Общая информация
Название [FreeCourseSite.com] Udemy - The Data Science Course 2019 Complete Data Science Bootcamp
Тип
Размер 14.08Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[FCS Forum].url 133б
[FreeCourseSite.com].url 127б
1.1 2.13. Practical example. Descriptive statistics_lesson.xlsx.xlsx 146.51Кб
1.1 3.17. Practical example. Confidence intervals_lesson.xlsx.xlsx 1.74Мб
1.1 4.10.Hypothesis-testing-section-practical-example.xlsx.xlsx 51.71Кб
1.1 5 Files Needed to Deploy the Model.html 134б
1.1 Absenteeism_data.csv.csv 32.05Кб
1.1 Absenteeism_preprocessed.csv.csv 29.13Кб
1.1 Arithmetic Operators - Resources.html 134б
1.1 Audiobooks_data.csv.csv 710.77Кб
1.1 Comparison Operators - Resources.html 134б
1.1 Course notes_descriptive_statistics.pdf.pdf 482.21Кб
1.1 Course notes_hypothesis_testing.pdf.pdf 648.20Кб
1.1 Course notes_inferential statistics.pdf.pdf 382.32Кб
1.1 Course Notes - Basic Probability.pdf.pdf 371.05Кб
1.1 Course Notes - Bayesian Inference.pdf.pdf 386.01Кб
1.1 Course Notes - Combinatorics.pdf.pdf 226.12Кб
1.1 Course Notes - Probability Distributions.pdf.pdf 456.24Кб
1.1 Course Notes - Section 2.pdf.pdf 578.08Кб
1.1 Course Notes - Section 6.pdf.pdf 936.42Кб
1.1 Defining a Function in Python - Resources.html 134б
1.1 For Loops - Resources.html 134б
1.1 Introduction to the If Statement - Resources.html 134б
1.1 Lists - Resources.html 134б
1.1 Shortcuts-for-Jupyter.pdf.pdf 619.17Кб
1.1 Shortcuts-for-Jupyter.pdf.pdf 619.17Кб
1.1 sklearn - Linear Regression - Practical Example (Part 1).html 134б
1.1 Statistics Glossary.xlsx.xlsx 20.26Кб
1.1 Variables - Resources.html 134б
1.2 Bais NN Example Part 1.html 136б
1.2 Course notes_descriptive_statistics.pdf.pdf 482.21Кб
1.2 df_preprocessed.csv.csv 29.11Кб
1.2 Python Introduction - Course Notes.pdf.pdf 2.03Мб
1.3 data_preprocessing_homework.pdf.pdf 134.47Кб
1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4 126.87Мб
1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.vtt 7.90Кб
1. A Practical Example What You Will Learn in This Course.mp4 49.03Мб
1. A Practical Example What You Will Learn in This Course.vtt 5.62Кб
1. Are You Sure You're All Set.html 519б
1. Basic NN Example (Part 1).mp4 20.60Мб
1. Basic NN Example (Part 1).vtt 3.91Кб
1. Business Case Getting acquainted with the dataset.mp4 87.65Мб
1. Business Case Getting acquainted with the dataset.vtt 9.37Кб
1. Comparison Operators.mp4 10.18Мб
1. Comparison Operators.vtt 2.14Кб
1. Data Science and Business Buzzwords Why are there so many.mp4 81.42Мб
1. Data Science and Business Buzzwords Why are there so many.vtt 5.84Кб
1. Debunking Common Misconceptions.mp4 72.85Мб
1. Debunking Common Misconceptions.vtt 4.69Кб
1. Defining a Function in Python.mp4 7.75Мб
1. Defining a Function in Python.vtt 2.20Кб
1. EXERCISE - Age vs Probability.html 385б
1. Exploring the Problem with a Machine Learning Mindset.mp4 27.54Мб
1. Exploring the Problem with a Machine Learning Mindset.vtt 4.02Кб
1. Finding the Job - What to Expect and What to Look for.mp4 54.38Мб
1. Finding the Job - What to Expect and What to Look for.vtt 3.94Кб
1. For Loops.mp4 11.80Мб
1. For Loops.vtt 2.44Кб
1. Fundamentals of Combinatorics.mp4 16.22Мб
1. Fundamentals of Combinatorics.vtt 1.18Кб
1. Fundamentals of Probability Distributions.mp4 73.40Мб
1. Fundamentals of Probability Distributions.vtt 6.72Кб
1. Game Plan for this Python, SQL, and Tableau Business Exercise.mp4 52.30Мб
1. Game Plan for this Python, SQL, and Tableau Business Exercise.vtt 4.80Кб
1. How to Install TensorFlow.mp4 14.56Мб
1. How to Install TensorFlow.vtt 2.84Кб
1. Introduction.mp4 15.51Мб
1. Introduction.vtt 1.44Кб
1. Introduction to Cluster Analysis.mp4 53.43Мб
1. Introduction to Cluster Analysis.vtt 4.21Кб
1. Introduction to Logistic Regression.mp4 27.06Мб
1. Introduction to Logistic Regression.vtt 1.44Кб
1. Introduction to Neural Networks.mp4 42.93Мб
1. Introduction to Neural Networks.vtt 5.18Кб
1. Introduction to Programming.mp4 58.55Мб
1. Introduction to Programming.vtt 6.08Кб
1. Introduction to Regression Analysis.mp4 17.32Мб
1. Introduction to Regression Analysis.vtt 1.95Кб
1. K-Means Clustering.mp4 27.29Мб
1. K-Means Clustering.vtt 5.76Кб
1. Lists.mp4 21.99Мб
1. Lists.vtt 4.30Кб
1. MNIST What is the MNIST Dataset.mp4 17.82Мб
1. MNIST What is the MNIST Dataset.vtt 3.07Кб
1. Multiple Linear Regression.mp4 21.52Мб
1. Multiple Linear Regression.vtt 2.93Кб
1. Necessary Programming Languages and Software Used in Data Science.mp4 103.51Мб
1. Necessary Programming Languages and Software Used in Data Science.vtt 6.42Кб
1. Null vs Alternative Hypothesis.mp4 92.05Мб
1. Null vs Alternative Hypothesis.vtt 6.18Кб
1. Object Oriented Programming.mp4 33.59Мб
1. Object Oriented Programming.vtt 5.34Кб
1. Population and Sample.mp4 58.12Мб
1. Population and Sample.vtt 4.81Кб
1. Practical Example Descriptive Statistics.mp4 160.46Мб
1. Practical Example Descriptive Statistics.vtt 18.00Кб
1. Practical Example Hypothesis Testing.mp4 69.48Мб
1. Practical Example Hypothesis Testing.vtt 7.43Кб
1. Practical Example Inferential Statistics.mp4 102.67Мб
1. Practical Example Inferential Statistics.vtt 11.90Кб
1. Practical Example Linear Regression (Part 1).mp4 97.08Мб
1. Practical Example Linear Regression (Part 1).vtt 12.98Кб
1. Preprocessing Introduction.mp4 27.78Мб
1. Preprocessing Introduction.vtt 3.39Кб
1. Probability in Finance.mp4 99.06Мб
1. Probability in Finance.vtt 8.71Кб
1. Sets and Events.mp4 53.47Мб
1. Sets and Events.vtt 4.48Кб
1. Stochastic Gradient Descent.mp4 28.69Мб
1. Stochastic Gradient Descent.vtt 4.18Кб
1. Summary on What You've Learned.mp4 39.75Мб
1. Summary on What You've Learned.vtt 4.61Кб
1. Techniques for Working with Traditional Data.mp4 138.31Мб
1. Techniques for Working with Traditional Data.vtt 9.30Кб
1. The Basic Probability Formula.mp4 85.92Мб
1. The Basic Probability Formula.vtt 7.83Кб
1. The IF Statement.mp4 13.62Мб
1. The IF Statement.vtt 3.12Кб
1. The Linear Regression Model.mp4 57.37Мб
1. The Linear Regression Model.vtt 6.14Кб
1. The Reason behind these Disciplines.mp4 81.18Мб
1. The Reason behind these Disciplines.vtt 5.69Кб
1. Types of Clustering.mp4 44.57Мб
1. Types of Clustering.vtt 4.12Кб
1. Types of Data.mp4 72.52Мб
1. Types of Data.vtt 5.25Кб
1. Using Arithmetic Operators in Python.mp4 18.93Мб
1. Using Arithmetic Operators in Python.vtt 3.58Кб
1. Variables.mp4 25.30Мб
1. Variables.vtt 5.27Кб
1. What are Confidence Intervals.mp4 49.98Мб
1. What are Confidence Intervals.vtt 2.86Кб
1. What are Data, Servers, Clients, Requests, and Responses.mp4 69.04Мб
1. What are Data, Servers, Clients, Requests, and Responses.vtt 5.20Кб
1. What is a Layer.mp4 12.51Мб
1. What is a Layer.vtt 2.13Кб
1. What is a matrix.mp4 33.60Мб
1. What is a matrix.vtt 3.80Кб
1. What is Initialization.mp4 21.76Мб
1. What is Initialization.vtt 3.09Кб
1. What is Overfitting.mp4 31.09Мб
1. What is Overfitting.vtt 4.93Кб
1. What is sklearn and How is it Different from Other Packages.mp4 27.26Мб
1. What is sklearn and How is it Different from Other Packages.vtt 3.01Кб
1. What to Expect from the Following Sections.html 2.48Кб
1. What to Expect from this Part.mp4 31.11Мб
1. What to Expect from this Part.vtt 4.05Кб
10.1 2.4. Numerical variables. Frequency distribution table_exercise_solution.xlsx.xlsx 13.15Кб
10.1 Addition and Subtraction of Matrices Python Notebook.html 178б
10.1 Binary predictors.html 134б
10.1 Feature selection.html 134б
10.1 Indexing Elements - Resources.html 134б
10.1 Online p-value calculator.pdf.pdf 1.15Мб
10.1 TensorFlow MNIST All Exercises.html 144б
10.2 2.4. Numerical variables. Frequency distribution table_exercise.xlsx.xlsx 11.75Кб
10. A1 Linearity.html 158б
10. A Breakdown of our Data Science Infographic.html 158б
10. Addition and Subtraction of Matrices.mp4 32.62Мб
10. Addition and Subtraction of Matrices.vtt 3.48Кб
10. Analyzing the Reasons for Absence.mp4 40.58Мб
10. Analyzing the Reasons for Absence.vtt 5.12Кб
10. Binary Predictors in a Logistic Regression.mp4 38.44Мб
10. Binary Predictors in a Logistic Regression.vtt 4.75Кб
10. Business Case Testing the Model.mp4 11.20Мб
10. Business Case Testing the Model.vtt 2.36Кб
10. Central Limit Theorem.html 158б
10. Discrete Distributions The Bernoulli Distribution.html 158б
10. Feature Selection (F-regression).mp4 29.52Мб
10. Feature Selection (F-regression).vtt 5.85Кб
10. Indexing Elements.mp4 5.94Мб
10. Indexing Elements.vtt 1.47Кб
10. Interpreting the Coefficients of the Logistic Regression.mp4 40.41Мб
10. Interpreting the Coefficients of the Logistic Regression.vtt 6.34Кб
10. Jupyter's Interface.html 158б
10. Margin of Error.mp4 59.17Мб
10. Margin of Error.vtt 5.39Кб
10. MNIST Exercises.html 2.13Кб
10. Mutually Exclusive Sets.html 158б
10. Numerical Variables Exercise.html 81б
10. p-value.mp4 55.88Мб
10. p-value.vtt 4.46Кб
10. Relationship between Clustering and Regression.mp4 9.93Мб
10. Relationship between Clustering and Regression.vtt 1.92Кб
10. Software Integration - Explained.html 158б
10. Solving Variations without Repetition.html 158б
10. Techniques for Working with Traditional Methods.mp4 123.51Мб
10. Techniques for Working with Traditional Methods.vtt 9.66Кб
10. The Linear Model with Multiple Inputs.html 158б
10. Using Seaborn for Graphs.mp4 12.24Мб
10. Using Seaborn for Graphs.vtt 1.30Кб
11.10 TensorFlow MNIST 'Around 98% Accuracy' Solution.html 157б
11.11 TensorFlow MNIST '7. Batch size (Part 2)' Solution.html 162б
11.1 2.5. The Histogram_lesson.xlsx.xlsx 18.63Кб
11.1 Bank_data.csv.csv 19.55Кб
11.1 Calculation of P-values.html 134б
11.1 Combinations With Repetition.pdf.pdf 207.41Кб
11.1 Logistic Regression prior to Backward Elimination.html 226б
11.1 Market segmentation.html 134б
11.1 Python Introduction - Course Notes.pdf.pdf 2.03Мб
11.1 TensorFlow Business Case Homework.html 134б
11.1 TensorFlow MNIST '1. Width' Solution.html 150б
11.2 Binary predictors - exercise.html 134б
11.2 TensorFlow MNIST '5. Activation Functions (Part 2)' Solution.html 172б
11.3 TensorFlow MNIST '6. Batch size (Part 1)' Solution.html 162б
11.4 TensorFlow MNIST '8. Learning Rate (Part 1)' Solution.html 165б
11.5 TensorFlow MNIST 'Time' Solution.html 162б
11.6 TensorFlow MNIST '4. Activation Functions (Part 1)' Solution.html 172б
11.7 TensorFlow MNIST '9. Learning Rate (Part 2)' Solution.html 165б
11.8 TensorFlow MNIST '3. Width and Depth' Solution.html 160б
11.9 TensorFlow MNIST '2. Depth' Solution.html 150б
11. A2 No Endogeneity.mp4 35.68Мб
11. A2 No Endogeneity.vtt 4.58Кб
11. Addition and Subtraction of Matrices.html 158б
11. A Note on Calculation of P-values with sklearn.html 372б
11. Backward Elimination or How to Simplify Your Model.mp4 39.56Мб
11. Backward Elimination or How to Simplify Your Model.vtt 4.58Кб
11. Binary Predictors in a Logistic Regression - Exercise.html 87б
11. Business Case A Comment on the Homework.mp4 36.39Мб
11. Business Case A Comment on the Homework.vtt 4.65Кб
11. Dependence and Independence of Sets.mp4 34.78Мб
11. Dependence and Independence of Sets.vtt 3.05Кб
11. Discrete Distributions The Binomial Distribution.mp4 65.51Мб
11. Discrete Distributions The Binomial Distribution.vtt 7.40Кб
11. How to Interpret the Regression Table.mp4 44.65Мб
11. How to Interpret the Regression Table.vtt 5.50Кб
11. Indexing Elements.html 158б
11. Margin of Error.html 158б
11. Market Segmentation with Cluster Analysis (Part 1).mp4 43.01Мб
11. Market Segmentation with Cluster Analysis (Part 1).vtt 6.53Кб
11. MNIST Solutions.html 2.19Кб
11. Obtaining Dummies from a Single Feature.mp4 81.11Мб
11. Obtaining Dummies from a Single Feature.vtt 8.96Кб
11. p-value.html 158б
11. Python 2 vs Python 3.mp4 11.27Мб
11. Python 2 vs Python 3.vtt 2.95Кб
11. Solving Combinations.mp4 57.35Мб
11. Solving Combinations.vtt 4.98Кб
11. Standard error.mp4 22.77Мб
11. Standard error.vtt 1.76Кб
11. Techniques for Working with Traditional Methods.html 158б
11. The Histogram.mp4 13.78Мб
11. The Histogram.vtt 2.67Кб
11. The Linear model with Multiple Inputs and Multiple Outputs.mp4 38.32Мб
11. The Linear model with Multiple Inputs and Multiple Outputs.vtt 4.79Кб
12.1 3.13. Confidence intervals. Two means. Dependent samples_lesson.xlsx.xlsx 10.47Кб
12.1 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx.xlsx 14.54Кб
12.1 Accuracy.html 134б
12.1 Errors when Adding Matrices Python Notebook.html 220б
12.1 Market segmentation.html 134б
12.1 Structure Your Code with Indentation - Resources.html 134б
12.1 Summary table with p-values.html 134б
12.1 TensorFlow Business Case Homework.html 134б
12. A2 No Endogeneity.html 158б
12. Business Case Final Exercise.html 439б
12. Calculating the Accuracy of the Model.mp4 32.85Мб
12. Calculating the Accuracy of the Model.vtt 3.63Кб
12. Confidence intervals. Two means. Dependent samples.mp4 70.47Мб
12. Confidence intervals. Two means. Dependent samples.vtt 7.10Кб
12. Creating a Summary Table with p-values.mp4 12.31Мб
12. Creating a Summary Table with p-values.vtt 2.62Кб
12. Dependence and Independence of Sets.html 158б
12. Discrete Distributions The Binomial Distribution.html 158б
12. Errors when Adding Matrices.mp4 11.18Мб
12. Errors when Adding Matrices.vtt 2.27Кб
12. EXERCISE - Obtaining Dummies from a Single Feature.html 129б
12. How to Interpret the Regression Table.html 158б
12. Market Segmentation with Cluster Analysis (Part 2).mp4 56.11Мб
12. Market Segmentation with Cluster Analysis (Part 2).vtt 7.96Кб
12. Real Life Examples of Traditional Methods.mp4 42.78Мб
12. Real Life Examples of Traditional Methods.vtt 3.14Кб
12. Solving Combinations.html 158б
12. Standard Error.html 158б
12. Structuring with Indentation.mp4 6.82Мб
12. Structuring with Indentation.vtt 1.96Кб
12. Test for the Mean. Population Variance Unknown.mp4 40.24Мб
12. Test for the Mean. Population Variance Unknown.vtt 5.11Кб
12. Testing the Model We Created.mp4 49.07Мб
12. Testing the Model We Created.vtt 5.67Кб
12. The Histogram.html 158б
12. The Linear model with Multiple Inputs and Multiple Outputs.html 158б
13.1 2.5.The-Histogram-exercise-solution.xlsx.xlsx 17.10Кб
13.1 3.13. Confidence intervals. Two means. Dependent samples_exercise.xlsx.xlsx 13.74Кб
13.1 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx.xlsx 12.61Кб
13.1 Accuracy of the model - exercise.html 134б
13.1 Multiple linear regression - Exercise.html 134б
13.1 Symmetry Explained.pdf.pdf 85.04Кб
13.1 Transpose of a Matrix Python Notebook.html 167б
13.2 3.13. Confidence intervals. Two means. Dependent samples_exercise_solution.xlsx.xlsx 14.24Кб
13.2 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx.xlsx 11.34Кб
13.2 Bank_data.csv.csv 19.55Кб
13.2 Statistics - PDF with Excel Solutions that don't visualize properly.pdf.pdf 289.12Кб
13.3 2.5.The-Histogram-exercise.xlsx.xlsx 15.50Кб
13. A3 Normality and Homoscedasticity.mp4 42.70Мб
13. A3 Normality and Homoscedasticity.vtt 5.81Кб
13. Calculating the Accuracy of the Model.html 87б
13. Confidence intervals. Two means. Dependent samples Exercise.html 81б
13. Decomposition of Variability.mp4 49.66Мб
13. Decomposition of Variability.vtt 3.67Кб
13. Discrete Distributions The Poisson Distribution.mp4 58.42Мб
13. Discrete Distributions The Poisson Distribution.vtt 5.77Кб
13. Estimators and Estimates.mp4 47.83Мб
13. Estimators and Estimates.vtt 3.27Кб
13. Graphical Representation of Simple Neural Networks.mp4 22.65Мб
13. Graphical Representation of Simple Neural Networks.vtt 2.34Кб
13. Histogram Exercise.html 81б
13. How is Clustering Useful.mp4 74.46Мб
13. How is Clustering Useful.vtt 5.65Кб
13. Machine Learning (ML) Techniques.mp4 99.33Мб
13. Machine Learning (ML) Techniques.vtt 7.67Кб
13. Multiple Linear Regression - Exercise.html 76б
13. Saving the Model and Preparing it for Deployment.mp4 37.45Мб
13. Saving the Model and Preparing it for Deployment.vtt 4.88Кб
13. SOLUTION - Obtaining Dummies from a Single Feature.html 116б
13. Structuring with Indentation.html 158б
13. Symmetry of Combinations.mp4 38.69Мб
13. Symmetry of Combinations.vtt 3.79Кб
13. Test for the Mean. Population Variance Unknown Exercise.html 81б
13. The Conditional Probability Formula.mp4 45.86Мб
13. The Conditional Probability Formula.vtt 4.42Кб
13. Transpose of a Matrix.mp4 38.08Мб
13. Transpose of a Matrix.vtt 4.69Кб
14.1 2.6. Cross table and scatter plot.xlsx.xlsx 26.12Кб
14.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_lesson.xlsx.xlsx 9.83Кб
14.1 4.7. Test for the mean. Dependent samples_lesson.xlsx.xlsx 9.79Кб
14.1 Dot Product Python Notebook.html 154б
14.1 Exercise - part 1.html 134б
14.1 Feature scaling.html 134б
14.2 iris_dataset.csv.csv 2.40Кб
14. A4 No Autocorrelation.mp4 31.52Мб
14. A4 No Autocorrelation.vtt 4.27Кб
14. ARTICLE - A Note on 'pickling'.html 2.14Кб
14. Confidence intervals. Two means. Independent samples (Part 1).mp4 28.75Мб
14. Confidence intervals. Two means. Independent samples (Part 1).vtt 5.33Кб
14. Cross Tables and Scatter Plots.mp4 39.80Мб
14. Cross Tables and Scatter Plots.vtt 5.87Кб
14. Decomposition of Variability.html 158б
14. Discrete Distributions The Poisson Distribution.html 158б
14. Dot Product.mp4 24.00Мб
14. Dot Product.vtt 3.68Кб
14. Dropping a Dummy Variable from the Data Set.html 2.34Кб
14. Estimators and Estimates.html 158б
14. EXERCISE Species Segmentation with Cluster Analysis (Part 1).html 87б
14. Feature Scaling (Standardization).mp4 39.09Мб
14. Feature Scaling (Standardization).vtt 6.77Кб
14. Graphical Representation of Simple Neural Networks.html 158б
14. Machine Learning (ML) Techniques.html 158б
14. Symmetry of Combinations.html 158б
14. Test for the Mean. Dependent Samples.mp4 50.38Мб
14. Test for the Mean. Dependent Samples.vtt 5.59Кб
14. The Conditional Probability Formula.html 158б
14. Underfitting and Overfitting.mp4 22.30Мб
14. Underfitting and Overfitting.vtt 4.37Кб
15.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise_solution.xlsx.xlsx 10.12Кб
15.1 4.7. Test for the mean. Dependent samples_exercise_solution.xlsx.xlsx 14.40Кб
15.1 Dot Product of Matrices Python Notebook.html 171б
15.1 Exercise - part 2.html 134б
15.1 Feature scaling standardization.html 134б
15.1 Logistic Regression with Comments.html 210б
15.1 Solving Integrals.pdf.pdf 343.85Кб
15.1 Testing the model.html 134б
15.2 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise.xlsx.xlsx 9.83Кб
15.2 4.7. Test for the mean. Dependent samples_exercise.xlsx.xlsx 12.80Кб
15.2 iris_dataset.csv.csv 2.40Кб
15.2 Logistic Regression.html 196б
15.3 iris_with_answers.csv.csv 3.63Кб
15. A4 No autocorrelation.html 158б
15. Characteristics of Continuous Distributions.mp4 79.78Мб
15. Characteristics of Continuous Distributions.vtt 7.62Кб
15. Confidence intervals. Two means. Independent samples (Part 1) Exercise.html 81б
15. Cross Tables and Scatter Plots.html 158б
15. Dot Product of Matrices.mp4 49.44Мб
15. Dot Product of Matrices.vtt 8.22Кб
15. EXERCISE - Saving the Model (and Scaler).html 284б
15. EXERCISE Species Segmentation with Cluster Analysis (Part 2).html 87б
15. Feature Selection through Standardization of Weights.mp4 34.90Мб
15. Feature Selection through Standardization of Weights.vtt 6.41Кб
15. More on Dummy Variables A Statistical Perspective.mp4 13.74Мб
15. More on Dummy Variables A Statistical Perspective.vtt 13.75Мб
15. Solving Combinations with Separate Sample Spaces.mp4 33.15Мб
15. Solving Combinations with Separate Sample Spaces.vtt 3.31Кб
15. Test for the Mean. Dependent Samples Exercise.html 81б
15. Testing the Model.mp4 32.28Мб
15. Testing the Model.vtt 5.70Кб
15. The Law of Total Probability.mp4 35.21Мб
15. The Law of Total Probability.vtt 3.10Кб
15. Types of Machine Learning.mp4 125.14Мб
15. Types of Machine Learning.vtt 9.23Кб
15. What is the Objective Function.mp4 17.92Мб
15. What is the Objective Function.vtt 1.87Кб
15. What is the OLS.mp4 28.31Мб
15. What is the OLS.vtt 3.33Кб
16.1 2.6. Cross table and scatter plot_exercise.xlsx.xlsx 16.28Кб
16.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_lesson.xlsx.xlsx 9.52Кб
16.1 4.8. Test for the mean. Independent samples (Part 1)_lesson.xlsx.xlsx 9.63Кб
16.1 Bank_data_testing.csv.csv 8.30Кб
16.1 Predicting with the Standardized Cofficients.html 134б
16.2 2.6. Cross table and scatter plot_exercise_solution.xlsx.xlsx 40.44Кб
16.2 Bank_data.csv.csv 19.55Кб
16.3 Testing the model - exercise.html 134б
16. A5 No Multicollinearity.mp4 28.71Мб
16. A5 No Multicollinearity.vtt 4.04Кб
16. Characteristics of Continuous Distributions.html 158б
16. Classifying the Various Reasons for Absence.mp4 74.60Мб
16. Classifying the Various Reasons for Absence.vtt 8.79Кб
16. Confidence intervals. Two means. Independent samples (Part 2).mp4 26.82Мб
16. Confidence intervals. Two means. Independent samples (Part 2).vtt 3.98Кб
16. Cross Tables and Scatter Plots Exercise.html 81б
16. Predicting with the Standardized Coefficients.mp4 25.96Мб
16. Predicting with the Standardized Coefficients.vtt 4.90Кб
16. Preparing the Deployment of the Model through a Module.mp4 44.48Мб
16. Preparing the Deployment of the Model through a Module.vtt 4.90Кб
16. Solving Combinations with Separate Sample Spaces.html 158б
16. Test for the mean. Independent samples (Part 1).mp4 29.96Мб
16. Test for the mean. Independent samples (Part 1).vtt 4.80Кб
16. Testing the Model - Exercise.html 87б
16. The Additive Rule.mp4 25.74Мб
16. The Additive Rule.vtt 2.36Кб
16. Types of Machine Learning.html 158б
16. What is the Objective Function.html 158б
16. What is the OLS.html 158б
16. Why is Linear Algebra Useful.mp4 144.34Мб
16. Why is Linear Algebra Useful.vtt 10.31Кб
17.1 2.7. Mean, median and mode_lesson.xlsx.xlsx 10.49Кб
17.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise.xlsx.xlsx 9.17Кб
17.1 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise-solution.xlsx.xlsx 11.25Кб
17.1 Feature scaling - exercise.html 134б
17.1 Normal Distribution - Exp and Var.pdf.pdf 144.08Кб
17.2 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise_solution.xlsx.xlsx 9.79Кб
17.2 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx.xlsx 10.77Кб
17. A5 No Multicollinearity.html 158б
17. Combinatorics in Real-Life The Lottery.mp4 39.39Мб
17. Combinatorics in Real-Life The Lottery.vtt 3.58Кб
17. Common Objective Functions L2-norm Loss.mp4 23.27Мб
17. Common Objective Functions L2-norm Loss.vtt 2.44Кб
17. Confidence intervals. Two means. Independent samples (Part 2) Exercise.html 81б
17. Continuous Distributions The Normal Distribution.mp4 48.25Мб
17. Continuous Distributions The Normal Distribution.vtt 4.23Кб
17. Feature Scaling (Standardization) - Exercise.html 76б
17. Mean, median and mode.mp4 37.13Мб
17. Mean, median and mode.vtt 5.00Кб
17. Real Life Examples of Machine Learning (ML).mp4 36.82Мб
17. Real Life Examples of Machine Learning (ML).vtt 2.57Кб
17. R-Squared.mp4 41.03Мб
17. R-Squared.vtt 5.79Кб
17. Test for the mean. Independent samples (Part 1). Exercise.html 81б
17. The Additive Rule.html 158б
17. Using .concat() in Python.mp4 38.74Мб
17. Using .concat() in Python.vtt 4.42Кб
18.1 2.7. Mean, median and mode_exercise.xlsx.xlsx 10.87Кб
18.1 4.9. Test for the mean. Independent samples (Part 2)_lesson.xlsx.xlsx 9.31Кб
18.1 Dealing with categorical data.html 134б
18.2 2.7. Mean, median and mode_exercise_solution.xlsx.xlsx 11.35Кб
18. Combinatorics in Real-Life The Lottery.html 158б
18. Common Objective Functions L2-norm Loss.html 158б
18. Confidence intervals. Two means. Independent samples (Part 3).mp4 19.93Мб
18. Confidence intervals. Two means. Independent samples (Part 3).vtt 1.72Кб
18. Continuous Distributions The Normal Distribution.html 158б
18. Dealing with Categorical Data - Dummy Variables.mp4 55.67Мб
18. Dealing with Categorical Data - Dummy Variables.vtt 7.11Кб
18. EXERCISE - Using .concat() in Python.html 189б
18. Mean, Median and Mode Exercise.html 81б
18. Real Life Examples of Machine Learning (ML).html 158б
18. R-Squared.html 158б
18. Test for the mean. Independent samples (Part 2).mp4 36.40Мб
18. Test for the mean. Independent samples (Part 2).vtt 4.55Кб
18. The Multiplication Law.mp4 42.91Мб
18. The Multiplication Law.vtt 4.08Кб
18. Underfitting and Overfitting.mp4 16.95Мб
18. Underfitting and Overfitting.vtt 3.05Кб
19.1 2.8. Skewness_lesson.xlsx.xlsx 34.63Кб
19.1 Dealing with categorical data.html 134б
19.1 Train - Test split explained.html 134б
19. A Recap of Combinatorics.mp4 40.92Мб
19. A Recap of Combinatorics.vtt 3.29Кб
19. Common Objective Functions Cross-Entropy Loss.mp4 37.24Мб
19. Common Objective Functions Cross-Entropy Loss.vtt 4.57Кб
19. Continuous Distributions The Standard Normal Distribution.mp4 47.91Мб
19. Continuous Distributions The Standard Normal Distribution.vtt 4.70Кб
19. Dealing with Categorical Data - Dummy Variables.html 76б
19. Skewness.mp4 19.41Мб
19. Skewness.vtt 3.20Кб
19. SOLUTION - Using .concat() in Python.html 142б
19. Test for the mean. Independent samples (Part 2).html 158б
19. The Multiplication Law.html 158б
19. Train - Test Split Explained.mp4 49.17Мб
19. Train - Test Split Explained.vtt 8.35Кб
2.1 2.13.Practical-example.Descriptive-statistics-exercise.xlsx.xlsx 120.28Кб
2.1 3.17. Practical example. Confidence intervals_exercise.xlsx.xlsx 1.73Мб
2.1 3.2. What is a distribution_lesson.xlsx.xlsx 19.46Кб
2.1 4.10. Hypothesis testing section_practical example_exercise.xlsx.xlsx 43.38Кб
2.1 A simple example in Python.html 134б
2.1 Basic NN Example (Part 2).html 136б
2.1 Course Notes - Section 6.pdf.pdf 936.42Кб
2.1 Creating a Function with a Parameter - Resources.html 134б
2.1 Example of clustering.html 134б
2.1 sklearn - Linear Regression - Practical Example (Part 2).html 134б
2.2 2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx.xlsx 146.22Кб
2.2 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx.xlsx 1.74Мб
2.2 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx.xlsx 44.04Кб
2.2 Course notes_inferential statistics.pdf.pdf 382.32Кб
2. Analyzing Age vs Probability in Tableau.mp4 56.56Мб
2. Analyzing Age vs Probability in Tableau.vtt 8.75Кб
2. A Note on Installing Packages in Anaconda.html 2.32Кб
2. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.html 158б
2. A Simple Example in Python.mp4 34.70Мб
2. A Simple Example in Python.vtt 5.05Кб
2. A Simple Example of Clustering.mp4 51.83Мб
2. A Simple Example of Clustering.vtt 8.28Кб
2. Basic NN Example (Part 2).mp4 34.95Мб
2. Basic NN Example (Part 2).vtt 5.88Кб
2. Business Case Outlining the Solution.mp4 12.22Мб
2. Business Case Outlining the Solution.vtt 2.19Кб
2. Comparison Operators.html 158б
2. Creating the Targets for the Logistic Regression.mp4 45.79Мб
2. Creating the Targets for the Logistic Regression.vtt 7.36Кб
2. Data Science and Business Buzzwords Why are there so many.html 158б
2. Debunking Common Misconceptions.html 158б
2. Dendrogram.mp4 29.06Мб
2. Dendrogram.vtt 6.41Кб
2. Deploying the 'absenteeism_module' - Part I.mp4 25.49Мб
2. Deploying the 'absenteeism_module' - Part I.vtt 4.20Кб
2. Finding the Job - What to Expect and What to Look for.html 158б
2. For Loops.html 158б
2. Fundamentals of Combinatorics.html 158б
2. Fundamentals of Probability Distributions.html 158б
2. Further Reading on Null and Alternative Hypothesis.html 2.29Кб
2. How are Going to Approach this Section.mp4 19.41Мб
2. How are Going to Approach this Section.vtt 2.57Кб
2. How to Create a Function with a Parameter.mp4 23.88Мб
2. How to Create a Function with a Parameter.vtt 3.78Кб
2. Importing the Absenteeism Data in Python.mp4 23.16Мб
2. Importing the Absenteeism Data in Python.vtt 3.48Кб
2. Introduction to Neural Networks.html 158б
2. Introduction to Programming.html 158б
2. Introduction to Regression Analysis.html 158б
2. Lists.html 158б
2. MNIST How to Tackle the MNIST.mp4 22.59Мб
2. MNIST How to Tackle the MNIST.vtt 3.17Кб
2. Multiple Linear Regression.html 158б
2. Necessary Programming Languages and Software Used in Data Science.html 158б
2. Object Oriented Programming.html 158б
2. Population and Sample.html 158б
2. Practical Example Descriptive Statistics Exercise.html 81б
2. Practical Example Hypothesis Testing Exercise.html 81б
2. Practical Example Inferential Statistics Exercise.html 81б
2. Practical Example Linear Regression (Part 2).mp4 46.00Мб
2. Practical Example Linear Regression (Part 2).vtt 7.04Кб
2. Probability in Statistics.mp4 77.29Мб
2. Probability in Statistics.vtt 7.49Кб
2. Problems with Gradient Descent.mp4 11.02Мб
2. Problems with Gradient Descent.vtt 2.50Кб
2. Sets and Events.html 158б
2. Some Examples of Clusters.mp4 71.54Мб
2. Some Examples of Clusters.vtt 5.43Кб
2. Techniques for Working with Traditional Data.html 158б
2. The Basic Probability Formula.html 158б
2. The Business Task.mp4 39.16Мб
2. The Business Task.vtt 3.30Кб
2. The IF Statement.html 158б
2. The Linear Regression Model.html 158б
2. The Reason behind these Disciplines.html 158б
2. Types of Basic Preprocessing.mp4 11.85Мб
2. Types of Basic Preprocessing.vtt 1.46Кб
2. Types of Data.html 158б
2. Types of Simple Initializations.mp4 14.32Мб
2. Types of Simple Initializations.vtt 3.23Кб
2. Underfitting and Overfitting for Classification.mp4 25.08Мб
2. Underfitting and Overfitting for Classification.vtt 2.31Кб
2. Using Arithmetic Operators in Python.html 158б
2. Variables.html 158б
2. What's Further out there in terms of Machine Learning.mp4 20.12Мб
2. What's Further out there in terms of Machine Learning.vtt 2.27Кб
2. What are Confidence Intervals.html 158б
2. What are Data, Servers, Clients, Requests, and Responses.html 158б
2. What Does the Course Cover.mp4 62.26Мб
2. What Does the Course Cover.vtt 4.49Кб
2. What is a Deep Net.mp4 29.54Мб
2. What is a Deep Net.vtt 2.84Кб
2. What is a Distribution.mp4 61.60Мб
2. What is a Distribution.vtt 5.07Кб
2. What is a Matrix.html 158б
2. What is Machine Learning.html 158б
20.1 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2-solution.xlsx.xlsx 11.39Кб
20.1 Making predictions.html 134б
20.2 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx.xlsx 10.54Кб
20. A Practical Example of Combinatorics.mp4 134.15Мб
20. A Practical Example of Combinatorics.vtt 12.37Кб
20. Bayes' Law.mp4 59.56Мб
20. Bayes' Law.vtt 6.38Кб
20. Common Objective Functions Cross-Entropy Loss.html 158б
20. Continuous Distributions The Standard Normal Distribution.html 158б
20. Making Predictions with the Linear Regression.mp4 24.69Мб
20. Making Predictions with the Linear Regression.vtt 3.87Кб
20. Reordering Columns in a Pandas DataFrame in Python.mp4 14.02Мб
20. Reordering Columns in a Pandas DataFrame in Python.vtt 1.61Кб
20. Skewness.html 158б
20. Test for the mean. Independent samples (Part 2) Exercise.html 81б
21.1 2.8. Skewness_exercise.xlsx.xlsx 9.49Кб
21.1 GD-function-example.xlsx.xlsx 42.33Кб
21.2 2.8. Skewness_exercise_solution.xlsx.xlsx 19.78Кб
21. Bayes' Law.html 158б
21. Continuous Distributions The Students' T Distribution.mp4 27.19Мб
21. Continuous Distributions The Students' T Distribution.vtt 2.52Кб
21. EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html 167б
21. Optimization Algorithm 1-Parameter Gradient Descent.mp4 55.63Мб
21. Optimization Algorithm 1-Parameter Gradient Descent.vtt 7.43Кб
21. Skewness Exercise.html 81б
22.1 2.9. Variance_lesson.xlsx.xlsx 10.08Кб
22. Continuous Distributions The Students' T Distribution.html 158б
22. Optimization Algorithm 1-Parameter Gradient Descent.html 158б
22. SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html 462б
22. Variance.mp4 50.96Мб
22. Variance.vtt 6.64Кб
23.1 2.9. Variance_exercise.xlsx.xlsx 10.83Кб
23.1 Creating Checkpoints.html 181б
23.2 2.9. Variance_exercise_solution.xlsx.xlsx 11.05Кб
23. Continuous Distributions The Chi-Squared Distribution.mp4 26.35Мб
23. Continuous Distributions The Chi-Squared Distribution.vtt 2.46Кб
23. Creating Checkpoints while Coding in Jupyter.mp4 25.67Мб
23. Creating Checkpoints while Coding in Jupyter.vtt 3.21Кб
23. Optimization Algorithm n-Parameter Gradient Descent.mp4 39.42Мб
23. Optimization Algorithm n-Parameter Gradient Descent.vtt 6.62Кб
23. Variance Exercise.html 522б
24.1 2.10. Standard deviation and coefficient of variation_lesson.xlsx.xlsx 10.97Кб
24. Continuous Distributions The Chi-Squared Distribution.html 158б
24. EXERCISE - Creating Checkpoints while Coding in Jupyter.html 137б
24. Optimization Algorithm n-Parameter Gradient Descent.html 158б
24. Standard Deviation and Coefficient of Variation.mp4 45.12Мб
24. Standard Deviation and Coefficient of Variation.vtt 5.75Кб
25. Continuous Distributions The Exponential Distribution.mp4 40.23Мб
25. Continuous Distributions The Exponential Distribution.vtt 3.65Кб
25. SOLUTION - Creating Checkpoints while Coding in Jupyter.html 117б
25. Standard Deviation.html 158б
26.1 2.10. Standard deviation and coefficient of variation_exercise_solution.xlsx.xlsx 12.37Кб
26.2 2.10. Standard deviation and coefficient of variation_exercise.xlsx.xlsx 11.30Кб
26. Analyzing the Dates from the Initial Data Set.mp4 57.28Мб
26. Analyzing the Dates from the Initial Data Set.vtt 7.44Кб
26. Continuous Distributions The Exponential Distribution.html 158б
26. Standard Deviation and Coefficient of Variation Exercise.html 81б
27.1 2.11. Covariance_lesson.xlsx.xlsx 24.92Кб
27. Continuous Distributions The Logistic Distribution.mp4 47.05Мб
27. Continuous Distributions The Logistic Distribution.vtt 4.45Кб
27. Covariance.mp4 27.49Мб
27. Covariance.vtt 4.30Кб
27. Extracting the Month Value from the Date Column.mp4 47.80Мб
27. Extracting the Month Value from the Date Column.vtt 6.95Кб
28. Continuous Distributions The Logistic Distribution.html 158б
28. Covariance.html 158б
28. Extracting the Day of the Week from the Date Column.mp4 27.96Мб
28. Extracting the Day of the Week from the Date Column.vtt 3.91Кб
29.1 2.11. Covariance_exercise.xlsx.xlsx 20.23Кб
29.1 Removing the “Date” Column.html 188б
29.2 2.11. Covariance_exercise_solution.xlsx.xlsx 29.51Кб
29.2 Preprocessing.html 181б
29. Covariance Exercise.html 81б
29. EXERCISE - Removing the Date Column.html 1.21Кб
3.1 3.9. Population variance known, z-score_lesson.xlsx.xlsx 11.21Кб
3.1 Add an Else Statement - Resources.html 134б
3.1 Adjusted R-squared.html 134б
3.1 Another Way to Define a Function - Resources.html 134б
3.1 A simple example of clustering.html 134б
3.1 Basic NN Example (Part 3).html 136б
3.1 Course Notes - Section 2.pdf.pdf 578.08Кб
3.1 Download All Resources.html 134б
3.1 Heatmaps.html 134б
3.1 Help Yourself with Methods - Resources.html 134б
3.1 Logical and Identity Operators - Resources.html 134б
3.1 Numbers and Boolean Values - Resources.html 134б
3.1 TensorFlow MNIST Part 1 with Comments.html 159б
3.1 The Double Equality Sign - Resources.html 134б
3.1 While Loops and Incrementing - Resources.html 134б
3.2 3.9.The-z-table.xlsx.xlsx 25.58Кб
3.2 Countries_exercise.csv.csv 8.27Кб
3.2 FAQ_The_Data_Science_Course.pdf.pdf 306.10Кб
3. Adjusted R-Squared.mp4 54.84Мб
3. Adjusted R-Squared.vtt 6.57Кб
3. A Note on Multicollinearity.html 840б
3. An overview of CNNs.mp4 58.80Мб
3. An overview of CNNs.vtt 5.66Кб
3. A Simple Example of Clustering - Exercise.html 87б
3. Basic NN Example (Part 3).mp4 24.41Мб
3. Basic NN Example (Part 3).vtt 3.88Кб
3. Checking the Content of the Data Set.mp4 61.90Мб
3. Checking the Content of the Data Set.vtt 6.16Кб
3. Computing Expected Values.mp4 75.69Мб
3. Computing Expected Values.vtt 5.90Кб
3. Confidence Intervals; Population Variance Known; z-score.mp4 78.21Мб
3. Confidence Intervals; Population Variance Known; z-score.vtt 8.65Кб
3. Correlation vs Regression.mp4 14.74Мб
3. Correlation vs Regression.vtt 1.82Кб
3. Defining a Function in Python - Part II.mp4 14.79Мб
3. Defining a Function in Python - Part II.vtt 2.70Кб
3. Deploying the 'absenteeism_module' - Part II.mp4 54.25Мб
3. Deploying the 'absenteeism_module' - Part II.vtt 6.63Кб
3. Difference between Classification and Clustering.mp4 36.16Мб
3. Difference between Classification and Clustering.vtt 2.89Кб
3. Digging into a Deep Net.mp4 59.36Мб
3. Digging into a Deep Net.vtt 5.84Кб
3. Download All Resources and Important FAQ.html 20.77Кб
3. EXERCISE - Reasons vs Probability.html 401б
3. Heatmaps.mp4 29.62Мб
3. Heatmaps.vtt 5.47Кб
3. Introducing the Data Set.mp4 40.87Мб
3. Introducing the Data Set.vtt 3.66Кб
3. Levels of Measurement.mp4 54.39Мб
3. Levels of Measurement.vtt 4.03Кб
3. Logical and Identity Operators.mp4 30.06Мб
3. Logical and Identity Operators.vtt 4.99Кб
3. Logistic vs Logit Function.mp4 86.49Мб
3. Logistic vs Logit Function.vtt 4.27Кб
3. MNIST Relevant Packages.mp4 18.91Мб
3. MNIST Relevant Packages.vtt 1.89Кб
3. Modules and Packages.mp4 8.50Мб
3. Modules and Packages.vtt 1.13Кб
3. Momentum.mp4 16.44Мб
3. Momentum.vtt 3.04Кб
3. Null vs Alternative Hypothesis.html 158б
3. Numbers and Boolean Values in Python.mp4 17.07Мб
3. Numbers and Boolean Values in Python.vtt 3.17Кб
3. Permutations and How to Use Them.mp4 41.47Мб
3. Permutations and How to Use Them.vtt 3.61Кб
3. Probability in Data Science.mp4 63.50Мб
3. Probability in Data Science.vtt 5.86Кб
3. Real Life Examples of Traditional Data.mp4 29.93Мб
3. Real Life Examples of Traditional Data.vtt 1.97Кб
3. Scalars and Vectors.mp4 33.85Мб
3. Scalars and Vectors.vtt 3.30Кб
3. Selecting the Inputs for the Logistic Regression.mp4 16.75Мб
3. Selecting the Inputs for the Logistic Regression.vtt 3.14Кб
3. Simple Linear Regression with sklearn.mp4 34.77Мб
3. Simple Linear Regression with sklearn.vtt 6.45Кб
3. Standardization.mp4 50.98Мб
3. Standardization.vtt 5.29Кб
3. State-of-the-Art Method - (Xavier) Glorot Initialization.mp4 17.14Мб
3. State-of-the-Art Method - (Xavier) Glorot Initialization.vtt 3.24Кб
3. TensorFlow Outline and Logic.mp4 47.69Мб
3. TensorFlow Outline and Logic.vtt 4.59Кб
3. The Double Equality Sign.mp4 5.99Мб
3. The Double Equality Sign.vtt 1.59Кб
3. The ELSE Statement.mp4 13.59Мб
3. The ELSE Statement.vtt 2.45Кб
3. The Importance of Working with a Balanced Dataset.mp4 39.41Мб
3. The Importance of Working with a Balanced Dataset.vtt 3.91Кб
3. Training the Model.mp4 28.71Мб
3. Training the Model.vtt 3.79Кб
3. Types of Probability Distributions.mp4 92.31Мб
3. Types of Probability Distributions.vtt 8.31Кб
3. Using Methods.mp4 21.95Мб
3. Using Methods.vtt 3.47Кб
3. Ways Sets Can Interact.mp4 45.39Мб
3. Ways Sets Can Interact.vtt 3.92Кб
3. What are Data Connectivity, APIs, and Endpoints.mp4 104.09Мб
3. What are Data Connectivity, APIs, and Endpoints.vtt 7.56Кб
3. What is a Distribution.html 158б
3. What is the difference between Analysis and Analytics.mp4 53.55Мб
3. What is the difference between Analysis and Analytics.vtt 4.42Кб
3. What is Validation.mp4 32.71Мб
3. What is Validation.vtt 4.27Кб
3. While Loops and Incrementing.mp4 15.45Мб
3. While Loops and Incrementing.vtt 2.42Кб
3. Why Python.mp4 75.08Мб
3. Why Python.vtt 6.11Кб
30. Analyzing Several Straightforward Columns for this Exercise.mp4 29.52Мб
30. Analyzing Several Straightforward Columns for this Exercise.vtt 3.82Кб
30. Correlation Coefficient.mp4 29.39Мб
30. Correlation Coefficient.vtt 4.15Кб
31. Correlation.html 158б
31. Working on Education, Children, and Pets.mp4 39.59Мб
31. Working on Education, Children, and Pets.vtt 4.98Кб
32.1 2.12. Correlation_exercise.xlsx.xlsx 29.30Кб
32.1 Exercises and solutions.html 170б
32.2 2.12. Correlation_exercise_solution.xlsx.xlsx 29.48Кб
32.2 Preprocessing.html 156б
32. Correlation Coefficient Exercise.html 81б
32. Final Remarks of this Section.mp4 21.63Мб
32. Final Remarks of this Section.vtt 2.20Кб
4.1 3.9.The-z-table.xlsx.xlsx 25.58Кб
4.1 Audiobooks Preprocessing.html 134б
4.1 Basic NN Example (Part 4).html 145б
4.1 Building a logistic regression.html 134б
4.1 Clustering categorical data.html 134б
4.1 Course notes_hypothesis_testing.pdf.pdf 648.20Кб
4.1 Create Lists with the range() Function - Resources.html 134б
4.1 Deploying the ‘absenteeism_module.html 185б
4.1 Else if, for Brief - Elif - Resources.html 134б
4.1 Shortcuts-for-Jupyter.pdf.pdf 619.17Кб
4.1 sklearn - Linear Regression - Practical Example (Part 3).html 134б
4.1 TensorFlow MNIST Part 2 with Comments.html 159б
4.1 Using a Function in Another Function - Resources.html 134б
4.2 3.9. Population variance known, z-score_exercise.xlsx.xlsx 10.83Кб
4.3 3.9. Population variance known, z-score_exercise_solution.xlsx.xlsx 11.16Кб
4. Actual Introduction to TensorFlow.mp4 17.41Мб
4. Actual Introduction to TensorFlow.vtt 1.92Кб
4. Adjusted R-Squared.html 158б
4. Analyzing Reasons vs Probability in Tableau.mp4 59.34Мб
4. Analyzing Reasons vs Probability in Tableau.vtt 8.37Кб
4. Basic NN Example (Part 4).mp4 61.13Мб
4. Basic NN Example (Part 4).vtt 9.46Кб
4. Building a Logistic Regression.mp4 17.10Мб
4. Building a Logistic Regression.vtt 2.89Кб
4. Business Case Preprocessing.mp4 103.42Мб
4. Business Case Preprocessing.vtt 11.71Кб
4. Clustering Categorical Data.mp4 21.24Мб
4. Clustering Categorical Data.vtt 2.81Кб
4. Computing Expected Values.html 158б
4. Confidence Intervals; Population Variance Known; z-score; Exercise.html 81б
4. Correlation vs Regression.html 158б
4. DeepMind and Deep Learning.html 1.05Кб
4. Exporting the Obtained Data Set as a .csv.html 998б
4. How to Use a Function within a Function.mp4 8.14Мб
4. How to Use a Function within a Function.vtt 1.78Кб
4. Introducing the Data Set.html 158б
4. Introduction to Terms with Multiple Meanings.mp4 27.85Мб
4. Introduction to Terms with Multiple Meanings.vtt 3.60Кб
4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4 29.09Мб
4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.vtt 5.22Кб
4. Levels of Measurement.html 158б
4. Lists with the range() Function.mp4 11.42Мб
4. Lists with the range() Function.vtt 2.45Кб
4. Logical and Identity Operators.html 158б
4. Math Prerequisites.mp4 14.56Мб
4. Math Prerequisites.vtt 3.53Кб
4. MNIST Model Outline.mp4 56.39Мб
4. MNIST Model Outline.vtt 7.91Кб
4. Modules and Packages.html 158б
4. Non-Linearities and their Purpose.mp4 27.69Мб
4. Non-Linearities and their Purpose.vtt 3.38Кб
4. Numbers and Boolean Values in Python.html 158б
4. Permutations and How to Use Them.html 158б
4. Practical Example Linear Regression (Part 3).mp4 23.70Мб
4. Practical Example Linear Regression (Part 3).vtt 3.64Кб
4. Preprocessing Categorical Data.mp4 18.61Мб
4. Preprocessing Categorical Data.vtt 2.42Кб
4. Rejection Region and Significance Level.mp4 112.61Мб
4. Rejection Region and Significance Level.vtt 7.75Кб
4. Scalars and Vectors.html 158б
4. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4 32.01Мб
4. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.vtt 5.86Кб
4. Standardizing the Data.mp4 20.60Мб
4. Standardizing the Data.vtt 3.68Кб
4. Techniques for Working with Big Data.mp4 75.50Мб
4. Techniques for Working with Big Data.vtt 4.96Кб
4. The Double Equality Sign.html 158б
4. The ELIF Statement.mp4 33.15Мб
4. The ELIF Statement.vtt 5.75Кб
4. The Normal Distribution.mp4 49.85Мб
4. The Normal Distribution.vtt 4.32Кб
4. Training, Validation, and Test Datasets.mp4 25.19Мб
4. Training, Validation, and Test Datasets.vtt 3.11Кб
4. Training the Model.html 158б
4. Types of Probability Distributions.html 158б
4. Using Methods.html 158б
4. Ways Sets Can Interact.html 158б
4. What are Data Connectivity, APIs, and Endpoints.html 158б
4. What is the difference between Analysis and Analytics.html 158б
4. Why Python.html 158б
5.10 Basic NN Example Exercise 4 Solution.html 149б
5.1 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx.xlsx 30.77Кб
5.1 365_DataScience_Diagram.pdf.pdf 323.08Кб
5.1 A Note on Boolean Values - Resources.html 134б
5.1 Basic NN Example (All Exercises).html 143б
5.1 Basic NN Example with TensorFlow (Part 1).html 154б
5.1 Building a logistic regression.html 134б
5.1 Categorical.csv.csv 10.34Кб
5.1 Combining Conditional Statements and Functions - Resources.html 134б
5.1 Dummies and VIF - Exercise and Solution.html 134б
5.1 List Slicing - Resources.html 134б
5.1 Multiple linear regression - exercise.html 134б
5.1 Preprocessing Exercise.html 134б
5.1 Reassign Values - Resources.html 134б
5.1 Strings - Resources.html 134б
5.1 TensorFlow MNIST Part 3 with Comments.html 159б
5.2 Basic NN Example Exercise 1 Solution.html 149б
5.2 Clustering categorical data.html 134б
5.2 Example_bank_data.csv.csv 6.21Кб
5.3 Basic NN Example Exercise 3a Solution.html 154б
5.4 Basic NN Example Exercise 2 Solution.html 149б
5.5 Basic NN Example Exercise 3b Solution.html 154б
5.6 Basic NN Example Exercise 3d Solution.html 154б
5.7 Basic NN Example Exercise 3c Solution.html 154б
5.8 Basic NN Example Exercise 5 Solution.html 149б
5.9 Basic NN Example Exercise 6 Solution.html 149б
5. Activation Functions.mp4 25.09Мб
5. Activation Functions.vtt 4.58Кб
5. A Note on Boolean Values.mp4 11.26Мб
5. A Note on Boolean Values.vtt 2.55Кб
5. A Note on Normalization.html 733б
5. An Overview of RNNs.mp4 25.26Мб
5. An Overview of RNNs.vtt 3.30Кб
5. Basic NN Example Exercises.html 1.37Кб
5. Binary and One-Hot Encoding.mp4 28.94Мб
5. Binary and One-Hot Encoding.vtt 4.18Кб
5. Building a Logistic Regression - Exercise.html 87б
5. Business Analytics, Data Analytics, and Data Science An Introduction.mp4 64.52Мб
5. Business Analytics, Data Analytics, and Data Science An Introduction.vtt 9.26Кб
5. Business Case Preprocessing Exercise.html 383б
5. Categorical Variables - Visualization Techniques.mp4 38.47Мб
5. Categorical Variables - Visualization Techniques.vtt 5.66Кб
5. Characteristics of Discrete Distributions.mp4 22.71Мб
5. Characteristics of Discrete Distributions.vtt 2.17Кб
5. Clustering Categorical Data - Exercise.html 87б
5. Conditional Statements and Functions.mp4 15.69Мб
5. Conditional Statements and Functions.vtt 3.05Кб
5. Confidence Interval Clarifications.mp4 57.03Мб
5. Confidence Interval Clarifications.vtt 4.82Кб
5. Dummies and Variance Inflation Factor - Exercise.html 76б
5. EXERCISE - Transportation Expense vs Probability.html 561б
5. Frequency.mp4 61.73Мб
5. Frequency.vtt 5.66Кб
5. Geometrical Representation of the Linear Regression Model.mp4 5.13Мб
5. Geometrical Representation of the Linear Regression Model.vtt 1.45Кб
5. How to Reassign Values.mp4 4.00Мб
5. How to Reassign Values.vtt 1.13Кб
5. Intersection of Sets.mp4 26.97Мб
5. Intersection of Sets.vtt 2.19Кб
5. Learning Rate Schedules Visualized.mp4 9.11Мб
5. Learning Rate Schedules Visualized.vtt 1.90Кб
5. Linear Algebra and Geometry.mp4 49.79Мб
5. Linear Algebra and Geometry.vtt 3.54Кб
5. List Slicing.mp4 30.77Мб
5. List Slicing.vtt 4.83Кб
5. Lists with the range() Function.html 158б
5. MNIST Loss and Optimization Algorithm.mp4 25.87Мб
5. MNIST Loss and Optimization Algorithm.vtt 3.09Кб
5. Multiple Linear Regression Exercise.html 76б
5. N-Fold Cross Validation.mp4 20.71Мб
5. N-Fold Cross Validation.vtt 3.67Кб
5. Python Strings.mp4 30.76Мб
5. Python Strings.vtt 6.46Кб
5. Rejection Region and Significance Level.html 158б
5. Simple Operations with Factorials.mp4 36.12Мб
5. Simple Operations with Factorials.vtt 30.31Мб
5. Splitting the Data for Training and Testing.mp4 52.77Мб
5. Splitting the Data for Training and Testing.vtt 7.07Кб
5. Taking a Closer Look at APIs.mp4 115.60Мб
5. Taking a Closer Look at APIs.vtt 9.15Кб
5. Techniques for Working with Big Data.html 158б
5. The Normal Distribution.html 158б
5. Types of File Formats, supporting Tensors.mp4 20.34Мб
5. Types of File Formats, supporting Tensors.vtt 3.00Кб
5. Types of Machine Learning.mp4 45.10Мб
5. Types of Machine Learning.vtt 4.62Кб
5. What's Regression Analysis - a Quick Refresher.html 2.84Кб
5. What is the Standard Library.mp4 18.03Мб
5. What is the Standard Library.vtt 3.15Кб
5. Why Jupyter.mp4 44.32Мб
5. Why Jupyter.vtt 4.10Кб
6.1 3.4. Standard normal distribution_lesson.xlsx.xlsx 10.38Кб
6.1 Basic NN Example with TensorFlow (Part 2).html 154б
6.1 Creating a Data Provider (Class).html 134б
6.1 Creating Functions Containing a Few Arguments - Resources.html 134б
6.1 How to choose the number of clusters.html 134б
6.1 Simple linear regression with sklearn.html 134б
6.1 sklearn - Linear Regression - Practical Example (Part 4).html 134б
6.1 TensorFlow MNIST Part 4 with Comments.html 159б
6.1 Tuples - Resources.html 134б
6.1 Use Conditional Statements and Loops Together - Resources.html 134б
6. Activation Functions Softmax Activation.mp4 25.92Мб
6. Activation Functions Softmax Activation.vtt 3.89Кб
6. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp4 26.35Мб
6. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).vtt 4.57Кб
6. Analyzing Transportation Expense vs Probability in Tableau.mp4 40.63Мб
6. Analyzing Transportation Expense vs Probability in Tableau.vtt 6.31Кб
6. An Invaluable Coding Tip.mp4 23.06Мб
6. An Invaluable Coding Tip.vtt 2.78Кб
6. A Note on Boolean Values.html 158б
6. An Overview of non-NN Approaches.mp4 44.77Мб
6. An Overview of non-NN Approaches.vtt 4.56Кб
6. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp4 38.50Мб
6. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.vtt 6.47Кб
6. Business Analytics, Data Analytics, and Data Science An Introduction.html 158б
6. Calculating the Accuracy of the Model.mp4 43.90Мб
6. Calculating the Accuracy of the Model.vtt 4.51Кб
6. Categorical Variables - Visualization Techniques.html 158б
6. Characteristics of Discrete Distributions.html 158б
6. Conditional Statements and Loops.mp4 16.10Мб
6. Conditional Statements and Loops.vtt 3.15Кб
6. Creating a Data Provider.mp4 76.35Мб
6. Creating a Data Provider.vtt 6.80Кб
6. Early Stopping or When to Stop Training.mp4 24.17Мб
6. Early Stopping or When to Stop Training.vtt 6.01Кб
6. Fitting the Model and Assessing its Accuracy.mp4 41.62Мб
6. Fitting the Model and Assessing its Accuracy.vtt 6.41Кб
6. Frequency.html 158б
6. Functions Containing a Few Arguments.mp4 7.58Мб
6. Functions Containing a Few Arguments.vtt 1.13Кб
6. Geometrical Representation of the Linear Regression Model.html 158б
6. How to Choose the Number of Clusters.mp4 44.14Мб
6. How to Choose the Number of Clusters.vtt 6.43Кб
6. How to Reassign Values.html 158б
6. Intersection of Sets.html 158б
6. Linear Algebra and Geometry.html 158б
6. Practical Example Linear Regression (Part 4).mp4 56.05Мб
6. Practical Example Linear Regression (Part 4).vtt 10.02Кб
6. Python Strings.html 158б
6. Real Life Examples of Big Data.mp4 22.04Мб
6. Real Life Examples of Big Data.vtt 1.64Кб
6. Simple Linear Regression with sklearn - Exercise.html 76б
6. Simple Operations with Factorials.html 158б
6. Student's T Distribution.mp4 35.44Мб
6. Student's T Distribution.vtt 3.68Кб
6. Taking a Closer Look at APIs.html 158б
6. Test for Significance of the Model (F-Test).mp4 16.43Мб
6. Test for Significance of the Model (F-Test).vtt 2.23Кб
6. The Standard Normal Distribution.mp4 22.51Мб
6. The Standard Normal Distribution.vtt 3.45Кб
6. Tuples.mp4 16.67Мб
6. Tuples.vtt 2.96Кб
6. Type I Error and Type II Error.mp4 43.94Мб
6. Type I Error and Type II Error.vtt 4.90Кб
6. Types of Machine Learning.html 158б
6. Using a Statistical Approach towards the Solution to the Exercise.mp4 20.19Мб
6. Using a Statistical Approach towards the Solution to the Exercise.vtt 2.46Кб
6. What is the Standard Library.html 158б
6. Why Jupyter.html 158б
7.1 2.3. Categorical variables. Visualization techniques_exercise.xlsx.xlsx 15.24Кб
7.1 365_DataScience.png.png 6.93Мб
7.1 Add Comments - Resources.html 134б
7.1 All In - Conditional Statements, Functions, and Loops - Resources.html 134б
7.1 Arrays in Python Notebook.html 181б
7.1 Basic NN Example with TensorFlow (Part 3).html 154б
7.1 Dictionaries - Resources.html 134б
7.1 How to choose the number of clusters.html 134б
7.1 Notable Built-In Functions in Python - Resources.html 134б
7.1 TensorFlow Business Case Model Outline.html 134б
7.1 TensorFlow MNIST Part 5 with Comments.html 159б
7.2 2.3. Categorical variables. Visualization techniques_exercise_solution.xlsx.xlsx 41.11Кб
7.2 365_DataScience_Diagram.pdf.pdf 323.08Кб
7.2 Countries_exercise.csv.csv 8.27Кб
7.3 Statistics - PDF with Excel Solutions that don't visualize properly.pdf.pdf 289.12Кб
7. Adam (Adaptive Moment Estimation).mp4 22.35Мб
7. Adam (Adaptive Moment Estimation).vtt 2.92Кб
7. Add Comments.mp4 5.00Мб
7. Add Comments.vtt 1.49Кб
7. Arrays in Python - A Convenient Way To Represent Matrices.mp4 26.68Мб
7. Arrays in Python - A Convenient Way To Represent Matrices.vtt 5.31Кб
7. Backpropagation.mp4 34.95Мб
7. Backpropagation.vtt 3.91Кб
7. Basic NN Example with TF Loss Function and Gradient Descent.mp4 32.51Мб
7. Basic NN Example with TF Loss Function and Gradient Descent.vtt 4.21Кб
7. Built-in Functions in Python.mp4 22.01Мб
7. Built-in Functions in Python.vtt 3.68Кб
7. Business Case Model Outline.mp4 53.12Мб
7. Business Case Model Outline.vtt 6.07Кб
7. Business Intelligence (BI) Techniques.mp4 89.94Мб
7. Business Intelligence (BI) Techniques.vtt 7.57Кб
7. Categorical Variables Exercise.html 81б
7. Communication between Software Products through Text Files.mp4 60.35Мб
7. Communication between Software Products through Text Files.vtt 4.80Кб
7. Conditional Statements, Functions, and Loops.mp4 9.48Мб
7. Conditional Statements, Functions, and Loops.vtt 2.09Кб
7. Continuing with BI, ML, and AI.mp4 108.99Мб
7. Continuing with BI, ML, and AI.vtt 10.43Кб
7. Creating a Summary Table with the Coefficients and Intercept.mp4 38.88Мб
7. Creating a Summary Table with the Coefficients and Intercept.vtt 5.77Кб
7. Dictionaries.mp4 25.04Мб
7. Dictionaries.vtt 3.63Кб
7. Discrete Distributions The Uniform Distribution.mp4 24.40Мб
7. Discrete Distributions The Uniform Distribution.vtt 2.43Кб
7. Download All Resources.html 458б
7. Dropping a Column from a DataFrame in Python.mp4 61.77Мб
7. Dropping a Column from a DataFrame in Python.vtt 6.81Кб
7. Dummy Variables - Exercise.html 713б
7. Events and Their Complements.mp4 59.15Мб
7. Events and Their Complements.vtt 5.96Кб
7. How to Choose the Number of Clusters - Exercise.html 87б
7. Importing Modules in Python.mp4 19.93Мб
7. Importing Modules in Python.vtt 4.17Кб
7. Installing Python and Jupyter.mp4 51.01Мб
7. Installing Python and Jupyter.vtt 7.78Кб
7. MNIST Batching and Early Stopping.mp4 12.85Мб
7. MNIST Batching and Early Stopping.vtt 2.56Кб
7. Multiple Linear Regression with sklearn.mp4 20.08Мб
7. Multiple Linear Regression with sklearn.vtt 3.67Кб
7. OLS Assumptions.mp4 21.86Мб
7. OLS Assumptions.vtt 2.67Кб
7. Python Packages Installation.mp4 40.59Мб
7. Python Packages Installation.vtt 4.89Кб
7. Solving Variations with Repetition.mp4 34.01Мб
7. Solving Variations with Repetition.vtt 3.09Кб
7. Student's T Distribution.html 158б
7. The Linear Model (Linear Algebraic Version).mp4 28.45Мб
7. The Linear Model (Linear Algebraic Version).vtt 3.43Кб
7. The Standard Normal Distribution.html 158б
7. Type I Error and Type II Error.html 158б
7. Understanding Logistic Regression Tables.mp4 30.55Мб
7. Understanding Logistic Regression Tables.vtt 4.84Кб
7. Union of Sets.mp4 57.20Мб
7. Union of Sets.vtt 4.96Кб
8.1 2.4. Numerical variables. Frequency distribution table_lesson.xlsx.xlsx 11.44Кб
8.1 3.11. Population variance unknown, t-score_lesson.xlsx.xlsx 10.78Кб
8.1 3.4.Standard-normal-distribution-exercise-solution.xlsx.xlsx 24.04Кб
8.1 4.4. Test for the mean. Population variance known_lesson.xlsx.xlsx 10.96Кб
8.1 Basic NN Example with TensorFlow (Complete).html 156б
8.1 First regression in Python.html 134б
8.1 Iterating over Dictionaries - Resources.html 134б
8.1 sklearn - Linear Regression - Practical Example (Part 5).html 134б
8.1 TensorFlow Business Case Optimization.html 134б
8.1 TensorFlow MNIST Part 6 with Comments.html 159б
8.1 Tensors Notebook.html 148б
8.1 Understanding logistic regression.html 134б
8.2 3.11. The t-table.xlsx.xlsx 15.85Кб
8.2 3.4.Standard-normal-distribution-exercise.xlsx.xlsx 11.99Кб
8.2 Bank_data.csv.csv 19.55Кб
8. Add Comments.html 158б
8. Backpropagation picture.mp4 19.51Мб
8. Backpropagation picture.vtt 3.44Кб
8. Basic NN Example with TF Model Output.mp4 37.40Мб
8. Basic NN Example with TF Model Output.vtt 6.87Кб
8. Business Case Optimization.mp4 41.52Мб
8. Business Case Optimization.vtt 5.76Кб
8. Business Intelligence (BI) Techniques.html 158б
8. Calculating the Adjusted R-Squared in sklearn.mp4 30.89Мб
8. Calculating the Adjusted R-Squared in sklearn.vtt 5.54Кб
8. Communication between Software Products through Text Files.html 158б
8. Confidence Intervals; Population Variance Unknown; t-score.mp4 32.21Мб
8. Confidence Intervals; Population Variance Unknown; t-score.vtt 5.00Кб
8. Continuing with BI, ML, and AI.html 158б
8. Dictionaries.html 158б
8. Discrete Distributions The Uniform Distribution.html 158б
8. Events and Their Complements.html 158б
8. EXERCISE - Dropping a Column from a DataFrame in Python.html 866б
8. First Regression in Python.mp4 44.56Мб
8. First Regression in Python.vtt 6.91Кб
8. How to Iterate over Dictionaries.mp4 16.98Мб
8. How to Iterate over Dictionaries.vtt 3.34Кб
8. Importing Modules in Python.html 158б
8. Interpreting the Coefficients for Our Problem.mp4 52.38Мб
8. Interpreting the Coefficients for Our Problem.vtt 6.93Кб
8. MNIST Learning.mp4 46.69Мб
8. MNIST Learning.vtt 8.89Кб
8. Numerical Variables - Frequency Distribution Table.mp4 25.85Мб
8. Numerical Variables - Frequency Distribution Table.vtt 3.83Кб
8. OLS Assumptions.html 158б
8. Practical Example Linear Regression (Part 5).mp4 57.89Мб
8. Practical Example Linear Regression (Part 5).vtt 9.28Кб
8. Pros and Cons of K-Means Clustering.mp4 37.70Мб
8. Pros and Cons of K-Means Clustering.vtt 4.01Кб
8. Python Functions.html 158б
8. Solving Variations with Repetition.html 158б
8. Test for the Mean. Population Variance Known.mp4 54.22Мб
8. Test for the Mean. Population Variance Known.vtt 7.12Кб
8. The Linear Model.html 158б
8. The Standard Normal Distribution Exercise.html 81б
8. Understanding Jupyter's Interface - the Notebook Dashboard.mp4 13.80Мб
8. Understanding Jupyter's Interface - the Notebook Dashboard.vtt 3.25Кб
8. Understanding Logistic Regression Tables - Exercise.html 87б
8. Union of Sets.html 158б
8. What is a Tensor.mp4 22.53Мб
8. What is a Tensor.vtt 3.17Кб
9.1 3.11. Population variance unknown, t-score_exercise.xlsx.xlsx 10.62Кб
9.1 365_DataScience.png.png 6.93Мб
9.1 4.4. Test for the mean. Population variance known_exercise_solution.xlsx.xlsx 11.22Кб
9.1 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf.pdf 182.36Кб
9.1 Basic NN Example with TensorFlow Exercise 2.3 Solution.html 162б
9.1 Calculating the Adjusted R-Squared.html 134б
9.1 First regression in Python - Exercise.html 134б
9.1 Line Continuation - Resources.html 134б
9.1 Logistic Regression prior to Custom Scaler.html 219б
9.1 TensorFlow Business Case Interpretation.html 134б
9.1 TensorFlow MNIST Complete Code with Comments.html 152б
9.2 3.11. Population variance unknown, t-score_exercise_solution.xlsx.xlsx 11.10Кб
9.2 4.4. Test for the mean. Population variance known_exercise.xlsx.xlsx 11.03Кб
9.2 Basic NN Example with TensorFlow Exercise 2.1 Solution.html 162б
9.3 Basic NN Example with TensorFlow Exercise 2.2 Solution.html 162б
9.4 Basic NN Example with TensorFlow Exercise 1 Solution.html 160б
9.5 Basic NN Example with TensorFlow Exercise 2.4 Solution.html 162б
9.6 Basic NN Example with TensorFlow (All Exercises).html 154б
9.7 Basic NN Example with TensorFlow Exercise 4 Solution.html 160б
9.8 Basic NN Example with TensorFlow Exercise 3 Solution.html 160б
9. A1 Linearity.mp4 12.60Мб
9. A1 Linearity.vtt 2.07Кб
9. A Breakdown of our Data Science Infographic.mp4 67.74Мб
9. A Breakdown of our Data Science Infographic.vtt 4.45Кб
9. Backpropagation - A Peek into the Mathematics of Optimization.html 539б
9. Basic NN Example with TF Exercises.html 1.59Кб
9. Business Case Interpretation.mp4 25.74Мб
9. Business Case Interpretation.vtt 2.60Кб
9. Calculating the Adjusted R-Squared in sklearn - Exercise.html 76б
9. Central Limit Theorem.mp4 62.89Мб
9. Central Limit Theorem.vtt 4.95Кб
9. Confidence Intervals; Population Variance Unknown; t-score; Exercise.html 81б
9. Discrete Distributions The Bernoulli Distribution.mp4 34.14Мб
9. Discrete Distributions The Bernoulli Distribution.vtt 3.48Кб
9. First Regression in Python Exercise.html 1.33Кб
9. Linear Regression - Exercise.html 503б
9. MNIST Results and Testing.mp4 62.78Мб
9. MNIST Results and Testing.vtt 7.15Кб
9. Mutually Exclusive Sets.mp4 25.39Мб
9. Mutually Exclusive Sets.vtt 2.24Кб
9. Numerical Variables - Frequency Distribution Table.html 158б
9. Prerequisites for Coding in the Jupyter Notebooks.mp4 30.58Мб
9. Prerequisites for Coding in the Jupyter Notebooks.vtt 6.80Кб
9. Real Life Examples of Business Intelligence (BI).mp4 29.54Мб
9. Real Life Examples of Business Intelligence (BI).vtt 1.89Кб
9. Software Integration - Explained.mp4 72.65Мб
9. Software Integration - Explained.vtt 6.00Кб
9. SOLUTION - Dropping a Column from a DataFrame in Python.html 113б
9. Solving Variations without Repetition.mp4 43.15Мб
9. Solving Variations without Repetition.vtt 4.00Кб
9. Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4 41.19Мб
9. Standardizing only the Numerical Variables (Creating a Custom Scaler).vtt 4.41Кб
9. Test for the Mean. Population Variance Known Exercise.html 81б
9. The Linear Model with Multiple Inputs.mp4 25.12Мб
9. The Linear Model with Multiple Inputs.vtt 2.74Кб
9. To Standardize or not to Standardize.mp4 30.11Мб
9. To Standardize or not to Standardize.vtt 5.14Кб
9. Understanding Line Continuation.mp4 2.35Мб
9. Understanding Line Continuation.vtt 1.00Кб
9. What do the Odds Actually Mean.mp4 32.28Мб
9. What do the Odds Actually Mean.vtt 4.18Кб
9. What is a Tensor.html 158б
Статистика распространения по странам
Всего 0
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент