Мб |
001 Introduction to Numpy Section.en.srt |
3.12Кб |
001 Introduction to Numpy Section.mp4 |
11.29Мб |
001 Introduction to OpenAI Gym Section.en.srt |
1.62Кб |
001 Introduction to OpenAI Gym Section.mp4 |
6.07Мб |
001 Overview of Core Concepts for Reinforcement Learning Section.en.srt |
2.77Кб |
001 Overview of Core Concepts for Reinforcement Learning Section.mp4 |
10.69Мб |
001 Pandas and Scikit-Learn Overview.html |
1.11Кб |
001 Welcome Message.html |
2.72Кб |
001 What is Machine Learning, Deep Learning, and Artificial Intelligence_.en.srt |
17.00Кб |
001 What is Machine Learning, Deep Learning, and Artificial Intelligence_.mp4 |
54.62Мб |
002 Agents, Environments, and Policy.en.srt |
18.91Кб |
002 Agents, Environments, and Policy.mp4 |
62.31Мб |
002 COURSE_NOTEBOOKS.zip |
55.33Мб |
002 Course Curriculum Overview.en.srt |
15.82Кб |
002 Course Curriculum Overview.mp4 |
43.95Мб |
002 History of DQN.en.srt |
6.92Кб |
002 History of DQN.mp4 |
28.75Мб |
002 History of Q-Learning.en.srt |
5.83Кб |
002 History of Q-Learning.mp4 |
27.07Мб |
002 Image Filters and Kernels.en.srt |
18.65Кб |
002 Image Filters and Kernels.mp4 |
72.33Мб |
002 Matplotlib Basics.en.srt |
20.39Кб |
002 Matplotlib Basics.mp4 |
53.61Мб |
002 Note on Environment Setup.html |
1.59Кб |
002 NumPy Arrays.en.srt |
33.09Кб |
002 NumPy Arrays.mp4 |
109.65Мб |
002 OpenAI Overview and History.en.srt |
17.81Кб |
002 OpenAI Overview and History.mp4 |
69.73Мб |
002 Pandas - Series Part One.en.srt |
13.88Кб |
002 Pandas - Series Part One.mp4 |
38.65Мб |
002 Perceptron Model.en.srt |
15.97Кб |
002 Perceptron Model.mp4 |
48.01Мб |
002 Supervised Machine Learning Process.en.srt |
20.44Кб |
002 Supervised Machine Learning Process.mp4 |
71.69Мб |
003 Convolutional Layers.en.srt |
22.05Кб |
003 Convolutional Layers.mp4 |
57.98Мб |
003 Course Success and Overview.en.srt |
11.97Кб |
003 Course Success and Overview.mp4 |
42.06Мб |
003 DQN Theory and Intuition - Part One - Review of Core RL Ideas.en.srt |
7.37Кб |
003 DQN Theory and Intuition - Part One - Review of Core RL Ideas.mp4 |
23.94Мб |
003 Environment Setup Walkthrough.en.srt |
17.36Кб |
003 Environment Setup Walkthrough.mp4 |
71.19Мб |
003 Matplotlib - Understanding the Figure Object.en.srt |
11.96Кб |
003 Matplotlib - Understanding the Figure Object.mp4 |
25.81Мб |
003 Neural Networks.en.srt |
11.58Кб |
003 Neural Networks.mp4 |
35.91Мб |
003 Numpy Operations - Part One.en.srt |
16.85Кб |
003 Numpy Operations - Part One.mp4 |
46.36Мб |
003 OpenAI Gym - Documentation Tour.en.srt |
23.19Кб |
003 OpenAI Gym - Documentation Tour.mp4 |
146.53Мб |
003 Pandas - Series Part Two.en.srt |
15.96Кб |
003 Pandas - Series Part Two.mp4 |
45.49Мб |
003 Q-Learning Theory - Part One - Table Intuition.en.srt |
23.41Кб |
003 Q-Learning Theory - Part One - Table Intuition.mp4 |
77.51Мб |
003 Rewards, Discount Factors, and Bellman Equation.en.srt |
20.31Кб |
003 Rewards, Discount Factors, and Bellman Equation.mp4 |
56.74Мб |
004 Activation Functions.en.srt |
17.42Кб |
004 Activation Functions.mp4 |
62.52Мб |
004 COURSE_NOTEBOOKS.zip |
55.33Мб |
004 Deterministic vs. Stochastic Processes.en.srt |
8.05Кб |
004 Deterministic vs. Stochastic Processes.mp4 |
27.29Мб |
004 DQN Theory and Intuition - Part Two - Neural Networks for RL.en.srt |
17.09Кб |
004 DQN Theory and Intuition - Part Two - Neural Networks for RL.mp4 |
46.52Мб |
004 Matplotlib - Implementing Figures and Axes.en.srt |
21.79Кб |
004 Matplotlib - Implementing Figures and Axes.mp4 |
59.05Мб |
004 Numpy Operations - Part Two.en.srt |
12.51Кб |
004 Numpy Operations - Part Two.mp4 |
48.64Мб |
004 OpenAI Gym - Environment Key Ideas.en.srt |
13.53Кб |
004 OpenAI Gym - Environment Key Ideas.mp4 |
37.28Мб |
004 Pandas - DataFrames - Part One.en.srt |
30.10Кб |
004 Pandas - DataFrames - Part One.mp4 |
114.40Мб |
004 Pooling Layers.en.srt |
10.99Кб |
004 Pooling Layers.mp4 |
27.64Мб |
004 Q-Learning Theory - Part Two - Q Target Equation.en.srt |
16.79Кб |
004 Q-Learning Theory - Part Two - Q Target Equation.mp4 |
54.29Мб |
005 DQN Theory and Intuition - Part Three - Feedback and Function Approximation.en.srt |
31.44Кб |
005 DQN Theory and Intuition - Part Three - Feedback and Function Approximation.mp4 |
88.34Мб |
005 Matplotlib - Figure Parameters.en.srt |
7.95Кб |
005 Matplotlib - Figure Parameters.mp4 |
23.77Мб |
005 MNIST Data Set Overview.en.srt |
7.65Кб |
005 MNIST Data Set Overview.mp4 |
24.75Мб |
005 Multi-Class Classification Considerations.en.srt |
16.84Кб |
005 Multi-Class Classification Considerations.mp4 |
46.07Мб |
005 Numpy Exercise Overview.en.srt |
2.15Кб |
005 Numpy Exercise Overview.mp4 |
11.54Мб |
005 OpenAI Gym - Working with the Environment.en.srt |
43.45Кб |
005 OpenAI Gym - Working with the Environment.mp4 |
137.50Мб |
005 Pandas - DataFrames - Part Two.en.srt |
13.77Кб |
005 Pandas - DataFrames - Part Two.mp4 |
54.04Мб |
005 Q-Learning Theory - Part Three - Q-Update Equation.en.srt |
11.66Кб |
005 Q-Learning Theory - Part Three - Q-Update Equation.mp4 |
37.52Мб |
005 Tabular Reinforcement Learning.html |
1.08Кб |
006 CNN on MNIST - The Data.en.srt |
19.42Кб |
006 CNN on MNIST - The Data.mp4 |
59.81Мб |
006 Cost Functions and Gradient Descent.en.srt |
28.73Кб |
006 Cost Functions and Gradient Descent.mp4 |
76.00Мб |
006 DQN Theory and Intuition - Part Four - Experience Replay.en.srt |
29.82Кб |
006 DQN Theory and Intuition - Part Four - Experience Replay.mp4 |
96.01Мб |
006 Matplotlib - Subplots Functionality.en.srt |
29.70Кб |
006 Matplotlib - Subplots Functionality.mp4 |
96.22Мб |
006 Numpy Exercise Solutions.en.srt |
11.29Кб |
006 Numpy Exercise Solutions.mp4 |
48.57Мб |
006 OpenAI Gym - Agent Interacting with the Environment.en.srt |
32.03Кб |
006 OpenAI Gym - Agent Interacting with the Environment.mp4 |
116.41Мб |
006 Pandas - DataFrames - Part Three.en.srt |
21.39Кб |
006 Pandas - DataFrames - Part Three.mp4 |
89.52Мб |
006 Q-Learning Theory - Part Four - Programmatic Q Updates.en.srt |
15.36Кб |
006 Q-Learning Theory - Part Four - Programmatic Q Updates.mp4 |
58.17Мб |
007 Backpropagation.en.srt |
21.84Кб |
007 Backpropagation.mp4 |
57.95Мб |
007 CNN on MNIST - Creating and Training the Model.en.srt |
26.01Кб |
007 CNN on MNIST - Creating and Training the Model.mp4 |
98.89Мб |
007 DQN Theory and Intuition - Part Five - Mapping Key Ideas to Code.en.srt |
24.04Кб |
007 DQN Theory and Intuition - Part Five - Mapping Key Ideas to Code.mp4 |
81.49Мб |
007 Matplotlib Styling - Legends.en.srt |
10.73Кб |
007 Matplotlib Styling - Legends.mp4 |
34.09Мб |
007 Pandas - DataFrames - Part Four.en.srt |
21.89Кб |
007 Pandas - DataFrames - Part Four.mp4 |
96.75Мб |
007 Q-Learning Implementation - Part One - Environment Setup.en.srt |
24.10Кб |
007 Q-Learning Implementation - Part One - Environment Setup.mp4 |
88.24Мб |
008 CNN on MNIST - Model Evaluation.en.srt |
10.10Кб |
008 CNN on MNIST - Model Evaluation.mp4 |
38.47Мб |
008 DQN Manual Implementation - Part One - Imports and Environment.en.srt |
7.85Кб |
008 DQN Manual Implementation - Part One - Imports and Environment.mp4 |
20.81Мб |
008 Matplotlib Styling - Colors and Styles.en.srt |
21.85Кб |
008 Matplotlib Styling - Colors and Styles.mp4 |
81.17Мб |
008 Q-Learning Implementation - Part Two - Table and Hyperparameters.en.srt |
17.27Кб |
008 Q-Learning Implementation - Part Two - Table and Hyperparameters.mp4 |
43.07Мб |
008 Scikit-Learn - Using Train-Test-Split.en.srt |
18.11Кб |
008 Scikit-Learn - Using Train-Test-Split.mp4 |
60.47Мб |
008 TensorFlow vs. Keras Explained.en.srt |
3.15Кб |
008 TensorFlow vs. Keras Explained.mp4 |
10.44Мб |
009 Advanced Matplotlib Commands (Optional).en.srt |
6.74Кб |
009 Advanced Matplotlib Commands (Optional).mp4 |
40.47Мб |
009 CNN on CIFAR-10 - The Data.en.srt |
18.12Кб |
009 CNN on CIFAR-10 - The Data.mp4 |
64.30Мб |
009 DQN Manual Implementation - Part Two - Artificial Neural Network.en.srt |
11.51Кб |
009 DQN Manual Implementation - Part Two - Artificial Neural Network.mp4 |
31.92Мб |
009 Keras Syntax - Preparing the Data.en.srt |
16.18Кб |
009 Keras Syntax - Preparing the Data.mp4 |
50.31Мб |
009 Q-Learning Implementation - Part Three - Update Functions.en.srt |
25.55Кб |
009 Q-Learning Implementation - Part Three - Update Functions.mp4 |
92.93Мб |
009 Scikit-Learn - Using Metrics.en.srt |
22.46Кб |
009 Scikit-Learn - Using Metrics.mp4 |
77.29Мб |
010 CNN on CIFAR-10 - Evaluating the Model.en.srt |
11.31Кб |
010 CNN on CIFAR-10 - Evaluating the Model.mp4 |
45.35Мб |
010 DQN Manual Implementation - Part Three - Hyperparameters and Functions.en.srt |
27.80Кб |
010 DQN Manual Implementation - Part Three - Hyperparameters and Functions.mp4 |
84.74Мб |
010 Keras Syntax - Creating and Training the Model.en.srt |
21.45Кб |
010 Keras Syntax - Creating and Training the Model.mp4 |
84.34Мб |
010 Matplotlib Exercise Questions Overview.en.srt |
9.68Кб |
010 Matplotlib Exercise Questions Overview.mp4 |
50.74Мб |
010 Q-Learning Implementation - Part Four - Agent Training.en.srt |
26.76Кб |
010 Q-Learning Implementation - Part Four - Agent Training.mp4 |
107.01Мб |
011 Downloading Data Set for Real Image Lectures.en.srt |
9.05Кб |
011 Downloading Data Set for Real Image Lectures.mp4 |
28.13Мб |
011 DQN Manual Implementation - Part Four - Model Training.en.srt |
25.66Кб |
011 DQN Manual Implementation - Part Four - Model Training.mp4 |
106.91Мб |
011 Keras Syntax - Model Evaluation.en.srt |
18.58Кб |
011 Keras Syntax - Model Evaluation.mp4 |
64.78Мб |
011 Matplotlib Exercise Questions - Solutions.en.srt |
25.55Кб |
011 Matplotlib Exercise Questions - Solutions.mp4 |
123.16Мб |
011 Q-Learning Implementation - Part Five - Visualization and Utilization.en.srt |
15.99Кб |
011 Q-Learning Implementation - Part Five - Visualization and Utilization.mp4 |
56.57Мб |
012 CNN on Real Image Files - Reading in the Data.en.srt |
21.73Кб |
012 CNN on Real Image Files - Reading in the Data.mp4 |
80.39Мб |
012 Continuous Q-Learning Theory - Part One - Environment Setup.en.srt |
20.96Кб |
012 Continuous Q-Learning Theory - Part One - Environment Setup.mp4 |
54.42Мб |
012 DQN - Keras-RL2 - Part One - Overview.en.srt |
11.76Кб |
012 DQN - Keras-RL2 - Part One - Overview.mp4 |
53.70Мб |
012 Keras Regression - Exploratory Data Analysis.en.srt |
27.98Кб |
012 Keras Regression - Exploratory Data Analysis.mp4 |
136.97Мб |
013 CNN on Real Image Files - Data Generation.en.srt |
24.33Кб |
013 CNN on Real Image Files - Data Generation.mp4 |
87.73Мб |
013 Continuous Q-Learning Theory - Part Two- Q-Table Shape.en.srt |
25.54Кб |
013 Continuous Q-Learning Theory - Part Two- Q-Table Shape.mp4 |
85.71Мб |
013 DQN - Keras-RL2 - Part Two - Imports and Environment.en.srt |
5.00Кб |
013 DQN - Keras-RL2 - Part Two - Imports and Environment.mp4 |
13.96Мб |
013 Keras Regression - EDA Continued.en.srt |
19.91Кб |
013 Keras Regression - EDA Continued.mp4 |
76.26Мб |
014 CNN on Real Image Files - Creating the Model.en.srt |
21.21Кб |
014 CNN on Real Image Files - Creating the Model.mp4 |
90.48Мб |
014 Continuous Q-Learning Theory - Part Three - Discretization Theory.en.srt |
7.82Кб |
014 Continuous Q-Learning Theory - Part Three - Discretization Theory.mp4 |
24.71Мб |
014 DQN - Keras-RL2 - Part Three - Creating the ANN.en.srt |
9.01Кб |
014 DQN - Keras-RL2 - Part Three - Creating the ANN.mp4 |
25.99Мб |
014 Keras Regression - Data Preprocessing and Model Creation.en.srt |
12.73Кб |
014 Keras Regression - Data Preprocessing and Model Creation.mp4 |
46.98Мб |
015 CNN on Real Image Files - Model Evaluation.en.srt |
12.92Кб |
015 CNN on Real Image Files - Model Evaluation.mp4 |
46.96Мб |
015 Continuous Q-Learning - Part Four - Discretization Implementation.en.srt |
27.03Кб |
015 Continuous Q-Learning - Part Four - Discretization Implementation.mp4 |
86.19Мб |
015 DQN - Keras-RL2 - Part Four - DQN Agent.en.srt |
23.13Кб |
015 DQN - Keras-RL2 - Part Four - DQN Agent.mp4 |
84.12Мб |
015 Keras Regression - Model Evaluation and Predictions.en.srt |
16.94Кб |
015 Keras Regression - Model Evaluation and Predictions.mp4 |
68.93Мб |
016 CNN Exercise Project Overview.en.srt |
3.99Кб |
016 CNN Exercise Project Overview.mp4 |
17.81Мб |
016 Continuous Q-Learning - Part Five - Functions and Hyperparameters.en.srt |
16.33Кб |
016 Continuous Q-Learning - Part Five - Functions and Hyperparameters.mp4 |
45.35Мб |
016 DQN - Exercise Overview.en.srt |
5.89Кб |
016 DQN - Exercise Overview.mp4 |
28.34Мб |
016 Keras Classification - EDA and Preprocessing.en.srt |
12.24Кб |
016 Keras Classification - EDA and Preprocessing.mp4 |
56.19Мб |
017 CNN Exercise Project Solutions.en.srt |
12.77Кб |
017 CNN Exercise Project Solutions.mp4 |
55.88Мб |
017 Continuous Q-Learning - Part Six - Training and Usage.en.srt |
31.74Кб |
017 Continuous Q-Learning - Part Six - Training and Usage.mp4 |
108.80Мб |
017 DQN - Exercise Solutions.en.srt |
15.45Кб |
017 DQN - Exercise Solutions.mp4 |
62.54Мб |
017 Keras Classification - Overfitting and Evaluation.en.srt |
25.32Кб |
017 Keras Classification - Overfitting and Evaluation.mp4 |
111.19Мб |
018 Keras Classification - Overview of Project Options.en.srt |
2.61Кб |
018 Keras Classification - Overview of Project Options.mp4 |
7.86Мб |
018 Q-Learning Exercise Project.en.srt |
12.45Кб |
018 Q-Learning Exercise Project.mp4 |
66.26Мб |
019 Keras Project Notebook Exercise Overview.en.srt |
13.11Кб |
019 Keras Project Notebook Exercise Overview.mp4 |
80.57Мб |
019 Q-Learning Exercise Project - Solutions.en.srt |
33.51Кб |
019 Q-Learning Exercise Project - Solutions.mp4 |
177.07Мб |
020 Keras Project Solution - Exploratoy Data Analysis.en.srt |
30.04Кб |
020 Keras Project Solution - Exploratoy Data Analysis.mp4 |
143.67Мб |
021 Keras Project Solutions - Missing Data - Part One.en.srt |
21.81Кб |
021 Keras Project Solutions - Missing Data - Part One.mp4 |
96.76Мб |
022 Keras Project Solutions - Dealing with Missing Data - Part Two.en.srt |
18.89Кб |
022 Keras Project Solutions - Dealing with Missing Data - Part Two.mp4 |
85.41Мб |
023 Keras Project Solutions - Categorical Data.en.srt |
27.17Кб |
023 Keras Project Solutions - Categorical Data.mp4 |
125.03Мб |
024 Keras Project Solutions - Data Preprocessing.en.srt |
5.45Кб |
024 Keras Project Solutions - Data Preprocessing.mp4 |
23.97Мб |
025 Keras Project Solutions- Creating and Training the Model.en.srt |
6.09Кб |
025 Keras Project Solutions- Creating and Training the Model.mp4 |
29.76Мб |
026 Keras Project Solutions - Model Evaluation.en.srt |
14.75Кб |
026 Keras Project Solutions - Model Evaluation.mp4 |
63.17Мб |
027 Tensorboard.en.srt |
30.65Кб |
027 Tensorboard.mp4 |
144.23Мб |
033 Advertising.csv |
4.11Кб |
110 DQNNaturePaper.pdf |
4.39Мб |
external-assets-links.txt |
180б |