Общая информация
Название [GigaCourse.Com] Udemy - A deep understanding of deep learning (with Python intro)
Тип
Размер 21.97Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[CourseClub.ME].url 122б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
001 Anatomy of a torch dataset and dataloader_en.srt 25.42Кб
001 Anatomy of a torch dataset and dataloader.mp4 135.84Мб
001 Bonus content.html 3.64Кб
001 Convolution concepts_en.srt 31.18Кб
001 Convolution concepts.mp4 97.99Мб
001 Downloading and using the code_en.srt 9.06Кб
001 Downloading and using the code.mp4 45.65Мб
001 DUDL-PythonCode.zip 660.79Кб
001 Explanation of weight matrix sizes_en.srt 16.55Кб
001 Explanation of weight matrix sizes.mp4 68.98Мб
001 GAN What, why, and how_en.srt 22.67Кб
001 GAN What, why, and how.mp4 89.74Мб
001 How to learn from the Python tutorial_en.srt 4.67Кб
001 How to learn from the Python tutorial.mp4 21.97Мб
001 How to learn from this course_en.srt 12.48Кб
001 How to learn from this course.mp4 54.97Мб
001 How to learn topic _X_ in deep learning_en.srt 11.88Кб
001 How to learn topic _X_ in deep learning.mp4 42.03Мб
001 If-else statements_en.srt 20.84Кб
001 If-else statements.mp4 66.80Мб
001 Indexing_en.srt 17.40Кб
001 Indexing.mp4 51.07Мб
001 Inputs and outputs_en.srt 10.16Кб
001 Inputs and outputs.mp4 29.49Мб
001 Leveraging sequences in deep learning_en.srt 18.13Кб
001 Leveraging sequences in deep learning.mp4 72.79Мб
001 Overview of gradient descent_en.srt 20.10Кб
001 Overview of gradient descent.mp4 68.44Мб
001 Printing and string interpolation_en.srt 23.41Кб
001 Printing and string interpolation.mp4 94.83Мб
001 Project 1 A gratuitously complex adding machine_en.srt 10.33Кб
001 Project 1 A gratuitously complex adding machine.mp4 48.55Мб
001 Project 1 Import and classify CIFAR10_en.srt 10.17Кб
001 Project 1 Import and classify CIFAR10.mp4 48.36Мб
001 PyTorch or TensorFlow.html 1.07Кб
001 Regularization Concept and methods_en.srt 18.35Кб
001 Regularization Concept and methods.mp4 80.05Мб
001 Should you watch the Python tutorial_en.srt 5.92Кб
001 Should you watch the Python tutorial.mp4 23.77Мб
001 The canonical CNN architecture_en.srt 15.12Кб
001 The canonical CNN architecture.mp4 55.83Мб
001 The perceptron and ANN architecture_en.srt 26.89Кб
001 The perceptron and ANN architecture.mp4 85.84Мб
001 Transfer learning What, why, and when_en.srt 23.86Кб
001 Transfer learning What, why, and when.mp4 96.61Мб
001 Two perspectives of the world_en.srt 9.91Кб
001 Two perspectives of the world.mp4 40.01Мб
001 What are autoencoders and what do they do_en.srt 16.30Кб
001 What are autoencoders and what do they do.mp4 49.04Мб
001 What are fully-connected and feedforward networks_en.srt 6.70Кб
001 What are fully-connected and feedforward networks.mp4 25.53Мб
001 What are metaparameters_en.srt 7.09Кб
001 What are metaparameters.mp4 32.70Мб
001 What is a GPU and why use it_en.srt 21.62Кб
001 What is a GPU and why use it.mp4 88.73Мб
001 What is an artificial neural network_en.srt 20.55Кб
001 What is an artificial neural network.mp4 65.38Мб
001 What is overfitting and is it as bad as they say_en.srt 17.66Кб
001 What is overfitting and is it as bad as they say.mp4 73.13Мб
001 What is style transfer and how does it work_en.srt 6.11Кб
001 What is style transfer and how does it work.mp4 40.57Мб
001 Will AI save us or destroy us_en.srt 13.83Кб
001 Will AI save us or destroy us.mp4 65.92Мб
002 Accuracy, precision, recall, F1_en.srt 17.32Кб
002 Accuracy, precision, recall, F1.mp4 72.58Мб
002 A geometric view of ANNs_en.srt 18.65Кб
002 A geometric view of ANNs.mp4 70.88Мб
002 A surprising demo of weight initializations_en.srt 23.00Кб
002 A surprising demo of weight initializations.mp4 121.57Мб
002 CNN to classify MNIST digits_en.srt 36.60Кб
002 CNN to classify MNIST digits.mp4 200.33Мб
002 Cross-validation_en.srt 24.05Кб
002 Cross-validation.mp4 88.19Мб
002 Data size and network size_en.srt 22.54Кб
002 Data size and network size.mp4 135.67Мб
002 Denoising MNIST_en.srt 21.93Кб
002 Denoising MNIST.mp4 118.53Мб
002 Example case studies_en.srt 8.83Кб
002 Example case studies.mp4 52.92Мб
002 Feature maps and convolution kernels_en.srt 13.45Кб
002 Feature maps and convolution kernels.mp4 70.41Мб
002 How models learn_en.srt 18.07Кб
002 How models learn.mp4 72.79Мб
002 How RNNs work_en.srt 20.96Кб
002 How RNNs work.mp4 74.85Мб
002 How to read academic DL papers_en.srt 24.46Кб
002 How to read academic DL papers.mp4 141.85Мб
002 If-else statements, part 2_en.srt 22.02Кб
002 If-else statements, part 2.mp4 91.12Мб
002 Implementation_en.srt 14.24Кб
002 Implementation.mp4 76.60Мб
002 Introduction to this section_en.srt 2.80Кб
002 Introduction to this section.mp4 11.12Мб
002 Linear GAN with MNIST_en.srt 30.76Кб
002 Linear GAN with MNIST.mp4 169.90Мб
002 My policy on code-sharing_en.srt 2.43Кб
002 My policy on code-sharing.mp4 10.24Мб
002 Plotting dots and lines_en.srt 17.02Кб
002 Plotting dots and lines.mp4 53.87Мб
002 Project 1 My solution_en.srt 16.30Кб
002 Project 1 My solution_en.srt 16.52Кб
002 Project 1 My solution.mp4 99.75Мб
002 Project 1 My solution.mp4 118.60Мб
002 Python libraries (numpy)_en.srt 19.26Кб
002 Python libraries (numpy).mp4 63.39Мб
002 Slicing_en.srt 17.26Кб
002 Slicing.mp4 48.45Мб
002 The Gram matrix (feature activation covariance)_en.srt 16.19Кб
002 The Gram matrix (feature activation covariance).mp4 66.49Мб
002 The MNIST dataset_en.srt 17.70Кб
002 The MNIST dataset.mp4 101.38Мб
002 The wine quality dataset_en.srt 24.77Кб
002 The wine quality dataset.mp4 143.50Мб
002 train() and eval() modes_en.srt 9.82Кб
002 train() and eval() modes.mp4 38.34Мб
002 Transfer learning MNIST - FMNIST_en.srt 14.02Кб
002 Transfer learning MNIST - FMNIST.mp4 90.35Мб
002 Using Udemy like a pro_en.srt 11.84Кб
002 Using Udemy like a pro.mp4 54.37Мб
002 Variables_en.srt 26.21Кб
002 Variables.mp4 77.58Мб
002 What about local minima_en.srt 16.54Кб
002 What about local minima.mp4 67.08Мб
003 ANN math part 1 (forward prop)_en.srt 21.38Кб
003 ANN math part 1 (forward prop).mp4 73.12Мб
003 APRF in code_en.srt 9.03Кб
003 APRF in code.mp4 51.79Мб
003 CNN on shifted MNIST_en.srt 11.66Кб
003 CNN on shifted MNIST.mp4 58.34Мб
003 CodeChallenge How many units_en.srt 27.80Кб
003 CodeChallenge How many units.mp4 135.38Мб
003 CodeChallenge letters to numbers_en.srt 19.77Кб
003 CodeChallenge letters to numbers.mp4 118.74Мб
003 CodeChallenge Linear GAN with FMNIST_en.srt 13.38Кб
003 CodeChallenge Linear GAN with FMNIST.mp4 62.73Мб
003 CodeChallenge Minibatch size in the wine dataset_en.srt 22.22Кб
003 CodeChallenge Minibatch size in the wine dataset.mp4 118.79Мб
003 CodeChallenge Run an experiment on the GPU_en.srt 9.43Кб
003 CodeChallenge Run an experiment on the GPU.mp4 52.99Мб
003 CodeChallenge unbalanced data_en.srt 28.21Кб
003 CodeChallenge unbalanced data.mp4 166.26Мб
003 Convolution in code_en.srt 29.39Кб
003 Convolution in code.mp4 173.10Мб
003 Dropout regularization_en.srt 30.42Кб
003 Dropout regularization.mp4 138.39Мб
003 FFN to classify digits_en.srt 31.66Кб
003 FFN to classify digits.mp4 161.85Мб
003 For loops_en.srt 24.28Кб
003 For loops.mp4 87.13Мб
003 Generalization_en.srt 8.50Кб
003 Generalization.mp4 32.44Мб
003 Gradient descent in 1D_en.srt 23.78Кб
003 Gradient descent in 1D.mp4 119.29Мб
003 Math and printing_en.srt 25.73Кб
003 Math and printing.mp4 78.50Мб
003 Project 2 CIFAR-autoencoder_en.srt 6.75Кб
003 Project 2 CIFAR-autoencoder.mp4 33.37Мб
003 Project 2 Predicting heart disease_en.srt 10.57Кб
003 Project 2 Predicting heart disease.mp4 50.61Мб
003 Python libraries (pandas)_en.srt 19.51Кб
003 Python libraries (pandas).mp4 81.19Мб
003 Some other possible ethical scenarios_en.srt 14.65Кб
003 Some other possible ethical scenarios.mp4 66.25Мб
003 Spectral theories in mathematics_en.srt 13.09Кб
003 Spectral theories in mathematics.mp4 51.06Мб
003 Subplot geometry_en.srt 22.24Кб
003 Subplot geometry.mp4 86.78Мб
003 Theory Why and how to initialize weights_en.srt 17.59Кб
003 Theory Why and how to initialize weights.mp4 79.41Мб
003 The RNN class in PyTorch_en.srt 25.94Кб
003 The RNN class in PyTorch.mp4 122.98Мб
003 The role of DL in science and knowledge_en.srt 22.48Кб
003 The role of DL in science and knowledge.mp4 34.76Мб
003 The style transfer algorithm_en.srt 14.54Кб
003 The style transfer algorithm.mp4 67.31Мб
004 AEs for occlusion_en.srt 24.48Кб
004 AEs for occlusion.mp4 138.20Мб
004 ANN math part 2 (errors, loss, cost)_en.srt 13.39Кб
004 ANN math part 2 (errors, loss, cost).mp4 48.47Мб
004 APRF example 1 wine quality_en.srt 18.52Кб
004 APRF example 1 wine quality.mp4 107.35Мб
004 Classify Gaussian blurs_en.srt 33.00Кб
004 Classify Gaussian blurs.mp4 185.14Мб
004 CNN GAN with Gaussians_en.srt 21.29Кб
004 CNN GAN with Gaussians.mp4 135.70Мб
004 CodeChallenge Binarized MNIST images_en.srt 7.10Кб
004 CodeChallenge Binarized MNIST images.mp4 40.78Мб
004 CodeChallenge unfortunate starting value_en.srt 15.37Кб
004 CodeChallenge unfortunate starting value.mp4 77.09Мб
004 CodeChallenge Weight variance inits_en.srt 17.75Кб
004 CodeChallenge Weight variance inits.mp4 103.96Мб
004 Convolution parameters (stride, padding)_en.srt 17.41Кб
004 Convolution parameters (stride, padding).mp4 66.93Мб
004 Cross-validation -- manual separation_en.srt 17.89Кб
004 Cross-validation -- manual separation.mp4 98.30Мб
004 Data normalization_en.srt 18.96Кб
004 Data normalization.mp4 59.81Мб
004 Dropout regularization in practice_en.srt 32.13Кб
004 Dropout regularization in practice.mp4 183.23Мб
004 Enumerate and zip_en.srt 15.41Кб
004 Enumerate and zip.mp4 58.59Мб
004 Famous CNN architectures_en.srt 8.39Кб
004 Famous CNN architectures.mp4 41.28Мб
004 Getting help on functions_en.srt 10.65Кб
004 Getting help on functions.mp4 48.60Мб
004 Lists (1 of 2)_en.srt 19.65Кб
004 Lists (1 of 2).mp4 55.04Мб
004 Making the graphs look nicer_en.srt 25.96Кб
004 Making the graphs look nicer.mp4 107.66Мб
004 Predicting alternating sequences_en.srt 27.77Кб
004 Predicting alternating sequences.mp4 160.16Мб
004 Project 2 My solution_en.srt 26.69Кб
004 Project 2 My solution.mp4 155.73Мб
004 Project 3 FMNIST_en.srt 4.93Кб
004 Project 3 FMNIST.mp4 26.45Мб
004 Running experiments to understand DL_en.srt 18.53Кб
004 Running experiments to understand DL.mp4 74.84Мб
004 Terms and datatypes in math and computers_en.srt 10.27Кб
004 Terms and datatypes in math and computers.mp4 38.08Мб
004 Transferring the screaming bathtub_en.srt 31.05Кб
004 Transferring the screaming bathtub.mp4 216.82Мб
004 What to do about unbalanced designs_en.srt 10.75Кб
004 What to do about unbalanced designs.mp4 54.21Мб
004 Will deep learning take our jobs_en.srt 14.35Кб
004 Will deep learning take our jobs.mp4 75.14Мб
005 Accountability and making ethical AI_en.srt 16.10Кб
005 Accountability and making ethical AI.mp4 70.06Мб
005 ANN math part 3 (backprop)_en.srt 14.71Кб
005 ANN math part 3 (backprop).mp4 52.89Мб
005 APRF example 2 MNIST_en.srt 16.52Кб
005 APRF example 2 MNIST.mp4 98.62Мб
005 Are artificial neurons like biological neurons_en.srt 23.29Кб
005 Are artificial neurons like biological neurons.mp4 114.65Мб
005 CodeChallenge Data normalization_en.srt 23.57Кб
005 CodeChallenge Data normalization.mp4 96.25Мб
005 CodeChallenge Gaussians with fewer layers_en.srt 8.61Кб
005 CodeChallenge Gaussians with fewer layers.mp4 53.06Мб
005 CodeChallenge sine wave extrapolation_en.srt 37.55Кб
005 CodeChallenge sine wave extrapolation.mp4 195.67Мб
005 CodeChallenge Style transfer with AlexNet_en.srt 10.07Кб
005 CodeChallenge Style transfer with AlexNet.mp4 53.47Мб
005 Continue_en.srt 9.71Кб
005 Continue.mp4 33.03Мб
005 Converting reality to numbers_en.srt 9.21Кб
005 Converting reality to numbers.mp4 33.21Мб
005 Creating functions_en.srt 29.69Кб
005 Creating functions.mp4 88.43Мб
005 Cross-validation -- scikitlearn_en.srt 29.31Кб
005 Cross-validation -- scikitlearn.mp4 142.88Мб
005 Data oversampling in MNIST_en.srt 23.24Кб
005 Data oversampling in MNIST.mp4 122.59Мб
005 Dropout example 2_en.srt 8.83Кб
005 Dropout example 2.mp4 53.87Мб
005 Examine feature map activations_en.srt 39.00Кб
005 Examine feature map activations.mp4 260.56Мб
005 Gradient descent in 2D_en.srt 20.74Кб
005 Gradient descent in 2D.mp4 96.38Мб
005 Lists (2 of 2)_en.srt 14.00Кб
005 Lists (2 of 2).mp4 46.69Мб
005 Project 3 FFN for missing data interpolation_en.srt 13.85Кб
005 Project 3 FFN for missing data interpolation.mp4 45.39Мб
005 Project 4 Psychometric functions in CNNs_en.srt 10.74Кб
005 Project 4 Psychometric functions in CNNs_en.vtt 14.22Кб
005 Project 4 Psychometric functions in CNNs.mp4 76.27Мб
005 Seaborn_en.srt 15.11Кб
005 Seaborn.mp4 59.72Мб
005 The Conv2 class in PyTorch_en.srt 18.19Кб
005 The Conv2 class in PyTorch.mp4 100.19Мб
005 The importance of data normalization_en.srt 13.26Кб
005 The importance of data normalization.mp4 64.65Мб
005 The latent code of MNIST_en.srt 30.47Кб
005 The latent code of MNIST.mp4 161.81Мб
005 Transfer learning with ResNet-18_en.srt 23.64Кб
005 Transfer learning with ResNet-18.mp4 148.46Мб
005 Xavier and Kaiming initializations_en.srt 21.70Кб
005 Xavier and Kaiming initializations.mp4 134.08Мб
006 ANN for regression_en.srt 34.52Кб
006 ANN for regression.mp4 135.50Мб
006 Autoencoder with tied weights_en.srt 33.51Кб
006 Autoencoder with tied weights.mp4 177.74Мб
006 Batch normalization_en.srt 18.02Кб
006 Batch normalization.mp4 76.81Мб
006 CNN GAN with FMNIST_en.srt 8.88Кб
006 CNN GAN with FMNIST.mp4 54.58Мб
006 CodeChallenge 2D gradient ascent_en.srt 7.24Кб
006 CodeChallenge 2D gradient ascent.mp4 39.36Мб
006 CodeChallenge Choose the parameters_en.srt 9.75Кб
006 CodeChallenge Choose the parameters.mp4 58.71Мб
006 CodeChallenge MNIST with unequal groups_en.srt 12.25Кб
006 CodeChallenge MNIST with unequal groups.mp4 25.07Мб
006 CodeChallenge Softcode internal parameters_en.srt 24.12Кб
006 CodeChallenge Softcode internal parameters.mp4 120.10Мб
006 CodeChallenge VGG-16_en.srt 4.87Кб
006 CodeChallenge VGG-16.mp4 20.28Мб
006 CodeChallenge Xavier vs. Kaiming_en.srt 23.71Кб
006 CodeChallenge Xavier vs. Kaiming.mp4 126.50Мб
006 Cross-validation -- DataLoader_en.srt 27.51Кб
006 Cross-validation -- DataLoader.mp4 172.32Мб
006 Data noise augmentation (with devset+test)_en.srt 17.93Кб
006 Data noise augmentation (with devset+test).mp4 106.09Мб
006 Distributions of weights pre- and post-learning_en.srt 21.22Кб
006 Distributions of weights pre- and post-learning.mp4 116.26Мб
006 Global and local variable scopes_en.srt 18.92Кб
006 Global and local variable scopes.mp4 65.96Мб
006 Images_en.srt 24.74Кб
006 Images.mp4 93.56Мб
006 Initializing variables_en.srt 24.64Кб
006 Initializing variables.mp4 91.05Мб
006 More on RNNs Hidden states, embeddings_en.srt 22.04Кб
006 More on RNNs Hidden states, embeddings.mp4 29.04Мб
006 Project 3 My solution_en.srt 11.43Кб
006 Project 3 My solution.mp4 75.48Мб
006 Tuples_en.srt 11.55Кб
006 Tuples.mp4 35.75Мб
006 Vector and matrix transpose_en.srt 9.63Кб
006 Vector and matrix transpose.mp4 37.66Мб
006 Weight regularization (L1L2) math_en.srt 26.08Кб
006 Weight regularization (L1L2) math.mp4 85.41Мб
007 Batch normalization in practice_en.srt 10.64Кб
007 Batch normalization in practice.mp4 61.76Мб
007 Booleans_en.srt 26.63Кб
007 Booleans.mp4 76.83Мб
007 CodeChallenge CNN GAN with CIFAR_en.srt 11.22Кб
007 CodeChallenge CNN GAN with CIFAR.mp4 60.77Мб
007 CodeChallenge How wide the FC_en.srt 15.86Кб
007 CodeChallenge How wide the FC.mp4 94.08Мб
007 CodeChallenge Identically random weights_en.srt 17.26Кб
007 CodeChallenge Identically random weights.mp4 88.17Мб
007 CodeChallenge manipulate regression slopes_en.srt 27.25Кб
007 CodeChallenge manipulate regression slopes.mp4 139.12Мб
007 CodeChallenge MNIST and breadth vs. depth_en.srt 17.09Кб
007 CodeChallenge MNIST and breadth vs. depth.mp4 95.21Мб
007 Computation time_en.srt 13.73Кб
007 Computation time.mp4 81.73Мб
007 Copies and referents of variables_en.srt 6.98Кб
007 Copies and referents of variables.mp4 23.78Мб
007 Data feature augmentation_en.srt 27.30Кб
007 Data feature augmentation.mp4 158.27Мб
007 Export plots in low and high resolution_en.srt 10.94Кб
007 Export plots in low and high resolution.mp4 17.17Мб
007 GRU and LSTM_en.srt 32.14Кб
007 GRU and LSTM.mp4 129.66Мб
007 L2 regularization in practice_en.srt 18.27Кб
007 L2 regularization in practice.mp4 110.47Мб
007 OMG it's the dot product!_en.srt 13.43Кб
007 OMG it's the dot product!.mp4 50.11Мб
007 Parametric experiments on g.d_en.srt 26.16Кб
007 Parametric experiments on g.d.mp4 135.61Мб
007 Pretraining with autoencoders_en.srt 27.70Кб
007 Pretraining with autoencoders.mp4 156.58Мб
007 Single-line loops (list comprehension)_en.srt 20.91Кб
007 Single-line loops (list comprehension).mp4 75.14Мб
007 Splitting data into train, devset, test_en.srt 13.31Кб
007 Splitting data into train, devset, test.mp4 79.21Мб
007 Transpose convolution_en.srt 19.17Кб
007 Transpose convolution.mp4 92.89Мб
008 ANN for classifying qwerties_en.srt 32.73Кб
008 ANN for classifying qwerties.mp4 151.12Мб
008 Better performance in test than train_en.srt 11.54Кб
008 Better performance in test than train.mp4 44.83Мб
008 CIFAR10 with autoencoder-pretrained model_en.srt 24.93Кб
008 CIFAR10 with autoencoder-pretrained model.mp4 153.34Мб
008 Classes and object-oriented programming_en.srt 25.61Кб
008 Classes and object-oriented programming.mp4 108.18Мб
008 CodeChallenge Batch-normalize the qwerties_en.srt 7.23Кб
008 CodeChallenge Batch-normalize the qwerties.mp4 41.43Мб
008 CodeChallenge fixed vs. dynamic learning rate_en.srt 22.55Кб
008 CodeChallenge fixed vs. dynamic learning rate.mp4 113.60Мб
008 CodeChallenge Optimizers and MNIST_en.srt 9.56Кб
008 CodeChallenge Optimizers and MNIST.mp4 46.26Мб
008 Cross-validation on regression_en.srt 11.53Кб
008 Cross-validation on regression.mp4 60.35Мб
008 Dictionaries_en.srt 16.36Кб
008 Dictionaries.mp4 50.67Мб
008 Do autoencoders clean Gaussians_en.srt 23.50Кб
008 Do autoencoders clean Gaussians.mp4 147.88Мб
008 Freezing weights during learning_en.srt 18.54Кб
008 Freezing weights during learning.mp4 93.15Мб
008 Getting data into colab_en.srt 8.52Кб
008 Getting data into colab.mp4 43.75Мб
008 L1 regularization in practice_en.srt 16.79Кб
008 L1 regularization in practice.mp4 99.44Мб
008 Matrix multiplication_en.srt 19.84Кб
008 Matrix multiplication.mp4 85.67Мб
008 Maxmean pooling_en.srt 25.71Кб
008 Maxmean pooling.mp4 89.07Мб
008 The LSTM and GRU classes_en.srt 19.26Кб
008 The LSTM and GRU classes.mp4 120.14Мб
008 while loops_en.srt 26.87Кб
008 while loops.mp4 91.10Мб
009 Activation functions_en.srt 25.53Кб
009 Activation functions.mp4 97.03Мб
009 Broadcasting in numpy_en.srt 20.52Кб
009 Broadcasting in numpy.mp4 71.05Мб
009 CodeChallenge AEs and occluded Gaussians_en.srt 13.49Кб
009 CodeChallenge AEs and occluded Gaussians.mp4 28.58Мб
009 Learning rates comparison_en.srt 34.85Кб
009 Learning rates comparison.mp4 168.64Мб
009 Learning-related changes in weights_en.srt 31.55Кб
009 Learning-related changes in weights.mp4 146.78Мб
009 Lorem ipsum_en.srt 35.99Кб
009 Lorem ipsum.mp4 192.53Мб
009 Pooling in PyTorch_en.srt 18.90Кб
009 Pooling in PyTorch.mp4 81.02Мб
009 Save and load trained models_en.srt 8.61Кб
009 Save and load trained models.mp4 55.71Мб
009 Scrambled MNIST_en.srt 10.82Кб
009 Scrambled MNIST.mp4 60.17Мб
009 Softmax_en.srt 26.74Кб
009 Softmax.mp4 95.96Мб
009 Training in mini-batches_en.srt 16.24Кб
009 Training in mini-batches.mp4 62.12Мб
009 Vanishing and exploding gradients_en.srt 8.71Кб
009 Vanishing and exploding gradients.mp4 30.24Мб
010 Activation functions in PyTorch_en.srt 16.35Кб
010 Activation functions in PyTorch.mp4 91.46Мб
010 Batch training in action_en.srt 15.06Кб
010 Batch training in action.mp4 89.10Мб
010 CodeChallenge Custom loss functions_en.srt 28.77Кб
010 CodeChallenge Custom loss functions.mp4 132.89Мб
010 Function error checking and handling_en.srt 24.39Кб
010 Function error checking and handling.mp4 99.87Мб
010 Logarithms_en.srt 11.05Кб
010 Logarithms.mp4 43.88Мб
010 Multilayer ANN_en.srt 28.29Кб
010 Multilayer ANN.mp4 144.70Мб
010 Save the best-performing model_en.srt 21.15Кб
010 Save the best-performing model.mp4 126.50Мб
010 Shifted MNIST_en.srt 15.84Кб
010 Shifted MNIST.mp4 77.91Мб
010 Tangent Notebook revision history_en.srt 2.66Кб
010 Tangent Notebook revision history.mp4 9.88Мб
010 To pool or to stride_en.srt 13.75Кб
010 To pool or to stride.mp4 55.51Мб
010 Use default inits or apply your own_en.srt 6.12Кб
010 Use default inits or apply your own.mp4 28.05Мб
011 Activation functions comparison_en.srt 13.08Кб
011 Activation functions comparison.mp4 73.90Мб
011 CodeChallenge The mystery of the missing 7_en.srt 15.17Кб
011 CodeChallenge The mystery of the missing 7.mp4 74.25Мб
011 Discover the Gaussian parameters_en.srt 22.41Кб
011 Discover the Gaussian parameters.mp4 136.65Мб
011 Entropy and cross-entropy_en.srt 24.46Кб
011 Entropy and cross-entropy.mp4 106.00Мб
011 Image transforms_en.srt 23.01Кб
011 Image transforms.mp4 129.90Мб
011 Linear solutions to linear problems_en.srt 11.73Кб
011 Linear solutions to linear problems.mp4 50.37Мб
011 The importance of equal batch sizes_en.srt 9.12Кб
011 The importance of equal batch sizes.mp4 60.11Мб
011 Where to find online datasets_en.srt 7.89Кб
011 Where to find online datasets.mp4 41.70Мб
012 CodeChallenge Compare relu variants_en.srt 10.87Кб
012 CodeChallenge Compare relu variants.mp4 63.97Мб
012 CodeChallenge Effects of mini-batch size_en.srt 17.42Кб
012 CodeChallenge Effects of mini-batch size.mp4 95.42Мб
012 Creating and using custom DataLoaders_en.srt 25.50Кб
012 Creating and using custom DataLoaders.mp4 139.53Мб
012 Minmax and argminargmax_en.srt 17.49Кб
012 Minmax and argminargmax.mp4 88.21Мб
012 The EMNIST dataset (letter recognition)_en.srt 34.76Кб
012 The EMNIST dataset (letter recognition).mp4 201.31Мб
012 Universal approximation theorem_en.srt 11.28Кб
012 Universal approximation theorem.mp4 49.18Мб
012 Why multilayer linear models don't exist_en.srt 8.86Кб
012 Why multilayer linear models don't exist.mp4 26.46Мб
013 CodeChallenge Predict sugar_en.srt 24.06Кб
013 CodeChallenge Predict sugar.mp4 122.10Мб
013 Dropout in CNNs_en.srt 13.68Кб
013 Dropout in CNNs.mp4 82.73Мб
013 Mean and variance_en.srt 21.74Кб
013 Mean and variance.mp4 81.42Мб
013 Multi-output ANN (iris dataset)_en.srt 36.08Кб
013 Multi-output ANN (iris dataset).mp4 186.77Мб
014 CodeChallenge How low can you go_en.srt 9.58Кб
014 CodeChallenge How low can you go.mp4 55.36Мб
014 CodeChallenge more qwerties!_en.srt 17.13Кб
014 CodeChallenge more qwerties!.mp4 95.10Мб
014 Loss functions_en.srt 23.32Кб
014 Loss functions.mp4 90.30Мб
014 Random sampling and sampling variability_en.srt 15.75Кб
014 Random sampling and sampling variability.mp4 85.42Мб
015 CodeChallenge Varying number of channels_en.srt 18.92Кб
015 CodeChallenge Varying number of channels.mp4 92.37Мб
015 Comparing the number of hidden units_en.srt 14.09Кб
015 Comparing the number of hidden units.mp4 71.15Мб
015 Loss functions in PyTorch_en.srt 25.85Кб
015 Loss functions in PyTorch.mp4 138.10Мб
015 Reproducible randomness via seeding_en.srt 11.32Кб
015 Reproducible randomness via seeding.mp4 69.70Мб
016 Depth vs. breadth number of parameters_en.srt 24.75Кб
016 Depth vs. breadth number of parameters.mp4 132.07Мб
016 More practice with multioutput ANNs_en.srt 19.57Кб
016 More practice with multioutput ANNs.mp4 99.80Мб
016 So many possibilities! How to create a CNN_en.srt 6.27Кб
016 So many possibilities! How to create a CNN.mp4 21.04Мб
016 The t-test_en.srt 18.69Кб
016 The t-test.mp4 81.36Мб
017 Defining models using sequential vs. class_en.srt 18.45Кб
017 Defining models using sequential vs. class.mp4 89.48Мб
017 Derivatives intuition and polynomials_en.srt 23.48Кб
017 Derivatives intuition and polynomials.mp4 80.30Мб
017 Optimizers (minibatch, momentum)_en.srt 26.39Кб
017 Optimizers (minibatch, momentum).mp4 98.07Мб
018 Derivatives find minima_en.srt 11.71Кб
018 Derivatives find minima.mp4 45.47Мб
018 Model depth vs. breadth_en.srt 29.73Кб
018 Model depth vs. breadth.mp4 158.91Мб
018 SGD with momentum_en.srt 11.12Кб
018 SGD with momentum.mp4 62.10Мб
019 CodeChallenge convert sequential to class_en.srt 9.36Кб
019 CodeChallenge convert sequential to class.mp4 51.44Мб
019 Derivatives product and chain rules_en.srt 13.04Кб
019 Derivatives product and chain rules.mp4 55.63Мб
019 Optimizers (RMSprop, Adam)_en.srt 21.25Кб
019 Optimizers (RMSprop, Adam).mp4 76.73Мб
020 Diversity of ANN visual representations.html 517б
020 Optimizers comparison_en.srt 14.10Кб
020 Optimizers comparison.mp4 86.88Мб
021 CodeChallenge Optimizers and... something_en.srt 9.03Кб
021 CodeChallenge Optimizers and... something.mp4 49.77Мб
021 Reflection Are DL models understandable yet_en.srt 11.95Кб
021 Reflection Are DL models understandable yet.mp4 58.59Мб
022 CodeChallenge Adam with L2 regularization_en.srt 9.94Кб
022 CodeChallenge Adam with L2 regularization.mp4 53.00Мб
023 Learning rate decay_en.srt 17.23Кб
023 Learning rate decay.mp4 96.90Мб
024 How to pick the right metaparameters_en.srt 16.08Кб
024 How to pick the right metaparameters.mp4 61.74Мб
Статистика распространения по странам
Гонконг (HK) 3
Индия (IN) 3
Тайланд (TH) 2
Китай (CN) 1
Колумбия (CO) 1
Австралия (AU) 1
Всего 11
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент