Общая информация
Название [FreeCourseSite.com] Udemy - Time Series Analysis, Forecasting, and Machine Learning
Тип Порно
Размер 4.85Гб
Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[CourseClub.Me].url 122б
[FCS Forum].url 133б
[FreeCourseSite.com].url 127б
[GigaCourse.Com].url 49б
001 Anaconda Environment Setup.en.srt 21.09Кб
001 Anaconda Environment Setup.mp4 27.88Мб
001 ARIMA Section Introduction.en.srt 7.41Кб
001 ARIMA Section Introduction.mp4 23.01Мб
001 Artificial Neural Networks_ Section Introduction.en.srt 4.53Кб
001 Artificial Neural Networks_ Section Introduction.mp4 19.43Мб
001 AWS Forecast Section Introduction.en.srt 11.02Кб
001 AWS Forecast Section Introduction.mp4 43.54Мб
001 CNN Section Introduction.en.srt 4.20Кб
001 CNN Section Introduction.mp4 14.31Мб
001 Colab Notebooks.html 977б
001 Exponential Smoothing Section Introduction.en.srt 4.01Кб
001 Exponential Smoothing Section Introduction.mp4 13.56Мб
001 How to Code by Yourself (part 1).en.srt 23.46Кб
001 How to Code by Yourself (part 1).mp4 24.59Мб
001 How to Succeed in this Course (Long Version).en.srt 15.17Кб
001 How to Succeed in this Course (Long Version).mp4 12.60Мб
001 Introduction and Outline.en.srt 7.78Кб
001 Introduction and Outline.mp4 30.69Мб
001 Machine Learning Section Introduction.en.srt 5.52Кб
001 Machine Learning Section Introduction.mp4 17.53Мб
001 Time Series Basics Section Introduction.en.srt 6.08Кб
001 Time Series Basics Section Introduction.mp4 17.46Мб
001 What is the Appendix_.en.srt 3.91Кб
001 What is the Appendix_.mp4 16.40Мб
002 Autoregressive Models - AR(p).en.srt 17.29Кб
002 Autoregressive Models - AR(p).mp4 52.54Мб
002 BONUS_ Where to get discount coupons and FREE deep learning material.en.srt 8.13Кб
002 BONUS_ Where to get discount coupons and FREE deep learning material.mp4 37.81Мб
002 Data Model.en.srt 12.68Кб
002 Data Model.mp4 48.96Мб
002 Exponential Smoothing Intuition for Beginners.en.srt 7.50Кб
002 Exponential Smoothing Intuition for Beginners.mp4 23.91Мб
002 How to Code by Yourself (part 2).en.srt 13.66Кб
002 How to Code by Yourself (part 2).mp4 49.18Мб
002 How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.en.srt 14.82Кб
002 How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4 43.61Мб
002 Is this for Beginners or Experts_ Academic or Practical_ Fast or slow-paced_.en.srt 33.02Кб
002 Is this for Beginners or Experts_ Academic or Practical_ Fast or slow-paced_.mp4 38.95Мб
002 Supervised Machine Learning_ Classification and Regression.en.srt 19.65Кб
002 Supervised Machine Learning_ Classification and Regression.mp4 68.96Мб
002 The Neuron.en.srt 13.13Кб
002 The Neuron.mp4 43.86Мб
002 What is a Time Series_.en.srt 6.57Кб
002 What is a Time Series_.mp4 32.24Мб
002 What is Convolution_.en.srt 21.44Кб
002 What is Convolution_.mp4 78.29Мб
002 Where to Get the Code.en.srt 16.03Кб
002 Where to Get the Code.mp4 61.97Мб
003 Autoregressive Machine Learning Models.en.srt 10.52Кб
003 Autoregressive Machine Learning Models.mp4 32.38Мб
003 Creating an IAM Role.en.srt 4.98Кб
003 Creating an IAM Role.mp4 23.80Мб
003 Forward Propagation.en.srt 12.93Кб
003 Forward Propagation.mp4 44.79Мб
003 Machine Learning and AI Prerequisite Roadmap (pt 1).en.srt 17.41Кб
003 Machine Learning and AI Prerequisite Roadmap (pt 1).mp4 79.62Мб
003 Modeling vs. Predicting.en.srt 3.41Кб
003 Modeling vs. Predicting.mp4 13.48Мб
003 Moving Average Models - MA(q).en.srt 4.31Кб
003 Moving Average Models - MA(q).mp4 10.13Мб
003 Proof that using Jupyter Notebook is the same as not using it.en.srt 14.60Кб
003 Proof that using Jupyter Notebook is the same as not using it.mp4 69.51Мб
003 SMA Theory.en.srt 5.03Кб
003 SMA Theory.mp4 15.24Мб
003 Warmup (Optional).en.srt 6.28Кб
003 Warmup (Optional).mp4 23.16Мб
003 What is Convolution_ (Pattern-Matching).en.srt 7.17Кб
003 What is Convolution_ (Pattern-Matching).mp4 23.69Мб
004 ARIMA.en.srt 14.32Кб
004 ARIMA.mp4 41.39Мб
004 Code pt 1 (Getting and Transforming the Data).en.srt 13.34Кб
004 Code pt 1 (Getting and Transforming the Data).mp4 63.34Мб
004 Machine Learning Algorithms_ Linear Regression.en.srt 6.68Кб
004 Machine Learning Algorithms_ Linear Regression.mp4 21.80Мб
004 Machine Learning and AI Prerequisite Roadmap (pt 2).en.srt 24.41Кб
004 Machine Learning and AI Prerequisite Roadmap (pt 2).mp4 108.19Мб
004 SMA Code.en.srt 9.84Кб
004 SMA Code.mp4 53.57Мб
004 The Geometrical Picture.en.srt 12.17Кб
004 The Geometrical Picture.mp4 53.97Мб
004 What is Convolution_ (Weight Sharing).en.srt 8.88Кб
004 What is Convolution_ (Weight Sharing).mp4 30.44Мб
004 Why Do We Care About Shapes_.en.srt 7.94Кб
004 Why Do We Care About Shapes_.mp4 29.48Мб
005 Activation Functions.en.srt 23.70Кб
005 Activation Functions.mp4 86.54Мб
005 ARIMA in Code.en.srt 23.73Кб
005 ARIMA in Code.mp4 121.58Мб
005 Code pt 2 (Uploading the data to S3).en.srt 17.04Кб
005 Code pt 2 (Uploading the data to S3).mp4 91.06Мб
005 Convolution on Color Images.en.srt 21.60Кб
005 Convolution on Color Images.mp4 73.99Мб
005 EWMA Theory.en.srt 15.14Кб
005 EWMA Theory.mp4 35.83Мб
005 Machine Learning Algorithms_ Logistic Regression.en.srt 9.35Кб
005 Machine Learning Algorithms_ Logistic Regression.mp4 31.74Мб
005 Types of Tasks.en.srt 9.24Кб
005 Types of Tasks.mp4 23.55Мб
006 Code pt 3 (Building your Model).en.srt 9.59Кб
006 Code pt 3 (Building your Model).mp4 54.47Мб
006 Convolution for Time Series and ARIMA.en.srt 6.65Кб
006 Convolution for Time Series and ARIMA.mp4 23.61Мб
006 EWMA Code.en.srt 9.93Кб
006 EWMA Code.mp4 39.41Мб
006 Machine Learning Algorithms_ Support Vector Machines.en.srt 13.63Кб
006 Machine Learning Algorithms_ Support Vector Machines.mp4 43.52Мб
006 Multiclass Classification.en.srt 11.51Кб
006 Multiclass Classification.mp4 43.63Мб
006 Power, Log, and Box-Cox Transformations.en.srt 8.41Кб
006 Power, Log, and Box-Cox Transformations.mp4 32.63Мб
006 Stationarity.en.srt 18.20Кб
006 Stationarity.mp4 55.15Мб
007 ANN Code Preparation.en.srt 16.88Кб
007 ANN Code Preparation.mp4 57.51Мб
007 CNN Architecture.en.srt 33.24Кб
007 CNN Architecture.mp4 96.82Мб
007 Code pt 4 (Generating and Evaluating the Forecast).en.srt 8.96Кб
007 Code pt 4 (Generating and Evaluating the Forecast).mp4 49.88Мб
007 Machine Learning Algorithms_ Random Forest.en.srt 9.40Кб
007 Machine Learning Algorithms_ Random Forest.mp4 32.02Мб
007 Power, Log, and Box-Cox Transformations in Code.en.srt 7.07Кб
007 Power, Log, and Box-Cox Transformations in Code.mp4 33.29Мб
007 SES Theory.en.srt 14.35Кб
007 SES Theory.mp4 35.57Мб
007 Stationarity in Code.en.srt 11.17Кб
007 Stationarity in Code.mp4 61.50Мб
008 ACF (Autocorrelation Function).en.srt 13.44Кб
008 ACF (Autocorrelation Function).mp4 37.00Мб
008 AWS Forecast Exercise.en.srt 3.79Кб
008 AWS Forecast Exercise.mp4 13.76Мб
008 CNN Code Preparation.en.srt 8.22Кб
008 CNN Code Preparation.mp4 27.49Мб
008 Extrapolation and Stock Prices.en.srt 10.16Кб
008 Extrapolation and Stock Prices.mp4 64.73Мб
008 Feedforward ANN for Time Series Forecasting Code.en.srt 11.16Кб
008 Feedforward ANN for Time Series Forecasting Code.mp4 70.91Мб
008 Forecasting Metrics.en.srt 15.80Кб
008 Forecasting Metrics.mp4 43.71Мб
008 SES Code.en.srt 15.09Кб
008 SES Code.mp4 69.54Мб
009 AWS Forecast Section Summary.en.srt 7.06Кб
009 AWS Forecast Section Summary.mp4 25.46Мб
009 CNN for Time Series Forecasting in Code.en.srt 7.04Кб
009 CNN for Time Series Forecasting in Code.mp4 48.78Мб
009 Feedforward ANN for Stock Return and Price Predictions Code.en.srt 9.37Кб
009 Feedforward ANN for Stock Return and Price Predictions Code.mp4 67.71Мб
009 Financial Time Series Primer.en.srt 15.56Кб
009 Financial Time Series Primer.mp4 44.86Мб
009 Holt's Linear Trend Model (Theory).en.srt 10.45Кб
009 Holt's Linear Trend Model (Theory).mp4 33.20Мб
009 Machine Learning for Time Series Forecasting in Code (pt 1).en.srt 15.51Кб
009 Machine Learning for Time Series Forecasting in Code (pt 1).mp4 86.17Мб
009 PACF (Partial Autocorrelation Funtion).en.srt 8.26Кб
009 PACF (Partial Autocorrelation Funtion).mp4 25.11Мб
010 ACF and PACF in Code (pt 1).en.srt 9.68Кб
010 ACF and PACF in Code (pt 1).mp4 41.31Мб
010 CNN for Human Activity Recognition.en.srt 6.68Кб
010 CNN for Human Activity Recognition.mp4 46.39Мб
010 Forecasting with Differencing.en.srt 5.49Кб
010 Forecasting with Differencing.mp4 18.97Мб
010 Holt's Linear Trend Model (Code).en.srt 3.57Кб
010 Holt's Linear Trend Model (Code).mp4 19.05Мб
010 Human Activity Recognition Dataset.en.srt 7.52Кб
010 Human Activity Recognition Dataset.mp4 30.74Мб
010 Price Simulations in Code.en.srt 3.54Кб
010 Price Simulations in Code.mp4 18.28Мб
011 ACF and PACF in Code (pt 2).en.srt 8.31Кб
011 ACF and PACF in Code (pt 2).mp4 33.88Мб
011 CNN Section Summary.en.srt 4.31Кб
011 CNN Section Summary.mp4 15.43Мб
011 Holt-Winters (Theory).en.srt 15.55Кб
011 Holt-Winters (Theory).mp4 47.55Мб
011 Human Activity Recognition_ Code Preparation.en.srt 8.20Кб
011 Human Activity Recognition_ Code Preparation.mp4 31.27Мб
011 Machine Learning for Time Series Forecasting in Code (pt 2).en.srt 6.90Кб
011 Machine Learning for Time Series Forecasting in Code (pt 2).mp4 49.40Мб
011 Random Walks and the Random Walk Hypothesis.en.srt 20.09Кб
011 Random Walks and the Random Walk Hypothesis.mp4 68.11Мб
012 Application_ Sales Data.en.srt 5.54Кб
012 Application_ Sales Data.mp4 42.19Мб
012 Auto ARIMA and SARIMAX.en.srt 12.72Кб
012 Auto ARIMA and SARIMAX.mp4 39.45Мб
012 Holt-Winters (Code).en.srt 9.92Кб
012 Holt-Winters (Code).mp4 49.80Мб
012 Human Activity Recognition_ Data Exploration.en.srt 8.90Кб
012 Human Activity Recognition_ Data Exploration.mp4 49.95Мб
012 The Naive Forecast and the Importance of Baselines.en.srt 9.57Кб
012 The Naive Forecast and the Importance of Baselines.mp4 30.11Мб
013 Application_ Predicting Stock Prices and Returns.en.srt 5.02Кб
013 Application_ Predicting Stock Prices and Returns.mp4 37.36Мб
013 Human Activity Recognition_ Multi-Input ANN.en.srt 13.96Кб
013 Human Activity Recognition_ Multi-Input ANN.mp4 67.55Мб
013 Model Selection, AIC and BIC.en.srt 13.94Кб
013 Model Selection, AIC and BIC.mp4 45.91Мб
013 Naive Forecast and Forecasting Metrics in Code.en.srt 8.58Кб
013 Naive Forecast and Forecasting Metrics in Code.mp4 41.47Мб
013 Walk-Forward Validation.en.srt 12.78Кб
013 Walk-Forward Validation.mp4 44.31Мб
014 Application_ Predicting Stock Movements.en.srt 4.66Кб
014 Application_ Predicting Stock Movements.mp4 26.28Мб
014 Auto ARIMA in Code.en.srt 16.34Кб
014 Auto ARIMA in Code.mp4 103.19Мб
014 Human Activity Recognition_ Feature-Based Model.en.srt 5.73Кб
014 Human Activity Recognition_ Feature-Based Model.mp4 36.06Мб
014 Time Series Basics Section Summary.en.srt 4.49Кб
014 Time Series Basics Section Summary.mp4 12.13Мб
014 Walk-Forward Validation in Code.en.srt 10.41Кб
014 Walk-Forward Validation in Code.mp4 60.25Мб
015 Application_ Sales Data.en.srt 5.40Кб
015 Application_ Sales Data.mp4 29.44Мб
015 Auto ARIMA in Code (Stocks).en.srt 17.75Кб
015 Auto ARIMA in Code (Stocks).mp4 105.21Мб
015 Human Activity Recognition_ Combined Model.en.srt 3.14Кб
015 Human Activity Recognition_ Combined Model.mp4 20.90Мб
015 Machine Learning Section Summary.en.srt 3.12Кб
015 Machine Learning Section Summary.mp4 10.36Мб
015 Suggestion Box.en.srt 4.85Кб
015 Suggestion Box.mp4 16.12Мб
016 ACF and PACF for Stock Returns.en.srt 7.77Кб
016 ACF and PACF for Stock Returns.mp4 43.50Мб
016 Application_ Stock Predictions.en.srt 6.56Кб
016 Application_ Stock Predictions.mp4 40.51Мб
016 How Does a Neural Network _Learn__.en.srt 14.70Кб
016 How Does a Neural Network _Learn__.mp4 50.07Мб
017 Artificial Neural Networks_ Section Summary.en.srt 2.92Кб
017 Artificial Neural Networks_ Section Summary.mp4 10.95Мб
017 Auto ARIMA in Code (Sales Data).en.srt 10.54Кб
017 Auto ARIMA in Code (Sales Data).mp4 65.42Мб
017 SMA Application_ COVID-19 Counting.en.srt 4.37Кб
017 SMA Application_ COVID-19 Counting.mp4 19.37Мб
018 How to Forecast with ARIMA.en.srt 12.62Кб
018 How to Forecast with ARIMA.mp4 37.95Мб
018 SMA Application_ Algorithmic Trading.en.srt 2.96Кб
018 SMA Application_ Algorithmic Trading.mp4 11.59Мб
019 ARIMA Section Summary.en.srt 4.73Кб
019 ARIMA Section Summary.mp4 12.74Мб
019 Exponential Smoothing Section Summary.en.srt 5.61Кб
019 Exponential Smoothing Section Summary.mp4 19.12Мб
external-assets-links.txt 80б
Статистика распространения по странам
Россия (RU) 6
Турция (TR) 1
США (US) 1
Испания (ES) 1
Всего 9
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент