Общая информация
Название [ DevCourseWeb.com ] Udemy - Numerical Methods and Optimization in Python
Тип
Размер 3.38Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
001 Course material.html 58б
001 First steps in Python_en.vtt 6.43Кб
001 First steps in Python.mp4 13.67Мб
001 Floating point numbers_en.vtt 9.14Кб
001 Floating point numbers.mp4 24.48Мб
001 Gaussian elimination implementation I_en.vtt 11.52Кб
001 Gaussian elimination implementation I.mp4 35.67Мб
001 Graph representation of the WWW_en.vtt 6.51Кб
001 Graph representation of the WWW.mp4 25.06Мб
001 How to deal with differential equations_en.vtt 9.79Кб
001 How to deal with differential equations.mp4 24.50Мб
001 How to measure the running time of algorithms_en.vtt 12.61Кб
001 How to measure the running time of algorithms.mp4 37.29Мб
001 Integration introduction_en.vtt 3.81Кб
001 Integration introduction.mp4 10.91Мб
001 Introduction_en.vtt 2.44Кб
001 Introduction.mp4 13.60Мб
001 Matrix multiplication introduction_en.vtt 5.06Кб
001 Matrix multiplication introduction.mp4 12.46Мб
001 Portfolio optimization introduction_en.vtt 4.03Кб
001 Portfolio optimization introduction.mp4 13.13Мб
001 Python crash course introduction.html 441б
001 Root of functions introduction_en.vtt 4.06Кб
001 Root of functions introduction.mp4 12.28Мб
001 What are eigenvalues and eigenvectors_en.vtt 5.95Кб
001 What are eigenvalues and eigenvectors.mp4 14.38Мб
001 What are functions_en.vtt 5.22Кб
001 What are functions.mp4 17.29Мб
001 What is Gaussian elimination_en.vtt 6.82Кб
001 What is Gaussian elimination.mp4 16.82Мб
001 What is gradient descent_en.vtt 7.90Кб
001 What is gradient descent.mp4 27.80Мб
001 What is interpolation_en.vtt 10.79Кб
001 What is interpolation.mp4 38.72Мб
001 What is object oriented programming (OOP)_en.vtt 2.86Кб
001 What is object oriented programming (OOP).mp4 12.50Мб
001 What is Pandas_en.vtt 7.88Кб
001 What is Pandas.mp4 25.43Мб
001 What is the key advantage of NumPy_en.vtt 5.01Кб
001 What is the key advantage of NumPy.mp4 17.18Мб
001 What is the Monte-Carlo method_en.vtt 8.15Кб
001 What is the Monte-Carlo method.mp4 30.11Мб
002 Bisection method introduction_en.vtt 4.78Кб
002 Bisection method introduction.mp4 10.17Мб
002 Class and objects basics_en.vtt 3.25Кб
002 Class and objects basics.mp4 10.48Мб
002 Crawling the web with breadth-first search_en.vtt 8.30Кб
002 Crawling the web with breadth-first search.mp4 25.88Мб
002 Creating and updating arrays_en.vtt 8.47Кб
002 Creating and updating arrays.mp4 33.76Мб
002 Data structures introduction_en.vtt 3.98Кб
002 Data structures introduction.mp4 13.84Мб
002 Defining functions_en.vtt 6.14Кб
002 Defining functions.mp4 18.85Мб
002 Eigenvalues and eigenvectors implementation_en.vtt 3.51Кб
002 Eigenvalues and eigenvectors implementation.mp4 10.84Мб
002 Euler's method introduction_en.vtt 7.02Кб
002 Euler's method introduction.mp4 12.94Мб
002 First steps_en.vtt 3.40Кб
002 First steps.mp4 10.44Мб
002 GaussElimination.py 838б
002 Gaussian elimination illustration_en.vtt 7.85Кб
002 Gaussian elimination illustration.mp4 13.62Мб
002 Gaussian elimination implementation II_en.vtt 8.01Кб
002 Gaussian elimination implementation II.mp4 29.57Мб
002 GradientDescent.py 1.26Кб
002 Gradient descent implementation_en.vtt 11.30Кб
002 Gradient descent implementation.mp4 47.54Мб
002 Interpolation illustration_en.vtt 6.65Кб
002 Interpolation illustration.mp4 15.11Мб
002 MatrixMultiplication.py 496б
002 Matrix multiplication implementation_en.vtt 6.41Кб
002 Matrix multiplication implementation.mp4 20.57Мб
002 MonteCarloIntegral.py 1.15Кб
002 Monte-Carlo integral implementation I_en.vtt 9.51Кб
002 Monte-Carlo integral implementation I.mp4 39.77Мб
002 Portfolio optimization implementation_en.vtt 3.01Кб
002 Portfolio optimization implementation.mp4 13.84Мб
002 Precision and accuracy_en.vtt 3.46Кб
002 Precision and accuracy.mp4 9.44Мб
002 Rectangle method introduction_en.vtt 5.92Кб
002 Rectangle method introduction.mp4 18.05Мб
002 What are the basic data types_en.vtt 5.59Кб
002 What are the basic data types.mp4 15.70Мб
003 Applications of eigenvectors in machine learning_en.vtt 2.22Кб
003 Applications of eigenvectors in machine learning.mp4 10.65Мб
003 BisectionMethod.py 360б
003 Bisection method implementation_en.vtt 6.44Кб
003 Bisection method implementation.mp4 24.12Мб
003 Booleans_en.vtt 2.21Кб
003 Booleans.mp4 6.78Мб
003 Dimension of arrays_en.vtt 10.65Кб
003 Dimension of arrays.mp4 36.26Мб
003 Euler's method example_en.vtt 6.06Кб
003 Euler's method example.mp4 19.65Мб
003 EulerMethodExample1.py 449б
003 Gradient descent with momentum_en.vtt 4.71Кб
003 Gradient descent with momentum.mp4 20.02Мб
003 Interpolation implementation I_en.vtt 7.22Кб
003 Interpolation implementation I.mp4 26.13Мб
003 MonteCarloIntegral2.py 676б
003 Monte-Carlo integral implementation II_en.vtt 5.00Кб
003 Monte-Carlo integral implementation II.mp4 24.52Мб
003 Positional arguments and keyword arguments_en.vtt 11.69Кб
003 Positional arguments and keyword arguments.mp4 46.11Мб
003 RectangleIntegral.py 376б
003 Rectangle method implementation_en.vtt 6.82Кб
003 Rectangle method implementation.mp4 22.38Мб
003 Rounding errors_en.vtt 4.65Кб
003 Rounding errors.mp4 14.12Мб
003 Running time analysis of matrix multiplication_en.vtt 5.56Кб
003 Running time analysis of matrix multiplication.mp4 27.04Мб
003 Series_en.vtt 8.16Кб
003 Series.mp4 26.94Мб
003 The original formula_en.vtt 6.69Кб
003 The original formula.mp4 17.78Мб
003 Using the constructor_en.vtt 6.79Кб
003 Using the constructor.mp4 33.59Мб
003 What are array data structures I_en.vtt 8.05Кб
003 What are array data structures I.mp4 24.99Мб
003 What is pivoting_en.vtt 7.25Кб
003 What is pivoting.mp4 19.76Мб
004 Applications of Monte-Carlo simulations in finance_en.vtt 3.29Кб
004 Applications of Monte-Carlo simulations in finance.mp4 14.29Мб
004 Class variables and instance variables_en.vtt 4.91Кб
004 Class variables and instance variables.mp4 31.01Мб
004 DataFrames_en.vtt 6.08Кб
004 DataFrames.mp4 18.45Мб
004 Euler's method example - pendulum_en.vtt 12.94Кб
004 Euler's method example - pendulum.mp4 34.00Мб
004 EulerMethodExample2.py 421б
004 Gaussian elimination and singular matrixes_en.vtt 4.01Кб
004 Gaussian elimination and singular matrixes.mp4 8.69Мб
004 Indexes and slicing_en.vtt 9.38Кб
004 Indexes and slicing.mp4 31.50Мб
004 Interpolation implementation II_en.vtt 5.50Кб
004 Interpolation implementation II.mp4 30.85Мб
004 LagrangeInterpolation.py 2.12Кб
004 Mathematical formulation of eigenvectors.html 261б
004 Matrix vector multiplication_en.vtt 4.65Кб
004 Matrix vector multiplication.mp4 13.41Мб
004 MatrixVectorMultiplication.py 423б
004 Newton method introduction_en.vtt 5.28Кб
004 Newton method introduction.mp4 16.40Мб
004 PageRank algorithm example_en.vtt 11.20Кб
004 PageRank algorithm example.mp4 24.94Мб
004 Returning values_en.vtt 2.71Кб
004 Returning values.mp4 8.14Мб
004 Speed consideration - C, Java and Python_en.vtt 7.64Кб
004 Speed consideration - C, Java and Python.mp4 27.51Мб
004 Stochastic gradient descent introduction_en.vtt 11.84Кб
004 Stochastic gradient descent introduction.mp4 36.45Мб
004 Strings_en.vtt 8.77Кб
004 Strings.mp4 28.16Мб
004 Trapezoidal integral introduction_en.vtt 7.74Кб
004 Trapezoidal integral introduction.mp4 19.06Мб
004 What are array data structures II_en.vtt 8.60Кб
004 What are array data structures II.mp4 24.95Мб
005 Applications of interpolation_en.vtt 2.90Кб
005 Applications of interpolation.mp4 8.61Мб
005 DataFrame operations_en.vtt 10.85Кб
005 DataFrame operations.mp4 41.30Мб
005 Euler's method example - pendulum with drag_en.vtt 4.67Кб
005 Euler's method example - pendulum with drag.mp4 16.15Мб
005 Inner product_en.vtt 4.86Кб
005 Inner product.mp4 16.56Мб
005 InnerProduct.py 386б
005 Lists in Python_en.vtt 6.42Кб
005 Lists in Python.mp4 21.74Мб
005 Mathematical formulation of Gaussian elimination.html 345б
005 Matrix representation of the problem_en.vtt 9.77Кб
005 Matrix representation of the problem.mp4 29.07Мб
005 Newton method implementation_en.vtt 4.70Кб
005 Newton method implementation.mp4 15.79Мб
005 NewtonRaphsonMethod.py 294б
005 Private variables and name mangling_en.vtt 5.08Кб
005 Private variables and name mangling.mp4 19.13Мб
005 Returning multiple values_en.vtt 3.37Кб
005 Returning multiple values.mp4 12.17Мб
005 StochasticGradientDescent.py 1.93Кб
005 Stochastic gradient descent implementation I_en.vtt 24.44Кб
005 Stochastic gradient descent implementation I.mp4 105.86Мб
005 String slicing_en.vtt 7.44Кб
005 String slicing.mp4 25.08Мб
005 TrapezoidalIntegral.py 468б
005 Trapezoidal integral implementation_en.vtt 5.33Кб
005 Trapezoidal integral implementation.mp4 17.61Мб
005 Types_en.vtt 4.95Кб
005 Types.mp4 19.29Мб
006 Lists and NumPy arrays_en.vtt 5.14Кб
006 Lists and NumPy arrays.mp4 19.40Мб
006 Lists in Python - advanced operations_en.vtt 8.71Кб
006 Lists in Python - advanced operations.mp4 39.32Мб
006 Mathematical formulation of interpolation.html 265б
006 Mathematical formulation of root finding.html 271б
006 Reshape_en.vtt 8.85Кб
006 Reshape.mp4 33.84Мб
006 Runge-Kutta method introduction_en.vtt 5.03Кб
006 Runge-Kutta method introduction.mp4 14.24Мб
006 Simpson's method introduction_en.vtt 5.64Кб
006 Simpson's method introduction.mp4 11.99Мб
006 Speed comparison - DataFrame operations_en.vtt 4.91Кб
006 Speed comparison - DataFrame operations.mp4 28.65Мб
006 Stochastic gradient descent implementation II_en.vtt 6.37Кб
006 Stochastic gradient descent implementation II.mp4 41.23Мб
006 StochasticGradientDescentRegression.py 2.17Кб
006 The random surfer model_en.vtt 5.66Кб
006 The random surfer model.mp4 18.81Мб
006 Type casting_en.vtt 4.66Кб
006 Type casting.mp4 16.74Мб
006 What is inheritance in OOP_en.vtt 4.14Кб
006 What is inheritance in OOP.mp4 18.03Мб
006 Yield operator_en.vtt 5.77Кб
006 Yield operator.mp4 18.28Мб
007 Lists in Python - list comprehension_en.vtt 6.12Кб
007 Lists in Python - list comprehension.mp4 22.88Мб
007 Matrix operations with NumPy_en.vtt 4.54Кб
007 Matrix operations with NumPy.mp4 13.69Мб
007 Operators_en.vtt 5.88Кб
007 Operators.mp4 20.63Мб
007 Reading CSV and text files_en.vtt 6.45Кб
007 Reading CSV and text files.mp4 35.23Мб
007 RungeKuttaExample1.py 648б
007 Runge-Kutta method example I_en.vtt 6.92Кб
007 Runge-Kutta method example I.mp4 24.49Мб
007 Simpson's method implementation_en.vtt 5.99Кб
007 Simpson's method implementation.mp4 20.56Мб
007 SimpsonMethod.py 511б
007 Stacking and merging arrays_en.vtt 7.34Кб
007 Stacking and merging arrays.mp4 27.69Мб
007 The super keyword_en.vtt 4.91Кб
007 The super keyword.mp4 21.23Мб
007 What are the most relevant built-in functions_en.vtt 4.92Кб
007 What are the most relevant built-in functions.mp4 15.38Мб
007 What are the problems with the random surfer model_en.vtt 4.08Кб
007 What are the problems with the random surfer model.mp4 12.26Мб
007 What is ADAGrad_en.vtt 7.54Кб
007 What is ADAGrad.mp4 22.13Мб
008 (!!!) Python lists and arrays.html 628б
008 ADAGrad implementation_en.vtt 13.63Кб
008 ADAGrad implementation.mp4 63.99Мб
008 Conditional statements_en.vtt 4.63Кб
008 Conditional statements.mp4 17.81Мб
008 Filter_en.vtt 4.22Кб
008 Filter.mp4 15.24Мб
008 Function (method) override_en.vtt 2.71Кб
008 Function (method) override.mp4 18.17Мб
008 GradientDescentAdaGrad.py 1.56Кб
008 Mathematical formulation of numerical integration.html 245б
008 Operations_en.vtt 6.61Кб
008 Operations.mp4 32.93Мб
008 PageRank algorithm - the final formula_en.vtt 8.93Кб
008 PageRank algorithm - the final formula.mp4 37.74Мб
008 RungeKuttaExample2.py 663б
008 Runge-Kutta method example II_en.vtt 4.88Кб
008 Runge-Kutta method example II.mp4 22.20Мб
008 What is recursion_en.vtt 10.64Кб
008 What is recursion.mp4 35.28Мб
009 Data filtering_en.vtt 8.67Кб
009 Data filtering.mp4 27.06Мб
009 How to use multiple conditions_en.vtt 9.05Кб
009 How to use multiple conditions.mp4 31.41Мб
009 Local vs global variables_en.vtt 4.77Кб
009 Local vs global variables.mp4 15.01Мб
009 Mathematical formulation of numerical differentiation.html 251б
009 Measuring running time of lists.html 1.24Кб
009 Power method_en.vtt 6.30Кб
009 Power method.mp4 21.32Мб
009 Running time comparison arrays and lists.html 1.34Кб
009 What is polymorphism_en.vtt 5.25Кб
009 What is polymorphism.mp4 21.16Мб
009 What is RMSProp_en.vtt 4.31Кб
009 What is RMSProp.mp4 19.12Мб
010 ADAM optimizer introduction_en.vtt 5.23Кб
010 ADAM optimizer introduction.mp4 12.31Мб
010 Logical operators_en.vtt 3.97Кб
010 Logical operators.mp4 17.60Мб
010 Original scientific paper of PageRank algorithm.html 254б
010 Polymorphism and abstraction example_en.vtt 6.03Кб
010 Polymorphism and abstraction example.mp4 33.27Мб
010 The __main__ function_en.vtt 4.02Кб
010 The __main__ function.mp4 14.81Мб
010 Using the apply() function_en.vtt 7.95Кб
010 Using the apply() function.mp4 30.85Мб
010 What are tuples_en.vtt 4.32Кб
010 What are tuples.mp4 14.73Мб
011 ADAM.py 1.07Кб
011 ADAM optimizer implementation_en.vtt 10.18Кб
011 ADAM optimizer implementation.mp4 43.02Мб
011 Loops - for loop_en.vtt 6.92Кб
011 Loops - for loop.mp4 18.95Мб
011 Modules_en.vtt 6.71Кб
011 Modules.mp4 21.79Мб
011 Mutability and immutability_en.vtt 5.25Кб
011 Mutability and immutability.mp4 18.49Мб
011 Speed comparison - loops and apply()_en.vtt 2.97Кб
011 Speed comparison - loops and apply().mp4 17.77Мб
012 Loops - while loop_en.vtt 4.88Кб
012 Loops - while loop.mp4 14.41Мб
012 Mathematical formulation of optimization algorithms in machine learning.html 275б
012 The __str__ function_en.vtt 3.51Кб
012 The __str__ function.mp4 15.67Мб
012 What are linked list data structures_en.vtt 10.30Кб
012 What are linked list data structures.mp4 34.49Мб
012 What is vectorization_en.vtt 7.52Кб
012 What is vectorization.mp4 26.44Мб
013 Comparing objects - overriding functions_en.vtt 9.05Кб
013 Comparing objects - overriding functions.mp4 40.18Мб
013 Doubly linked list implementation in Python_en.vtt 6.19Кб
013 Doubly linked list implementation in Python.mp4 24.46Мб
013 Vectorization example I_en.vtt 5.80Кб
013 Vectorization example I.mp4 22.18Мб
013 What are nested loops_en.vtt 3.03Кб
013 What are nested loops.mp4 13.16Мб
014 Enumerate_en.vtt 4.34Кб
014 Enumerate.mp4 15.13Мб
014 Hashing and O(1) running time complexity_en.vtt 9.73Кб
014 Hashing and O(1) running time complexity.mp4 30.98Мб
014 Vectorization example II_en.vtt 4.01Кб
014 Vectorization example II.mp4 20.81Мб
015 Break and continue_en.vtt 6.12Кб
015 Break and continue.mp4 20.42Мб
015 Dictionaries in Python_en.vtt 10.69Кб
015 Dictionaries in Python.mp4 38.50Мб
016 Calculating Fibonacci-numbers_en.vtt 2.89Кб
016 Calculating Fibonacci-numbers.mp4 8.39Мб
016 Sets in Python_en.vtt 9.56Кб
016 Sets in Python.mp4 47.14Мб
017 Sorting_en.vtt 11.36Кб
017 Sorting.mp4 50.57Мб
ADAM.py 1.07Кб
BisectionMethod.py 360б
Bonus Resources.txt 386б
EigenvectorExample.py 117б
EulerMethodExample1.py 449б
EulerMethodExample2.py 421б
EulerMethodExample3.py 449б
GaussElimination.py 838б
Get Bonus Downloads Here.url 182б
GradientDescent.py 1.26Кб
GradientDescentAdaGrad.py 1.56Кб
GradientDescentMomentum.py 1.29Кб
house_prices.csv 2.40Мб
LagrangeInterpolation.py 2.12Кб
MatrixMultiplication.py 496б
MatrixVectorMultiplication.py 423б
MonteCarloIntegral.py 1.15Кб
MonteCarloIntegral2.py 676б
NewtonRaphsonMethod.py 294б
numerical_methods.pptx 3.03Мб
NumPyOperations.py 224б
RectangleIntegral.py 376б
RungeKuttaExample1.py 648б
RungeKuttaExample2.py 663б
StochasticGradientDescent.py 1.93Кб
StochasticGradientDescentRegression.py 2.17Кб
TrapezoidalIntegral.py 468б
Статистика распространения по странам
Всего 0
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент