Общая информация
Название [FreeCourseSite.com] Udemy - The Data Science Course 2022 Complete Data Science Bootcamp
Тип
Размер 8.42Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[CourseClub.Me].url 122б
[FreeCourseSite.com].url 127б
[GigaCourse.Com].url 49б
001 1.04.Real-life-example.csv 219.83Кб
001 2.13.Practical-example.Descriptive-statistics-lesson.xlsx 146.51Кб
001 3.17.Practical-example.Confidence-intervals-lesson.xlsx 1.74Мб
001 365-Data-Science-Data-Science-Interview-Questions-Guide.pdf 15.56Мб
001 4.10.Hypothesis-testing-section-practical-example.xlsx 51.90Кб
001 Absenteeism-data.csv 32.05Кб
001 Absenteeism-Exercise-Integration.ipynb 62.35Кб
001 absenteeism-module.py 6.62Кб
001 Absenteeism-new-data.csv 1.87Кб
001 Absenteeism-predictions.csv 2.10Кб
001 Absenteeism-preprocessed.csv 29.13Кб
001 Additional-Python-Tools-Exercises.ipynb 11.37Кб
001 Additional-Python-Tools-Lectures.ipynb 13.47Кб
001 Additional-Python-Tools-Solutions.ipynb 25.49Кб
001 Applying Traditional Data, Big Data, BI, Traditional Data Science and ML_en.vtt 8.01Кб
001 Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4 82.02Мб
001 A Practical Example What You Will Learn in This Course_en.vtt 5.66Кб
001 A Practical Example What You Will Learn in This Course.mp4 43.88Мб
001 Are You Sure You're All Set.html 513б
001 Arithmetic-Operators-Exercise-Py3.ipynb 2.62Кб
001 Arithmetic-Operators-Lecture-Py3.ipynb 3.53Кб
001 Arithmetic-Operators-Solution-Py3.ipynb 4.24Кб
001 Audiobooks-data.csv 710.77Кб
001 Audiobooks-data.csv 710.77Кб
001 Basic NN Example (Part 1)_en.vtt 3.95Кб
001 Basic NN Example (Part 1).mp4 9.34Мб
001 Bonus Lecture Next Steps.html 2.84Кб
001 Business Case Exploring the Dataset and Identifying Predictors_en.vtt 9.22Кб
001 Business Case Exploring the Dataset and Identifying Predictors.mp4 51.38Мб
001 Business Case Getting Acquainted with the Dataset_en.vtt 9.30Кб
001 Business Case Getting Acquainted with the Dataset.mp4 60.26Мб
001 Comparison Operators_en.vtt 2.17Кб
001 Comparison Operators.mp4 4.16Мб
001 Comparison-Operators-Exercise-Py3.ipynb 1.61Кб
001 Comparison-Operators-Lecture-Py3.ipynb 2.53Кб
001 Comparison-Operators-Solution-Py3.ipynb 2.41Кб
001 Course-Notes-Basic-Probability.pdf 371.05Кб
001 Course-Notes-Bayesian-Inference.pdf 386.01Кб
001 Course-Notes-Cluster-Analysis.pdf 208.65Кб
001 Course-Notes-Combinatorics.pdf 226.12Кб
001 Course-notes-descriptive-statistics.pdf 482.21Кб
001 Course-notes-descriptive-statistics.pdf 482.21Кб
001 Course-notes-hypothesis-testing.pdf 656.44Кб
001 Course-notes-inferential-statistics.pdf 382.32Кб
001 Course-Notes-Logistic-Regression.pdf 335.17Кб
001 Course-Notes-Probability-Distributions.pdf 463.95Кб
001 Course-notes-regression-analysis.pdf 312.18Кб
001 Course-notes-regression-analysis.pdf 312.18Кб
001 Course-Notes-Section-2.pdf 578.08Кб
001 Course-Notes-Section-6.pdf 936.42Кб
001 data-preprocessing-homework.pdf 134.47Кб
001 Data Science and Business Buzzwords Why are there so Many_en.vtt 5.95Кб
001 Data Science and Business Buzzwords Why are there so Many.mp4 54.72Мб
001 Debunking Common Misconceptions_en.vtt 4.78Кб
001 Debunking Common Misconceptions.mp4 57.86Мб
001 Defining a Function in Python_en.vtt 2.14Кб
001 Defining a Function in Python.mp4 3.23Мб
001 Defining-a-Function-in-Python-Lecture-Py3.ipynb 868б
001 df-preprocessed.csv 29.11Кб
001 EXERCISE - Age vs Probability.html 367б
001 Exploring the Problem with a Machine Learning Mindset_en.vtt 4.07Кб
001 Exploring the Problem with a Machine Learning Mindset.mp4 11.08Мб
001 Finding the Job - What to Expect and What to Look for_en.vtt 3.83Кб
001 Finding the Job - What to Expect and What to Look for.mp4 33.09Мб
001 For Loops_en.vtt 5.87Кб
001 For Loops.mp4 23.58Мб
001 For-Loops-Exercise-Py3.ipynb 1.28Кб
001 For-Loops-Lecture-Py3.ipynb 1.26Кб
001 For-Loops-Solution-Py3.ipynb 1.80Кб
001 Fundamentals of Combinatorics_en.vtt 1.21Кб
001 Fundamentals of Combinatorics.mp4 4.63Мб
001 Fundamentals of Probability Distributions_en.vtt 6.99Кб
001 Fundamentals of Probability Distributions.mp4 19.28Мб
001 Game Plan for this Python, SQL, and Tableau Business Exercise_en.vtt 4.86Кб
001 Game Plan for this Python, SQL, and Tableau Business Exercise.mp4 15.80Мб
001 Glossary.xlsx 19.97Кб
001 How to Install TensorFlow 2.0_en.vtt 5.70Кб
001 How to Install TensorFlow 2.0.mp4 27.34Мб
001 Introduction_en.vtt 1.44Кб
001 Introduction.mp4 3.02Мб
001 Introduction to Cluster Analysis_en.vtt 4.20Кб
001 Introduction to Cluster Analysis.mp4 10.66Мб
001 Introduction to Logistic Regression_en.vtt 1.51Кб
001 Introduction to Logistic Regression.mp4 4.16Мб
001 Introduction to Neural Networks_en.vtt 5.33Кб
001 Introduction to Neural Networks.mp4 10.37Мб
001 Introduction to pandas Series_en.vtt 9.33Кб
001 Introduction to pandas Series.mp4 22.22Мб
001 Introduction to Programming_en.vtt 6.11Кб
001 Introduction to Programming.mp4 14.33Мб
001 Introduction to Regression Analysis_en.vtt 1.96Кб
001 Introduction to Regression Analysis.mp4 3.50Мб
001 Introduction-to-the-If-Statement-Exercise-Py3.ipynb 1.53Кб
001 Introduction-to-the-If-Statement-Lecture-Py3.ipynb 1.14Кб
001 Introduction-to-the-If-Statement-Solution-Py3.ipynb 2.19Кб
001 K-Means Clustering_en.vtt 5.64Кб
001 K-Means Clustering.mp4 10.52Мб
001 Lending-company.csv 112.43Кб
001 Lists_en.vtt 8.75Кб
001 Lists.mp4 20.50Мб
001 Lists-Exercise-Py3.ipynb 2.14Кб
001 Lists-Lecture-Py3.ipynb 2.70Кб
001 Lists-Solution-Py3.ipynb 3.18Кб
001 Location.csv 13.49Кб
001 Minimal-example-Part-1.ipynb 1.19Кб
001 MNIST The Dataset_en.vtt 3.06Кб
001 MNIST The Dataset.mp4 4.40Мб
001 MNIST What is the MNIST Dataset_en.vtt 3.09Кб
001 MNIST What is the MNIST Dataset.mp4 4.65Мб
001 model 1.01Кб
001 Multiple Linear Regression_en.vtt 2.93Кб
001 Multiple Linear Regression.mp4 5.54Мб
001 Necessary Programming Languages and Software Used in Data Science_en.vtt 6.47Кб
001 Necessary Programming Languages and Software Used in Data Science.mp4 66.73Мб
001 Null vs Alternative Hypothesis_en.vtt 6.45Кб
001 Null vs Alternative Hypothesis.mp4 80.83Мб
001 Object Oriented Programming_en.vtt 5.35Кб
001 Object Oriented Programming.mp4 8.42Мб
001 pandas-Fundamentals-Exercises.ipynb 30.83Кб
001 pandas-Fundamentals-Lectures.ipynb 21.31Кб
001 pandas-Fundamentals-Solutions.ipynb 118.33Кб
001 Population and Sample_en.vtt 4.91Кб
001 Population and Sample.mp4 34.16Мб
001 Practical Example Descriptive Statistics_en.vtt 18.19Кб
001 Practical Example Descriptive Statistics.mp4 150.18Мб
001 Practical Example Hypothesis Testing_en.vtt 7.64Кб
001 Practical Example Hypothesis Testing.mp4 45.84Мб
001 Practical Example Inferential Statistics_en.vtt 12.01Кб
001 Practical Example Inferential Statistics.mp4 69.04Мб
001 Practical Example Linear Regression (Part 1)_en.vtt 13.07Кб
001 Practical Example Linear Regression (Part 1).mp4 84.83Мб
001 Preprocessing Introduction_en.vtt 3.35Кб
001 Preprocessing Introduction.mp4 8.98Мб
001 Probability in Finance_en.vtt 8.66Кб
001 Probability in Finance.mp4 39.66Мб
001 Probability-in-Finance-Homework.pdf 110.68Кб
001 Probability-in-Finance-Solutions.pdf 184.46Кб
001 Python-Introduction-Course-Notes.pdf 2.03Мб
001 READ ME!!!!.html 564б
001 Region.csv 10.22Кб
001 Sales-products.csv 152.28Кб
001 scaler 1.86Кб
001 Sets and Events_en.vtt 4.70Кб
001 Sets and Events.mp4 17.44Мб
001 Shortcuts-for-Jupyter.pdf 619.17Кб
001 Shortcuts-for-Jupyter.pdf 619.17Кб
001 sklearn-Linear-Regression-Practical-Example-Part-1.ipynb 166.91Кб
001 sklearn-Linear-Regression-Practical-Example-Part-1-with-comments.ipynb 171.38Кб
001 Statistics-Glossary.xlsx 20.26Кб
001 Stochastic Gradient Descent_en.vtt 4.14Кб
001 Stochastic Gradient Descent.mp4 7.62Мб
001 Summary on What You've Learned_en.vtt 4.65Кб
001 Summary on What You've Learned.mp4 9.66Мб
001 Techniques for Working with Traditional Data_en.vtt 9.36Кб
001 Techniques for Working with Traditional Data.mp4 105.52Мб
001 The Basic Probability Formula_en.vtt 7.95Кб
001 The Basic Probability Formula.mp4 29.13Мб
001 The IF Statement_en.vtt 3.09Кб
001 The IF Statement.mp4 5.33Мб
001 The Linear Regression Model_en.vtt 6.00Кб
001 The Linear Regression Model.mp4 13.16Мб
001 The Reason Behind These Disciplines_en.vtt 5.74Кб
001 The Reason Behind These Disciplines.mp4 45.87Мб
001 Types of Clustering_en.vtt 4.19Кб
001 Types of Clustering.mp4 8.90Мб
001 Types of Data_en.vtt 5.41Кб
001 Types of Data.mp4 42.47Мб
001 Using Arithmetic Operators in Python_en.vtt 3.75Кб
001 Using Arithmetic Operators in Python.mp4 7.28Мб
001 Using the .format() Method_en.vtt 10.80Кб
001 Using the .format() Method.mp4 21.66Мб
001 Variables_en.vtt 3.98Кб
001 Variables.mp4 8.93Мб
001 Variables-Exercise-Py3.ipynb 2.23Кб
001 Variables-Lecture-Py3.ipynb 3.61Кб
001 Variables-Solution-Py3.ipynb 3.79Кб
001 What are Confidence Intervals_en.vtt 2.89Кб
001 What are Confidence Intervals.mp4 28.38Мб
001 What are Data, Servers, Clients, Requests, and Responses_en.vtt 5.21Кб
001 What are Data, Servers, Clients, Requests, and Responses.mp4 19.17Мб
001 What is a Layer_en.vtt 2.17Кб
001 What is a Layer.mp4 4.96Мб
001 What is a Matrix_en.vtt 3.88Кб
001 What is a Matrix.mp4 11.70Мб
001 What is Initialization_en.vtt 3.17Кб
001 What is Initialization.mp4 17.42Мб
001 What is Overfitting_en.vtt 5.04Кб
001 What is Overfitting.mp4 10.50Мб
001 What is sklearn and How is it Different from Other Packages_en.vtt 2.98Кб
001 What is sklearn and How is it Different from Other Packages.mp4 6.24Мб
001 What to Expect from the Following Sections.html 2.43Кб
001 What to Expect from this Part_en.vtt 4.04Кб
001 What to Expect from this Part.mp4 9.29Мб
002 1.02.Multiple-linear-regression.csv 1.09Кб
002 1.04.Real-life-example.csv 219.83Кб
002 2.01.Admittance.csv 1.58Кб
002 2.13.Practical-example.Descriptive-statistics-exercise.xlsx 120.27Кб
002 2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx 146.38Кб
002 3.01.Country-clusters.csv 200б
002 3.17.Practical-example.Confidence-intervals-exercise.xlsx 1.73Мб
002 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx 1.82Мб
002 3.2.What-is-a-distribution-lesson.xlsx 19.46Кб
002 3.9.Population-variance-known-z-score-lesson.xlsx 11.21Кб
002 3.9.The-z-table.xlsx 25.58Кб
002 4.10.Hypothesis-testing-section-practical-example-exercise.xlsx 43.69Кб
002 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx 44.27Кб
002 Absenteeism-predictions.csv 2.10Кб
002 Add-an-Else-Statement-Exercise-Py3.ipynb 1.02Кб
002 Add-an-Else-Statement-Lecture-Py3.ipynb 1.76Кб
002 Add-an-Else-Statement-Solution-Py3.ipynb 1.40Кб
002 Adjusted R-Squared_en.vtt 6.66Кб
002 Adjusted R-Squared.mp4 34.22Мб
002 Admittance.ipynb 3.54Кб
002 Admittance-with-comments.ipynb 5.32Кб
002 Analyzing Age vs Probability in Tableau_en.vtt 8.91Кб
002 Analyzing Age vs Probability in Tableau.mp4 38.69Мб
002 A Simple Example in Python_en.vtt 5.16Кб
002 A Simple Example in Python.mp4 21.91Мб
002 A Simple Example of Clustering_en.vtt 8.25Кб
002 A Simple Example of Clustering.mp4 26.08Мб
002 Basic NN Example (Part 2)_en.vtt 5.99Кб
002 Basic NN Example (Part 2).mp4 15.23Мб
002 Business Case Outlining the Solution_en.vtt 1.69Кб
002 Business Case Outlining the Solution_en.vtt 2.19Кб
002 Business Case Outlining the Solution.mp4 2.95Мб
002 Business Case Outlining the Solution.mp4 4.04Мб
002 Computing Expected Values_en.vtt 5.93Кб
002 Computing Expected Values.mp4 29.24Мб
002 Confidence Intervals; Population Variance Known; Z-score_en.vtt 9.06Кб
002 Confidence Intervals; Population Variance Known; Z-score.mp4 52.21Мб
002 Correlation vs Regression_en.vtt 1.78Кб
002 Correlation vs Regression.mp4 3.75Мб
002 Country-clusters.ipynb 3.31Кб
002 Country-clusters-with-comments.ipynb 5.80Кб
002 Course-Notes-Cluster-Analysis.pdf 208.65Кб
002 Course-notes-inferential-statistics.pdf 382.32Кб
002 Course-Notes-Logistic-Regression.pdf 335.17Кб
002 Course-Notes-Section-2.pdf 578.08Кб
002 Course-Notes-Section-6.pdf 936.42Кб
002 Creating-a-Function-with-a-Parameter-Exercise-Py3.ipynb 1.16Кб
002 Creating-a-Function-with-a-Parameter-Lecture-Py3.ipynb 1.59Кб
002 Creating-a-Function-with-a-Parameter-Solution-Py3.ipynb 1.79Кб
002 Creating the Targets for the Logistic Regression_en.vtt 7.51Кб
002 Creating the Targets for the Logistic Regression.mp4 32.50Мб
002 Dendrogram_en.vtt 6.38Кб
002 Dendrogram.mp4 17.34Мб
002 Deploying the 'absenteeism_module' - Part I_en.vtt 4.27Кб
002 Deploying the 'absenteeism_module' - Part I.mp4 16.93Мб
002 Further Reading on Null and Alternative Hypothesis.html 2.23Кб
002 Help-Yourself-with-Methods-Exercise-Py3.ipynb 1.91Кб
002 Help-Yourself-with-Methods-Lecture-Py3.ipynb 4.39Кб
002 Help-Yourself-with-Methods-Solution-Py3.ipynb 2.83Кб
002 How are we Going to Approach this Section_en.vtt 2.56Кб
002 How are we Going to Approach this Section.mp4 5.24Мб
002 How to Create a Function with a Parameter_en.vtt 3.76Кб
002 How to Create a Function with a Parameter.mp4 8.29Мб
002 How to Install TensorFlow 1_en.vtt 2.91Кб
002 How to Install TensorFlow 1.mp4 4.85Мб
002 Importing the Absenteeism Data in Python_en.vtt 3.42Кб
002 Importing the Absenteeism Data in Python.mp4 18.03Мб
002 Iterating Over Range Objects_en.vtt 5.30Кб
002 Iterating Over Range Objects.mp4 11.07Мб
002 Levels of Measurement_en.vtt 4.16Кб
002 Levels of Measurement.mp4 31.44Мб
002 Logical and Identity Operators_en.vtt 5.12Кб
002 Logical and Identity Operators.mp4 19.00Мб
002 Logical-and-Identity-Operators-Lecture-Py3.ipynb 5.86Кб
002 Logical-and-Identity-Operators-Solution-Py3.ipynb 3.43Кб
002 Minimal-example-Part-2.ipynb 3.65Кб
002 MNIST How to Tackle the MNIST_en.vtt 3.32Кб
002 MNIST How to Tackle the MNIST_en.vtt 3.27Кб
002 MNIST How to Tackle the MNIST.mp4 7.66Мб
002 MNIST How to Tackle the MNIST.mp4 7.68Мб
002 Modules and Packages_en.vtt 1.19Кб
002 Modules and Packages.mp4 2.00Мб
002 Multiple-linear-regression-and-Adjusted-R-squared.ipynb 2.15Кб
002 Multiple-linear-regression-and-Adjusted-R-squared-with-comments.ipynb 2.80Кб
002 Numbers-and-Boolean-Values-Exercise-Py3.ipynb 2.29Кб
002 Numbers and Boolean Values in Python_en.vtt 3.15Кб
002 Numbers and Boolean Values in Python.mp4 6.56Мб
002 Numbers-and-Boolean-Values-Lecture-Py3.ipynb 3.36Кб
002 Numbers-and-Boolean-Values-Solution-Py3.ipynb 3.23Кб
002 Permutations and How to Use Them_en.vtt 3.74Кб
002 Permutations and How to Use Them.mp4 13.97Мб
002 Practical Example Descriptive Statistics Exercise.html 81б
002 Practical Example Hypothesis Testing Exercise.html 81б
002 Practical Example Inferential Statistics Exercise.html 81б
002 Practical Example Linear Regression (Part 2)_en.vtt 7.11Кб
002 Practical Example Linear Regression (Part 2).mp4 31.90Мб
002 Probability in Statistics_en.vtt 7.62Кб
002 Probability in Statistics.mp4 18.37Мб
002 Problems with Gradient Descent_en.vtt 2.56Кб
002 Problems with Gradient Descent.mp4 3.51Мб
002 Real Life Examples of Traditional Data_en.vtt 1.96Кб
002 Real Life Examples of Traditional Data.mp4 13.92Мб
002 Scalars and Vectors_en.vtt 3.35Кб
002 Scalars and Vectors.mp4 8.39Мб
002 sklearn-Linear-Regression-Practical-Example-Part-2.ipynb 328.74Кб
002 sklearn-Linear-Regression-Practical-Example-Part-2-with-comments.ipynb 335.63Кб
002 Some Examples of Clusters_en.vtt 5.41Кб
002 Some Examples of Clusters.mp4 35.12Мб
002 TensorFlow Outline and Comparison with Other Libraries_en.vtt 4.74Кб
002 TensorFlow Outline and Comparison with Other Libraries.mp4 14.94Мб
002 The Business Task_en.vtt 3.29Кб
002 The Business Task.mp4 11.08Мб
002 The Double Equality Sign_en.vtt 1.55Кб
002 The Double Equality Sign.mp4 2.72Мб
002 The-Double-Equality-Sign-Exercise-Py3.ipynb 838б
002 The-Double-Equality-Sign-Lecture-Py3.ipynb 1.45Кб
002 The-Double-Equality-Sign-Solution-Py3.ipynb 1.14Кб
002 The ELSE Statement_en.vtt 2.73Кб
002 The ELSE Statement.mp4 5.25Мб
002 Training the Model_en.vtt 3.89Кб
002 Training the Model.mp4 7.57Мб
002 Types of Basic Preprocessing_en.vtt 1.52Кб
002 Types of Basic Preprocessing.mp4 3.19Мб
002 Types of Probability Distributions_en.vtt 8.61Кб
002 Types of Probability Distributions.mp4 28.69Мб
002 Types of Simple Initializations_en.vtt 3.35Кб
002 Types of Simple Initializations.mp4 5.73Мб
002 Underfitting and Overfitting for Classification_en.vtt 2.36Кб
002 Underfitting and Overfitting for Classification.mp4 13.53Мб
002 Using Methods_en.vtt 7.32Кб
002 Using Methods.mp4 23.41Мб
002 Ways Sets Can Interact_en.vtt 3.90Кб
002 Ways Sets Can Interact.mp4 19.02Мб
002 What's Further out there in terms of Machine Learning_en.vtt 2.34Кб
002 What's Further out there in terms of Machine Learning.mp4 4.73Мб
002 What are Data Connectivity, APIs, and Endpoints_en.vtt 7.55Кб
002 What are Data Connectivity, APIs, and Endpoints.mp4 58.83Мб
002 What Does the Course Cover_en.vtt 4.52Кб
002 What Does the Course Cover.mp4 49.69Мб
002 What is a Deep Net_en.vtt 2.89Кб
002 What is a Deep Net.mp4 11.06Мб
002 What is a Distribution_en.vtt 5.32Кб
002 What is a Distribution.mp4 16.90Мб
002 What is the difference between Analysis and Analytics_en.vtt 4.40Кб
002 What is the difference between Analysis and Analytics.mp4 11.05Мб
002 While Loops and Incrementing_en.vtt 5.36Кб
002 While Loops and Incrementing.mp4 20.20Мб
002 While-Loops-and-Incrementing-Exercise-Py3.ipynb 1.12Кб
002 While-Loops-and-Incrementing-Lecture-Py3.ipynb 1.08Кб
002 While-Loops-and-Incrementing-Solution-Py3.ipynb 1.75Кб
002 Why Python_en.vtt 6.04Кб
002 Why Python.mp4 11.77Мб
002 Working with Methods in Python - Part I_en.vtt 6.09Кб
002 Working with Methods in Python - Part I.mp4 16.80Мб
003 1.01.Simple-linear-regression.csv 922б
003 12.3.TensorFlow-MNIST-with-comments-Part-1.ipynb 3.89Кб
003 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx 30.77Кб
003 3.9.Population-variance-known-z-score-exercise.xlsx 10.83Кб
003 3.9.Population-variance-known-z-score-exercise-solution.xlsx 11.16Кб
003 3.9.The-z-table.xlsx 25.58Кб
003 365-DataScience-Diagram.pdf 323.08Кб
003 A Note on Installing Packages in Anaconda.html 2.28Кб
003 A Note on Multicollinearity.html 849б
003 Another-Way-to-Define-a-Function-Exercise-Py3.ipynb 1.24Кб
003 Another-Way-to-Define-a-Function-Lecture-Py3.ipynb 3.29Кб
003 Another-Way-to-Define-a-Function-Solution-Py3.ipynb 1.98Кб
003 A Simple Example of Clustering - Exercise.html 87б
003 A-Simple-Example-of-Clustering-Exercise.ipynb 3.62Кб
003 A-Simple-Example-of-Clustering-Solution.ipynb 4.65Кб
003 Audiobooks-data.csv 710.77Кб
003 Basic NN Example (Part 3)_en.vtt 3.85Кб
003 Basic NN Example (Part 3).mp4 15.68Мб
003 Business Analytics, Data Analytics, and Data Science An Introduction_en.vtt 9.53Кб
003 Business Analytics, Data Analytics, and Data Science An Introduction.mp4 49.96Мб
003 Business Case Balancing the Dataset_en.vtt 4.11Кб
003 Business Case Balancing the Dataset.mp4 26.19Мб
003 Categorical Variables - Visualization Techniques_en.vtt 5.68Кб
003 Categorical Variables - Visualization Techniques.mp4 36.65Мб
003 Characteristics of Discrete Distributions_en.vtt 2.21Кб
003 Characteristics of Discrete Distributions.mp4 9.25Мб
003 Checking the Content of the Data Set_en.vtt 6.22Кб
003 Checking the Content of the Data Set.mp4 54.27Мб
003 Confidence Intervals; Population Variance Known; Z-score; Exercise.html 81б
003 Countries-exercise.csv 8.27Кб
003 Country-clusters-standardized.csv 244б
003 Course-notes-hypothesis-testing.pdf 656.44Кб
003 Create-Lists-with-the-range-Function-Exercise-Py3.ipynb 1.45Кб
003 Create-Lists-with-the-range-Function-Lecture-Py3.ipynb 1.34Кб
003 Create-Lists-with-the-range-Function-Solution-Py3.ipynb 2.25Кб
003 DeepMind and Deep Learning.html 1.04Кб
003 Defining a Function in Python - Part II_en.vtt 2.54Кб
003 Defining a Function in Python - Part II.mp4 6.45Мб
003 Deploying the 'absenteeism_module' - Part II_en.vtt 6.76Кб
003 Deploying the 'absenteeism_module' - Part II.mp4 25.99Мб
003 Difference between Classification and Clustering_en.vtt 2.94Кб
003 Difference between Classification and Clustering.mp4 9.53Мб
003 Digging into a Deep Net_en.vtt 5.91Кб
003 Digging into a Deep Net.mp4 19.14Мб
003 Download-all-resources.url 97б
003 Download All Resources and Important FAQ.html 21.26Кб
003 Else-If-for-Brief-Elif-Exercise-Py3.ipynb 1.75Кб
003 Else-If-for-Brief-Elif-Lecture-Py3.ipynb 3.24Кб
003 Else-If-for-Brief-Elif-Solution-Py3.ipynb 2.40Кб
003 EXERCISE - Reasons vs Probability.html 385б
003 FAQ-The-Data-Science-Course.pdf 306.10Кб
003 Frequency_en.vtt 5.58Кб
003 Frequency.mp4 36.39Мб
003 Geometrical Representation of the Linear Regression Model_en.vtt 1.47Кб
003 Geometrical Representation of the Linear Regression Model.mp4 2.19Мб
003 Heatmaps_en.vtt 5.42Кб
003 Heatmaps.ipynb 1.82Кб
003 Heatmaps.mp4 25.71Мб
003 Heatmaps-with-comments.ipynb 17.66Кб
003 How to Reassign Values_en.vtt 1.21Кб
003 How to Reassign Values.mp4 1.86Мб
003 Intersection of Sets_en.vtt 2.21Кб
003 Intersection of Sets.mp4 8.78Мб
003 Introducing the Data Set_en.vtt 3.65Кб
003 Introducing the Data Set.mp4 15.29Мб
003 Introduction to Nested For Loops_en.vtt 7.30Кб
003 Introduction to Nested For Loops.mp4 12.26Мб
003 Linear Algebra and Geometry_en.vtt 3.54Кб
003 Linear Algebra and Geometry.mp4 13.56Мб
003 List Slicing_en.vtt 4.63Кб
003 List Slicing.mp4 19.17Мб
003 List-Slicing-Exercise-Py3.ipynb 2.79Кб
003 List-Slicing-Lecture-Py3.ipynb 5.02Кб
003 List-Slicing-Solution-Py3.ipynb 4.26Кб
003 Lists with the range() Function_en.vtt 7.07Кб
003 Lists with the range() Function.mp4 14.50Мб
003 Logistic vs Logit Function_en.vtt 4.30Кб
003 Logistic vs Logit Function.mp4 43.96Мб
003 Minimal-example-Part-3.ipynb 6.79Кб
003 MNIST Importing the Relevant Packages and Loading the Data_en.vtt 2.65Кб
003 MNIST Importing the Relevant Packages and Loading the Data.mp4 12.24Мб
003 MNIST Relevant Packages_en.vtt 1.97Кб
003 MNIST Relevant Packages.mp4 7.88Мб
003 Momentum_en.vtt 3.15Кб
003 Momentum.mp4 5.01Мб
003 Multiple Linear Regression Exercise.html 76б
003 Multiple-Linear-Regression-Exercise.ipynb 2.45Кб
003 Multiple-Linear-Regression-Exercise-Solution.ipynb 13.39Кб
003 Probability-Cheat-Sheet.pdf 320.28Кб
003 Probability in Data Science_en.vtt 5.87Кб
003 Probability in Data Science.mp4 23.94Мб
003 Python Strings_en.vtt 6.24Кб
003 Python Strings.mp4 19.73Мб
003 real-estate-price-size-year.csv 2.35Кб
003 Reassign-Values-Exercise-Py3.ipynb 1.67Кб
003 Reassign-Values-Lecture-Py3.ipynb 3.08Кб
003 Reassign-Values-Solution-Py3.ipynb 2.12Кб
003 Rejection Region and Significance Level_en.vtt 7.99Кб
003 Rejection Region and Significance Level.mp4 38.20Мб
003 Selecting the Inputs for the Logistic Regression_en.vtt 2.99Кб
003 Selecting the Inputs for the Logistic Regression.mp4 9.81Мб
003 Simple Linear Regression with sklearn_en.vtt 6.71Кб
003 Simple Linear Regression with sklearn.mp4 31.65Мб
003 Simple Operations with Factorials_en.vtt 3.15Кб
003 Simple Operations with Factorials.mp4 13.98Мб
003 sklearn-Simple-Linear-Regression.ipynb 4.92Кб
003 sklearn-Simple-Linear-Regression-with-comments.ipynb 6.06Кб
003 Standardization_en.vtt 5.50Кб
003 Standardization.mp4 11.95Мб
003 State-of-the-Art Method - (Xavier) Glorot Initialization_en.vtt 3.21Кб
003 State-of-the-Art Method - (Xavier) Glorot Initialization.mp4 5.24Мб
003 Strings-Exercise-Py3.ipynb 2.61Кб
003 Strings-Lecture-Py3.ipynb 7.56Кб
003 Strings-Solution-Py3.ipynb 5.45Кб
003 Taking a Closer Look at APIs_en.vtt 9.31Кб
003 Taking a Closer Look at APIs.mp4 65.29Мб
003 Techniques for Working with Big Data_en.vtt 5.02Кб
003 Techniques for Working with Big Data.mp4 60.48Мб
003 TensorFlow 1 vs TensorFlow 2_en.vtt 3.30Кб
003 TensorFlow 1 vs TensorFlow 2.mp4 14.94Мб
003 TensorFlow-MNIST-Part1-with-comments.ipynb 3.97Кб
003 The ELIF Statement_en.vtt 5.75Кб
003 The ELIF Statement.mp4 14.25Мб
003 The Importance of Working with a Balanced Dataset_en.vtt 4.11Кб
003 The Importance of Working with a Balanced Dataset.mp4 21.60Мб
003 The Normal Distribution_en.vtt 4.43Кб
003 The Normal Distribution.mp4 16.16Мб
003 Types of Machine Learning_en.vtt 4.69Кб
003 Types of Machine Learning.mp4 9.81Мб
003 What is the Standard Library_en.vtt 3.22Кб
003 What is the Standard Library.mp4 4.87Мб
003 What is Validation_en.vtt 4.28Кб
003 What is Validation.mp4 8.14Мб
003 Why Jupyter_en.vtt 4.10Кб
003 Why Jupyter.mp4 7.96Мб
003 Working with Methods in Python - Part II_en.vtt 3.19Кб
003 Working with Methods in Python - Part II.mp4 8.99Мб
004 0.6.4-Using-a-Function-in-another-Function-Exercise-Py3.ipynb 1.04Кб
004 0.6.4-Using-a-Function-in-another-Function-Lecture-Py3.ipynb 1015б
004 0.6.4-Using-a-Function-in-another-Function-Solution-Py3.ipynb 1.60Кб
004 1.01.Simple-linear-regression.csv 922б
004 12.4.TensorFlow-MNIST-with-comments-Part-2.ipynb 6.10Кб
004 2.3.Categorical-variables.Visualization-techniques-exercise.xlsx 15.24Кб
004 2.3.Categorical-variables.Visualization-techniques-exercise-solution.xlsx 41.11Кб
004 3.4.Standard-normal-distribution-lesson.xlsx 10.38Кб
004 365-DataScience.png 6.92Мб
004 365-DataScience-Diagram.pdf 323.08Кб
004 Absenteeism-Exercise-Deploying-the-absenteeism-module.ipynb 973б
004 Add Comments_en.vtt 1.57Кб
004 Add Comments.mp4 2.41Мб
004 Add-Comments-Lecture-Py3.ipynb 1.03Кб
004 Admittance-regression.ipynb 2.09Кб
004 Admittance-regression-summary-error.ipynb 2.48Кб
004 Admittance-regression-tables-fixed-error.ipynb 4.11Кб
004 Analyzing Reasons vs Probability in Tableau_en.vtt 8.49Кб
004 Analyzing Reasons vs Probability in Tableau.mp4 40.24Мб
004 A Note on Boolean Values_en.vtt 2.56Кб
004 A Note on Boolean Values.mp4 4.24Мб
004 A-Note-on-Boolean-Values-Lecture-Py3.ipynb 791б
004 A Note on TensorFlow 2 Syntax_en.vtt 1.25Кб
004 A Note on TensorFlow 2 Syntax.mp4 2.76Мб
004 An overview of CNNs_en.vtt 5.91Кб
004 An overview of CNNs.mp4 30.47Мб
004 Arrays in Python - A Convenient Way To Represent Matrices_en.vtt 5.26Кб
004 Arrays in Python - A Convenient Way To Represent Matrices.mp4 19.01Мб
004 Audiobooks-data.csv 710.77Кб
004 Basic NN Example (Part 4)_en.vtt 9.28Кб
004 Basic NN Example (Part 4).mp4 30.06Мб
004 Building a Logistic Regression_en.vtt 3.00Кб
004 Building a Logistic Regression.mp4 8.61Мб
004 Business Case Preprocessing_en.vtt 11.75Кб
004 Business Case Preprocessing.mp4 74.39Мб
004 Business Case Preprocessing the Data_en.vtt 11.73Кб
004 Business Case Preprocessing the Data.mp4 73.82Мб
004 Categorical-data.ipynb 3.35Кб
004 Categorical-data-with-comments.ipynb 5.62Кб
004 Categorical Variables Exercise.html 81б
004 Clustering Categorical Data_en.vtt 2.88Кб
004 Clustering Categorical Data.mp4 10.35Мб
004 Communication between Software Products through Text Files_en.vtt 4.84Кб
004 Communication between Software Products through Text Files.mp4 17.26Мб
004 Conditional Statements and Loops_en.vtt 6.75Кб
004 Conditional Statements and Loops.mp4 21.94Мб
004 Confidence Interval Clarifications_en.vtt 5.13Кб
004 Confidence Interval Clarifications.mp4 18.56Мб
004 Continuing with BI, ML, and AI_en.vtt 10.51Кб
004 Continuing with BI, ML, and AI.mp4 35.94Мб
004 Discrete Distributions The Uniform Distribution_en.vtt 2.51Кб
004 Discrete Distributions The Uniform Distribution.mp4 10.08Мб
004 Events and Their Complements_en.vtt 6.28Кб
004 Events and Their Complements.mp4 20.83Мб
004 Exporting the Obtained Data Set as a .csv.html 964б
004 How to Use a Function within a Function_en.vtt 1.82Кб
004 How to Use a Function within a Function.mp4 3.25Мб
004 Importing Modules in Python_en.vtt 3.94Кб
004 Importing Modules in Python.mp4 8.53Мб
004 Installing Python and Jupyter_en.vtt 8.00Кб
004 Installing Python and Jupyter.mp4 32.86Мб
004 Introduction to Terms with Multiple Meanings_en.vtt 3.63Кб
004 Introduction to Terms with Multiple Meanings.mp4 18.04Мб
004 Learning Rate Schedules, or How to Choose the Optimal Learning Rate_en.vtt 5.38Кб
004 Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4 12.03Мб
004 Math Prerequisites_en.vtt 3.64Кб
004 Math Prerequisites.mp4 5.10Мб
004 Minimal-example-Part-4-Complete.ipynb 11.41Кб
004 MNIST Model Outline_en.vtt 7.85Кб
004 MNIST Model Outline.mp4 34.69Мб
004 MNIST Preprocess the Data - Create a Validation Set and Scale It_en.vtt 5.77Кб
004 MNIST Preprocess the Data - Create a Validation Set and Scale It.mp4 22.93Мб
004 Non-Linearities and their Purpose_en.vtt 3.34Кб
004 Non-Linearities and their Purpose.mp4 9.74Мб
004 Parameters and Arguments in pandas_en.vtt 4.89Кб
004 Parameters and Arguments in pandas.mp4 15.45Мб
004 Practical Example Linear Regression (Part 3)_en.vtt 3.70Кб
004 Practical Example Linear Regression (Part 3).mp4 16.68Мб
004 Preprocessing Categorical Data_en.vtt 2.51Кб
004 Preprocessing Categorical Data.mp4 5.34Мб
004 Python Packages Installation_en.vtt 4.74Кб
004 Python Packages Installation.mp4 23.70Мб
004 Real Life Examples of Big Data_en.vtt 1.66Кб
004 Real Life Examples of Big Data.mp4 12.69Мб
004 Scalars-Vectors-and-Matrices.ipynb 4.55Кб
004 Simple Linear Regression with sklearn - A StatsModels-like Summary Table_en.vtt 6.08Кб
004 Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4 28.88Мб
004 sklearn-Linear-Regression-Practical-Example-Part-3.ipynb 343.58Кб
004 sklearn-Linear-Regression-Practical-Example-Part-3-.url 97б
004 sklearn-Linear-Regression-Practical-Example-Part-3-with-comments.ipynb 351.47Кб
004 sklearn-Simple-Linear-Regression.ipynb 26.07Кб
004 sklearn-Simple-Linear-Regression-with-comments.ipynb 28.35Кб
004 Solving Variations with Repetition_en.vtt 3.21Кб
004 Solving Variations with Repetition.mp4 13.75Мб
004 Standardizing the Data_en.vtt 3.67Кб
004 Standardizing the Data.mp4 15.14Мб
004 Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf 289.12Кб
004 TensorFlow-Audiobooks-Preprocessing.ipynb 5.58Кб
004 TensorFlow-Audiobooks-Preprocessing.ipynb 5.58Кб
004 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.19Кб
004 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.19Кб
004 TensorFlow Intro_en.vtt 4.61Кб
004 TensorFlow Intro.mp4 16.56Мб
004 Test for Significance of the Model (F-Test)_en.vtt 2.24Кб
004 Test for Significance of the Model (F-Test).mp4 5.90Мб
004 The Linear Model (Linear Algebraic Version)_en.vtt 3.47Кб
004 The Linear Model (Linear Algebraic Version).mp4 7.87Мб
004 The Standard Normal Distribution_en.vtt 3.65Кб
004 The Standard Normal Distribution.mp4 8.62Мб
004 Training, Validation, and Test Datasets_en.vtt 2.99Кб
004 Training, Validation, and Test Datasets.mp4 7.74Мб
004 Triple Nested For Loops_en.vtt 7.05Кб
004 Triple Nested For Loops.mp4 19.40Мб
004 Tuples_en.vtt 6.33Кб
004 Tuples.mp4 16.27Мб
004 Tuples-Exercise-Py3.ipynb 2.07Кб
004 Tuples-Lecture-Py3.ipynb 2.91Кб
004 Tuples-Solution-Py3.ipynb 4.61Кб
004 Type I Error and Type II Error_en.vtt 4.64Кб
004 Type I Error and Type II Error.mp4 18.17Мб
004 Union of Sets_en.vtt 5.34Кб
004 Union of Sets.mp4 19.47Мб
004 Use-Conditional-Statements-and-Loops-Together-Exercise-Py3.ipynb 2.10Кб
004 Use-Conditional-Statements-and-Loops-Together-Lecture-Py3.ipynb 1.95Кб
004 Use-Conditional-Statements-and-Loops-Together-Solution-Py3.ipynb 2.96Кб
005 1.01.Simple-linear-regression.csv 922б
005 1.04.Real-life-example.csv 219.83Кб
005 12.5.TensorFlow-MNIST-with-comments-Part-3.ipynb 7.31Кб
005 2.4.Numerical-variables.Frequency-distribution-table-lesson.xlsx 11.44Кб
005 3.4.Standard-normal-distribution-exercise.xlsx 11.99Кб
005 3.4.Standard-normal-distribution-exercise-solution.xlsx 24.04Кб
005 365-DataScience.png 6.92Мб
005 4.4.Test-for-the-mean.Population-variance-known-lesson.xlsx 10.96Кб
005 A Breakdown of our Data Science Infographic_en.vtt 4.53Кб
005 A Breakdown of our Data Science Infographic.mp4 33.95Мб
005 Activation Functions_en.vtt 4.64Кб
005 Activation Functions.mp4 8.53Мб
005 Actual Introduction to TensorFlow_en.vtt 2.00Кб
005 Actual Introduction to TensorFlow.mp4 6.17Мб
005 All-In-Exercise-Py3.ipynb 1.30Кб
005 All-In-Lecture-Py3.ipynb 1.62Кб
005 All-In-Solution-Py3.ipynb 1.90Кб
005 A Note on Normalization.html 729б
005 An Overview of RNNs_en.vtt 3.34Кб
005 An Overview of RNNs.mp4 6.75Мб
005 Audiobooks-data.csv 710.77Кб
005 Basic NN Example Exercises.html 1.65Кб
005 Binary and One-Hot Encoding_en.vtt 4.19Кб
005 Binary and One-Hot Encoding.mp4 8.36Мб
005 Building a Logistic Regression - Exercise.html 87б
005 Building-a-Logistic-Regression-Exercise.ipynb 2.92Кб
005 Building-a-Logistic-Regression-Solution.ipynb 4.44Кб
005 Business Case Preprocessing Exercise.html 379б
005 Business Case Preprocessing the Data - Exercise.html 370б
005 Business Intelligence (BI) Techniques_en.vtt 7.79Кб
005 Business Intelligence (BI) Techniques.mp4 51.34Мб
005 Categorical.csv 10.34Кб
005 Clustering Categorical Data - Exercise.html 87б
005 Clustering-Categorical-Data-Exercise.ipynb 3.78Кб
005 Clustering-Categorical-Data-Solution.ipynb 4.90Кб
005 Combining-Conditional-Statements-and-Functions-Exercise-Py3.ipynb 1.06Кб
005 Combining-Conditional-Statements-and-Functions-Lecture-Py3.ipynb 1.29Кб
005 Combining-Conditional-Statements-and-Functions-Solution-Py3.ipynb 1.65Кб
005 Conditional Statements, Functions, and Loops_en.vtt 2.05Кб
005 Conditional Statements, Functions, and Loops.mp4 4.27Мб
005 Conditional Statements and Functions_en.vtt 3.13Кб
005 Conditional Statements and Functions.mp4 6.04Мб
005 Dictionaries_en.vtt 7.82Кб
005 Dictionaries.mp4 24.91Мб
005 Dictionaries-Exercise-Py3.ipynb 2.92Кб
005 Dictionaries-Lecture-Py3.ipynb 4.35Кб
005 Dictionaries-Solution-Py3.ipynb 6.16Кб
005 Discrete Distributions The Bernoulli Distribution_en.vtt 3.78Кб
005 Discrete Distributions The Bernoulli Distribution.mp4 14.76Мб
005 Dummies and Variance Inflation Factor - Exercise.html 76б
005 Example-bank-data.csv 6.21Кб
005 EXERCISE - Transportation Expense vs Probability.html 529б
005 First Regression in Python_en.vtt 6.96Кб
005 First Regression in Python.mp4 29.63Мб
005 Learning Rate Schedules Visualized_en.vtt 1.89Кб
005 Learning Rate Schedules Visualized.mp4 3.07Мб
005 Line-Continuation-Exercise-Py3.ipynb 1.14Кб
005 Line-Continuation-Lecture-Py3.ipynb 779б
005 Line-Continuation-Solution-Py3.ipynb 1.50Кб
005 List Comprehensions_en.vtt 10.85Кб
005 List Comprehensions.mp4 43.23Мб
005 Minimal-example-All-Exercises.ipynb 12.89Кб
005 Minimal-example-Exercise-1-Solution.ipynb 69.00Кб
005 Minimal-example-Exercise-2-Solution.ipynb 61.41Кб
005 Minimal-example-Exercise-3.a.Solution.ipynb 67.89Кб
005 Minimal-example-Exercise-3.b.Solution.ipynb 67.72Кб
005 Minimal-example-Exercise-3.c.Solution.ipynb 70.13Кб
005 Minimal-example-Exercise-3.d.Solution.ipynb 84.13Кб
005 Minimal-example-Exercise-4-Solution.ipynb 66.52Кб
005 Minimal-example-Exercise-5-Solution.ipynb 68.88Кб
005 Minimal-example-Exercise-6.ipynb 61.76Кб
005 Minimal-example-Exercise-6-Solution.ipynb 61.76Кб
005 MNIST Loss and Optimization Algorithm_en.vtt 3.14Кб
005 MNIST Loss and Optimization Algorithm.mp4 11.55Мб
005 MNIST Preprocess the Data - Scale the Test Data - Exercise.html 79б
005 Mutually Exclusive Sets_en.vtt 2.34Кб
005 Mutually Exclusive Sets.mp4 8.57Мб
005 N-Fold Cross Validation_en.vtt 3.77Кб
005 N-Fold Cross Validation.mp4 6.03Мб
005 Numerical Variables - Frequency Distribution Table_en.vtt 3.88Кб
005 Numerical Variables - Frequency Distribution Table.mp4 12.80Мб
005 OLS Assumptions_en.vtt 2.63Кб
005 OLS Assumptions.mp4 5.12Мб
005 Shortcuts-for-Jupyter.pdf 619.17Кб
005 Simple-linear-regression.ipynb 3.79Кб
005 Simple-linear-regression-with-comments.ipynb 4.06Кб
005 sklearn-Dummies-and-VIF-Exercise.ipynb 344.62Кб
005 sklearn-Dummies-and-VIF-Exercise-Solution.ipynb 370.22Кб
005 Software Integration - Explained_en.vtt 6.03Кб
005 Software Integration - Explained.mp4 41.99Мб
005 Solving Variations without Repetition_en.vtt 4.16Кб
005 Solving Variations without Repetition.mp4 14.76Мб
005 Splitting the Data for Training and Testing_en.vtt 7.40Кб
005 Splitting the Data for Training and Testing.mp4 36.12Мб
005 Student's T Distribution_en.vtt 3.75Кб
005 Student's T Distribution.mp4 13.33Мб
005 TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb 8.60Кб
005 TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb 8.60Кб
005 TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb 10.04Кб
005 TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb 10.03Кб
005 TensorFlow-Minimal-example-Part1.ipynb 1.66Кб
005 TensorFlow-MNIST-Part2-with-comments.ipynb 6.39Кб
005 Tensors.ipynb 2.08Кб
005 Test for the Mean. Population Variance Known_en.vtt 7.34Кб
005 Test for the Mean. Population Variance Known.mp4 36.96Мб
005 The Linear Model with Multiple Inputs_en.vtt 2.85Кб
005 The Linear Model with Multiple Inputs.mp4 7.77Мб
005 The Standard Normal Distribution Exercise.html 81б
005 Types of File Formats Supporting TensorFlow_en.vtt 3.08Кб
005 Types of File Formats Supporting TensorFlow.mp4 7.25Мб
005 Understanding Jupyter's Interface - the Notebook Dashboard_en.vtt 3.25Кб
005 Understanding Jupyter's Interface - the Notebook Dashboard.mp4 6.06Мб
005 Understanding Line Continuation_en.vtt 1.01Кб
005 Understanding Line Continuation.mp4 1.20Мб
005 Using .unique() and .nunique()_en.vtt 4.91Кб
005 Using .unique() and .nunique().mp4 26.33Мб
005 What's Regression Analysis - a Quick Refresher.html 2.80Кб
005 What is a Tensor_en.vtt 3.24Кб
005 What is a Tensor.mp4 11.61Мб
006 1.04.Real-life-example.csv 219.83Кб
006 12.6.TensorFlow-MNIST-with-comments-Part-4.ipynb 7.90Кб
006 2.4.Numerical-variables.Frequency-distribution-table-exercise-solution.xlsx 13.15Кб
006 3.11.Population-variance-unknown-t-score-lesson.xlsx 10.78Кб
006 3.11.The-t-table.xlsx 15.85Кб
006 4.4.Test-for-the-mean.Population-variance-known-exercise.xlsx 11.03Кб
006 4.4.Test-for-the-mean.Population-variance-known-exercise-solution.xlsx 11.22Кб
006 5.3.TensorFlow-Minimal-example-Part-1.ipynb 3.36Кб
006 A1 Linearity_en.vtt 2.09Кб
006 A1 Linearity.mp4 3.45Мб
006 Activation Functions Softmax Activation_en.vtt 3.97Кб
006 Activation Functions Softmax Activation.mp4 8.42Мб
006 Adaptive Learning Rate Schedules (AdaGrad and RMSprop )_en.vtt 4.59Кб
006 Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp4 8.24Мб
006 Adding-and-subtracting-matrices.ipynb 3.22Кб
006 Additional-Python-Tools-Exercises.ipynb 11.37Кб
006 Additional-Python-Tools-Lectures.ipynb 13.47Кб
006 Additional-Python-Tools-Solutions.ipynb 25.49Кб
006 Addition and Subtraction of Matrices_en.vtt 3.49Кб
006 Addition and Subtraction of Matrices.mp4 22.08Мб
006 Analyzing Transportation Expense vs Probability in Tableau_en.vtt 6.45Кб
006 Analyzing Transportation Expense vs Probability in Tableau.mp4 16.48Мб
006 An Invaluable Coding Tip_en.vtt 2.74Кб
006 An Invaluable Coding Tip.mp4 16.77Мб
006 Anonymous (Lambda) Functions_en.vtt 8.75Кб
006 Anonymous (Lambda) Functions.mp4 33.71Мб
006 An Overview of non-NN Approaches_en.vtt 4.68Кб
006 An Overview of non-NN Approaches.mp4 15.65Мб
006 Business Case Load the Preprocessed Data_en.vtt 4.20Кб
006 Business Case Load the Preprocessed Data.mp4 13.80Мб
006 Calculating the Accuracy of the Model_en.vtt 4.64Кб
006 Calculating the Accuracy of the Model.mp4 16.64Мб
006 Central Limit Theorem_en.vtt 5.01Кб
006 Central Limit Theorem.mp4 22.86Мб
006 Combinations-With-Repetition.pdf 207.41Кб
006 Confidence Intervals; Population Variance Unknown; T-score_en.vtt 5.00Кб
006 Confidence Intervals; Population Variance Unknown; T-score.mp4 11.58Мб
006 Creating a Data Provider_en.vtt 6.84Кб
006 Creating a Data Provider.mp4 56.23Мб
006 Creating-Functions-Containing-a-Few-Arguments-Lecture-Py3.ipynb 1.72Кб
006 Dependence and Independence of Sets_en.vtt 3.05Кб
006 Dependence and Independence of Sets.mp4 11.98Мб
006 Discrete Distributions The Binomial Distribution_en.vtt 7.67Кб
006 Discrete Distributions The Binomial Distribution.mp4 24.94Мб
006 Early Stopping or When to Stop Training_en.vtt 5.98Кб
006 Early Stopping or When to Stop Training.mp4 8.50Мб
006 First Regression in Python Exercise.html 1.31Кб
006 Fitting the Model and Assessing its Accuracy_en.vtt 6.35Кб
006 Fitting the Model and Assessing its Accuracy.mp4 35.29Мб
006 Functions Containing a Few Arguments_en.vtt 1.16Кб
006 Functions Containing a Few Arguments.mp4 2.83Мб
006 How to Choose the Number of Clusters_en.vtt 6.49Кб
006 How to Choose the Number of Clusters.mp4 19.79Мб
006 How to Iterate over Dictionaries_en.vtt 6.64Кб
006 How to Iterate over Dictionaries.mp4 16.46Мб
006 Indexing Elements_en.vtt 1.43Кб
006 Indexing Elements.mp4 2.36Мб
006 Indexing-Elements-Exercise-Py3.ipynb 1.35Кб
006 Indexing-Elements-Lecture-Py3.ipynb 1.32Кб
006 Indexing-Elements-Solution-Py3.ipynb 2.17Кб
006 Iterating-over-Dictionaries-Exercise-Py3.ipynb 2.19Кб
006 Iterating-over-Dictionaries-Lecture-Py3.ipynb 1.08Кб
006 Iterating-over-Dictionaries-Solution-Py3.ipynb 2.87Кб
006 MNIST Preprocess the Data - Shuffle and Batch_en.vtt 8.32Кб
006 MNIST Preprocess the Data - Shuffle and Batch.mp4 32.71Мб
006 Numerical Variables Exercise.html 81б
006 Outlining the Model with TensorFlow 2_en.vtt 6.99Кб
006 Outlining the Model with TensorFlow 2.mp4 26.99Мб
006 Practical Example Linear Regression (Part 4)_en.vtt 10.22Кб
006 Practical Example Linear Regression (Part 4).mp4 29.84Мб
006 Prerequisites for Coding in the Jupyter Notebooks_en.vtt 6.73Кб
006 Prerequisites for Coding in the Jupyter Notebooks.mp4 15.38Мб
006 real-estate-price-size.csv 1.86Кб
006 real-estate-price-size.csv 1.86Кб
006 Real Life Examples of Business Intelligence (BI)_en.vtt 1.90Кб
006 Real Life Examples of Business Intelligence (BI).mp4 19.35Мб
006 Selecting-the-number-of-clusters.ipynb 4.53Кб
006 Selecting-the-number-of-clusters-with-comments.ipynb 7.48Кб
006 Simple-Linear-Regression-Exercise.ipynb 2.78Кб
006 Simple-Linear-Regression-Exercise-Solution.ipynb 3.57Кб
006 Simple Linear Regression with sklearn - Exercise.html 76б
006 Simple-Linear-Regression-with-sklearn-Exercise.ipynb 4.08Кб
006 Simple-Linear-Regression-with-sklearn-Exercise-Solution.ipynb 26.61Кб
006 sklearn-Linear-Regression-Practical-Example-Part-4.ipynb 397.23Кб
006 sklearn-Linear-Regression-Practical-Example-Part-4-with-comments.ipynb 407.59Кб
006 Solving Combinations_en.vtt 5.05Кб
006 Solving Combinations.mp4 18.99Мб
006 TensorFlow-Minimal-example-Part2.ipynb 9.06Кб
006 Test for the Mean. Population Variance Known Exercise.html 81б
006 The Linear model with Multiple Inputs and Multiple Outputs_en.vtt 4.81Кб
006 The Linear model with Multiple Inputs and Multiple Outputs.mp4 16.23Мб
006 Types of File Formats, supporting Tensors_en.vtt 2.90Кб
006 Types of File Formats, supporting Tensors.mp4 8.90Мб
006 Using .sort_values()_en.vtt 4.87Кб
006 Using .sort_values().mp4 13.20Мб
006 Using a Statistical Approach towards the Solution to the Exercise_en.vtt 2.55Кб
006 Using a Statistical Approach towards the Solution to the Exercise.mp4 9.90Мб
007 1.02.Multiple-linear-regression.csv 1.07Кб
007 12.7.TensorFlow-MNIST-with-comments-Part-5.ipynb 8.53Кб
007 2.5.The-Histogram-lesson.xlsx 18.63Кб
007 3.11.Population-variance-unknown-t-score-exercise.xlsx 10.62Кб
007 3.11.Population-variance-unknown-t-score-exercise-solution.xlsx 11.10Кб
007 3.11.The-t-table.xlsx 15.85Кб
007 5.4.TensorFlow-Minimal-example-Part-2.ipynb 6.17Кб
007 A2 No Endogeneity_en.vtt 4.62Кб
007 A2 No Endogeneity.mp4 8.99Мб
007 Adam (Adaptive Moment Estimation)_en.vtt 2.98Кб
007 Adam (Adaptive Moment Estimation).mp4 6.88Мб
007 Backpropagation_en.vtt 3.94Кб
007 Backpropagation.mp4 19.49Мб
007 Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases_en.vtt 6.63Кб
007 Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp4 28.00Мб
007 Built-in Functions in Python_en.vtt 3.74Кб
007 Built-in Functions in Python.mp4 8.50Мб
007 Business Case Load the Preprocessed Data - Exercise.html 79б
007 Business Case Model Outline_en.vtt 6.19Кб
007 Business Case Model Outline.mp4 42.48Мб
007 Confidence Intervals; Population Variance Unknown; T-score; Exercise.html 81б
007 Countries-exercise.csv 8.27Кб
007 Creating a Summary Table with the Coefficients and Intercept_en.vtt 5.81Кб
007 Creating a Summary Table with the Coefficients and Intercept.mp4 26.98Мб
007 Discrete Distributions The Poisson Distribution_en.vtt 5.85Кб
007 Discrete Distributions The Poisson Distribution.mp4 14.62Мб
007 Dropping a Column from a DataFrame in Python_en.vtt 6.79Кб
007 Dropping a Column from a DataFrame in Python.mp4 41.30Мб
007 Dummy Variables - Exercise.html 705б
007 Errors when Adding Matrices_en.vtt 2.30Кб
007 Errors when Adding Matrices.mp4 6.46Мб
007 Errors-when-adding-scalars-vectors-and-matrices-in-Python.ipynb 3.17Кб
007 Graphical Representation of Simple Neural Networks_en.vtt 2.44Кб
007 Graphical Representation of Simple Neural Networks.mp4 6.35Мб
007 How to Choose the Number of Clusters - Exercise.html 87б
007 How-to-Choose-the-Number-of-Clusters-Exercise.ipynb 5.55Кб
007 How-to-Choose-the-Number-of-Clusters-Solution.ipynb 8.49Кб
007 Interpreting the Result and Extracting the Weights and Bias_en.vtt 5.48Кб
007 Interpreting the Result and Extracting the Weights and Bias.mp4 13.67Мб
007 Introduction to pandas DataFrames - Part I_en.vtt 6.22Кб
007 Introduction to pandas DataFrames - Part I.mp4 10.60Мб
007 MNIST Batching and Early Stopping_en.vtt 2.50Кб
007 MNIST Batching and Early Stopping.mp4 8.70Мб
007 MNIST Preprocess the Data - Shuffle and Batch - Exercise.html 79б
007 Multiple Linear Regression with sklearn_en.vtt 3.80Кб
007 Multiple Linear Regression with sklearn.mp4 9.81Мб
007 Notable-Built-In-Functions-in-Python-Exercise-Py3.ipynb 3.66Кб
007 Notable-Built-In-Functions-in-Python-Lecture-Py3.ipynb 4.51Кб
007 Notable-Built-In-Functions-in-Python-Solution-Py3.ipynb 5.52Кб
007 Online-p-value-calculator.pdf 1.15Мб
007 Poisson-Expected-Value-and-Variance.pdf 145.99Кб
007 p-value_en.vtt 4.75Кб
007 p-value.mp4 33.08Мб
007 sklearn-Multiple-Linear-Regression.ipynb 7.79Кб
007 sklearn-Multiple-Linear-Regression-with-comments.ipynb 8.65Кб
007 Standard error_en.vtt 1.69Кб
007 Standard error.mp4 13.33Мб
007 Structure-Your-Code-with-Indentation-Exercise-Py3.ipynb 956б
007 Structure-Your-Code-with-Indentation-Lecture-Py3.ipynb 958б
007 Structure-Your-Code-with-Indentation-Solution-Py3.ipynb 1.50Кб
007 Structuring with Indentation_en.vtt 1.92Кб
007 Structuring with Indentation.mp4 2.80Мб
007 Symmetry-Explained.pdf 85.04Кб
007 Symmetry of Combinations_en.vtt 3.74Кб
007 Symmetry of Combinations.mp4 13.50Мб
007 Techniques for Working with Traditional Methods_en.vtt 9.84Кб
007 Techniques for Working with Traditional Methods.mp4 74.75Мб
007 TensorFlow-Audiobooks-Machine-Learning-Part1-with-comments.ipynb 4.61Кб
007 TensorFlow-Audiobooks-Outlining-the-model.ipynb 9.36Кб
007 TensorFlow-Audiobooks-Outlining-the-model-with-comments.ipynb 10.34Кб
007 TensorFlow-Minimal-example-Part3.ipynb 76.52Кб
007 TensorFlow-MNIST-Part3-with-comments.ipynb 8.61Кб
007 The Conditional Probability Formula_en.vtt 4.66Кб
007 The Conditional Probability Formula.mp4 16.33Мб
007 The Histogram_en.vtt 2.77Кб
007 The Histogram.mp4 9.59Мб
007 Understanding Logistic Regression Tables_en.vtt 4.82Кб
007 Understanding Logistic Regression Tables.mp4 12.89Мб
007 Using Seaborn for Graphs_en.vtt 1.35Кб
007 Using Seaborn for Graphs.mp4 7.37Мб
008 1.02.Multiple-linear-regression.csv 1.07Кб
008 1.04.Real-life-example.csv 219.83Кб
008 12.8.TensorFlow-MNIST-with-comments-Part-6.ipynb 11.50Кб
008 2.5.The-Histogram-exercise.xlsx 15.50Кб
008 2.5.The-Histogram-exercise-solution.xlsx 17.10Кб
008 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx 14.54Кб
008 5.5.TensorFlow-Minimal-example-Part-3.ipynb 8.65Кб
008 A3 Normality and Homoscedasticity_en.vtt 5.75Кб
008 A3 Normality and Homoscedasticity.mp4 27.39Мб
008 Backpropagation Picture_en.vtt 3.67Кб
008 Backpropagation Picture.mp4 7.68Мб
008 Bank-data.csv 19.55Кб
008 Basic NN Example with TF Loss Function and Gradient Descent_en.vtt 4.17Кб
008 Basic NN Example with TF Loss Function and Gradient Descent.mp4 15.72Мб
008 Business Case Learning and Interpreting the Result_en.vtt 5.45Кб
008 Business Case Learning and Interpreting the Result.mp4 27.77Мб
008 Business Case Optimization_en.vtt 5.69Кб
008 Business Case Optimization.mp4 26.95Мб
008 Calculating the Adjusted R-Squared in sklearn_en.vtt 5.78Кб
008 Calculating the Adjusted R-Squared in sklearn.mp4 16.92Мб
008 Characteristics of Continuous Distributions_en.vtt 7.81Кб
008 Characteristics of Continuous Distributions.mp4 28.87Мб
008 Customizing a TensorFlow 2 Model_en.vtt 3.65Кб
008 Customizing a TensorFlow 2 Model.mp4 16.78Мб
008 Estimators and Estimates_en.vtt 3.40Кб
008 Estimators and Estimates.mp4 16.13Мб
008 EXERCISE - Dropping a Column from a DataFrame in Python.html 864б
008 Histogram Exercise.html 81б
008 How to Interpret the Regression Table_en.vtt 5.75Кб
008 How to Interpret the Regression Table.mp4 28.72Мб
008 Interpreting the Coefficients for Our Problem_en.vtt 7.06Кб
008 Interpreting the Coefficients for Our Problem.mp4 34.40Мб
008 Introduction to pandas DataFrames - Part II_en.vtt 6.70Кб
008 Introduction to pandas DataFrames - Part II.mp4 17.83Мб
008 Margin of Error_en.vtt 5.51Кб
008 Margin of Error.mp4 22.66Мб
008 MNIST Learning_en.vtt 8.74Кб
008 MNIST Learning.mp4 31.87Мб
008 MNIST Outline the Model_en.vtt 6.32Кб
008 MNIST Outline the Model.mp4 22.09Мб
008 Practical Example Linear Regression (Part 5)_en.vtt 9.20Кб
008 Practical Example Linear Regression (Part 5).mp4 50.42Мб
008 Pros and Cons of K-Means Clustering_en.vtt 4.07Кб
008 Pros and Cons of K-Means Clustering.mp4 10.93Мб
008 Real Life Examples of Traditional Methods_en.vtt 3.12Кб
008 Real Life Examples of Traditional Methods.mp4 21.17Мб
008 sklearn-Linear-Regression-Practical-Example-Part-5.ipynb 698.36Кб
008 sklearn-Linear-Regression-Practical-Example-Part-5-with-comments.ipynb 711.05Кб
008 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared.ipynb 9.11Кб
008 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-with-comments.ipynb 10.41Кб
008 Solving Combinations with Separate Sample Spaces_en.vtt 3.37Кб
008 Solving Combinations with Separate Sample Spaces.mp4 12.87Мб
008 Solving-Integrals.pdf 343.85Кб
008 Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf 289.12Кб
008 TensorFlow-Audiobooks-Machine-Learning-Part2-with-comments.ipynb 19.69Кб
008 TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb 10.64Кб
008 TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb 12.73Кб
008 TensorFlow-Minimal-example-complete.ipynb 76.85Кб
008 TensorFlow-Minimal-example-complete-with-comments.ipynb 82.29Кб
008 TensorFlow-MNIST-Part4-with-comments.ipynb 10.49Кб
008 Test for the Mean. Population Variance Unknown_en.vtt 5.44Кб
008 Test for the Mean. Population Variance Unknown.mp4 19.72Мб
008 The Law of Total Probability_en.vtt 3.01Кб
008 The Law of Total Probability.mp4 11.39Мб
008 Tranpose-of-a-matrix.ipynb 2.89Кб
008 Transpose of a Matrix_en.vtt 4.98Кб
008 Transpose of a Matrix.mp4 20.49Мб
008 Understanding Logistic Regression Tables - Exercise.html 87б
008 Understanding-Logistic-Regression-Tables-Exercise.ipynb 3.16Кб
008 Understanding-Logistic-Regression-Tables-Solution.ipynb 4.79Кб
008 What is the Objective Function_en.vtt 1.88Кб
008 What is the Objective Function.mp4 6.03Мб
009 1.02.Multiple-linear-regression.csv 1.07Кб
009 12.9.TensorFlow-MNIST-with-comments.ipynb 13.03Кб
009 2.6.Cross-table-and-scatter-plot.xlsx 26.12Кб
009 3.13.Confidence-intervals.Two-means.Dependent-samples-lesson.xlsx 10.47Кб
009 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx 11.34Кб
009 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx 12.63Кб
009 5.6.TensorFlow-Minimal-example-complete.ipynb 12.15Кб
009 A4 No Autocorrelation_en.vtt 4.23Кб
009 A4 No Autocorrelation.mp4 7.67Мб
009 Backpropagation - A Peek into the Mathematics of Optimization.html 539б
009 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf 182.38Кб
009 Basic NN Example with TF Model Output_en.vtt 6.71Кб
009 Basic NN Example with TF Model Output.mp4 17.09Мб
009 Basic NN with TensorFlow Exercises.html 1.28Кб
009 Business Case Interpretation_en.vtt 2.58Кб
009 Business Case Interpretation.mp4 18.59Мб
009 Business Case Setting an Early Stopping Mechanism_en.vtt 6.98Кб
009 Business Case Setting an Early Stopping Mechanism.mp4 43.81Мб
009 Calculating the Adjusted R-Squared in sklearn - Exercise.html 76б
009 Combinatorics in Real-Life The Lottery_en.vtt 3.66Кб
009 Combinatorics in Real-Life The Lottery.mp4 16.16Мб
009 Common Objective Functions L2-norm Loss_en.vtt 2.44Кб
009 Common Objective Functions L2-norm Loss.mp4 5.41Мб
009 Confidence intervals. Two means. Dependent samples_en.vtt 7.23Кб
009 Confidence intervals. Two means. Dependent samples.mp4 45.04Мб
009 Continuous Distributions The Normal Distribution_en.vtt 4.34Кб
009 Continuous Distributions The Normal Distribution.mp4 19.67Мб
009 Cross Tables and Scatter Plots_en.vtt 5.91Кб
009 Cross Tables and Scatter Plots.mp4 19.69Мб
009 Decomposition of Variability_en.vtt 3.69Кб
009 Decomposition of Variability.mp4 8.62Мб
009 Dot Product_en.vtt 3.75Кб
009 Dot-product.ipynb 2.13Кб
009 Dot Product.mp4 11.36Мб
009 Linear Regression - Exercise.html 497б
009 Logistic-Regression-prior-to-Custom-Scaler.url 182б
009 Machine Learning (ML) Techniques_en.vtt 7.83Кб
009 Machine Learning (ML) Techniques.mp4 47.78Мб
009 MNIST Results and Testing_en.vtt 7.26Кб
009 MNIST Results and Testing.mp4 38.19Мб
009 MNIST Select the Loss and the Optimizer_en.vtt 2.75Кб
009 MNIST Select the Loss and the Optimizer.mp4 10.65Мб
009 Normal-Distribution-Exp-and-Var.pdf 144.08Кб
009 pandas DataFrames - Common Attributes_en.vtt 5.52Кб
009 pandas DataFrames - Common Attributes.mp4 29.80Мб
009 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise.ipynb 9.83Кб
009 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise-Solution.ipynb 10.31Кб
009 SOLUTION - Dropping a Column from a DataFrame in Python.html 114б
009 Standardizing only the Numerical Variables (Creating a Custom Scaler)_en.vtt 4.40Кб
009 Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4 28.02Мб
009 TensorFlow-Audiobooks-Machine-Learning-Part3-with-comments.ipynb 10.06Кб
009 TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb 10.64Кб
009 TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb 12.73Кб
009 TensorFlow-Minimal-example-All-exercises.ipynb 83.62Кб
009 TensorFlow-Minimal-example-Exercise-1-Solution.ipynb 27.96Кб
009 TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb 83.68Кб
009 TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb 77.52Кб
009 TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb 84.44Кб
009 TensorFlow-MNIST-Part5-with-comments.ipynb 10.99Кб
009 Test for the Mean. Population Variance Unknown Exercise.html 81б
009 The Additive Rule_en.vtt 2.48Кб
009 The Additive Rule.mp4 10.89Мб
009 To Standardize or not to Standardize_en.vtt 5.32Кб
009 To Standardize or not to Standardize.mp4 10.50Мб
009 What do the Odds Actually Mean_en.vtt 4.42Кб
009 What do the Odds Actually Mean.mp4 11.38Мб
010 1.02.Multiple-linear-regression.csv 1.07Кб
010 2.02.Binary-predictors.csv 2.56Кб
010 2.6.Cross-table-and-scatter-plot-exercise.xlsx 16.28Кб
010 2.6.Cross-table-and-scatter-plot-exercise-solution.xlsx 40.44Кб
010 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise.xlsx 13.74Кб
010 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise-solution.xlsx 14.24Кб
010 4.7.Test-for-the-mean.Dependent-samples-lesson.xlsx 9.79Кб
010 A5 No Multicollinearity_en.vtt 4.10Кб
010 A5 No Multicollinearity.mp4 7.36Мб
010 Analyzing the Reasons for Absence_en.vtt 5.39Кб
010 Analyzing the Reasons for Absence.mp4 27.63Мб
010 A Recap of Combinatorics_en.vtt 3.27Кб
010 A Recap of Combinatorics.mp4 12.00Мб
010 Basic NN Example with TF Exercises.html 1.58Кб
010 Binary-predictors.ipynb 2.41Кб
010 Binary Predictors in a Logistic Regression_en.vtt 4.98Кб
010 Binary Predictors in a Logistic Regression.mp4 18.47Мб
010 Business Case Testing the Model_en.vtt 2.36Кб
010 Business Case Testing the Model.mp4 4.39Мб
010 Common Objective Functions Cross-Entropy Loss_en.vtt 4.89Кб
010 Common Objective Functions Cross-Entropy Loss.mp4 9.68Мб
010 Confidence intervals. Two means. Dependent samples Exercise.html 81б
010 Continuous Distributions The Standard Normal Distribution_en.vtt 4.81Кб
010 Continuous Distributions The Standard Normal Distribution.mp4 20.72Мб
010 Cross Tables and Scatter Plots Exercise.html 81б
010 Data Selection in pandas DataFrames_en.vtt 8.81Кб
010 Data Selection in pandas DataFrames.mp4 37.28Мб
010 Dot Product of Matrices_en.vtt 8.34Кб
010 Dot Product of Matrices.mp4 26.42Мб
010 Dot-product-Part-2.ipynb 3.60Кб
010 Feature Selection (F-regression)_en.vtt 5.89Кб
010 Feature Selection (F-regression).mp4 15.68Мб
010 Interpreting the Coefficients of the Logistic Regression_en.vtt 6.40Кб
010 Interpreting the Coefficients of the Logistic Regression.mp4 15.22Мб
010 MNIST Exercises.html 2.16Кб
010 MNIST Learning_en.vtt 6.85Кб
010 MNIST Learning.mp4 31.03Мб
010 Relationship between Clustering and Regression_en.vtt 1.97Кб
010 Relationship between Clustering and Regression.mp4 3.39Мб
010 Setting an Early Stopping Mechanism - Exercise.html 192б
010 sklearn-Feature-Selection-with-F-regression.ipynb 10.44Кб
010 sklearn-Feature-Selection-with-F-regression-with-comments.ipynb 12.99Кб
010 TensorFlow-Minimal-Example-All-Exercises.ipynb 13.97Кб
010 TensorFlow-Minimal-Example-Exercise-1-Solution.ipynb 23.63Кб
010 TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb 25.54Кб
010 TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb 25.51Кб
010 TensorFlow-Minimal-Example-Exercise-2-3-Solution.ipynb 49.96Кб
010 TensorFlow-Minimal-Example-Exercise-2-4-Solution.ipynb 21.75Кб
010 TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb 26.71Кб
010 TensorFlow-Minimal-Example-Exercise-4-Solution.ipynb 26.98Кб
010 TensorFlow-MNIST-Exercises-All.ipynb 15.47Кб
010 TensorFlow-MNIST-Part6-with-comments.ipynb 12.54Кб
010 Test for the Mean. Dependent Samples_en.vtt 5.96Кб
010 Test for the Mean. Dependent Samples.mp4 32.80Мб
010 The Multiplication Law_en.vtt 4.13Кб
010 The Multiplication Law.mp4 19.80Мб
010 Types of Machine Learning_en.vtt 9.23Кб
010 Types of Machine Learning.mp4 61.78Мб
010 What is the OLS_en.vtt 3.32Кб
010 What is the OLS.mp4 22.44Мб
011 0.TensorFlow-MNIST-take-note-of-time-Solution.ipynb 14.00Кб
011 1.02.Multiple-linear-regression.csv 1.07Кб
011 1.03.Dummies.csv 1.19Кб
011 1.TensorFlow-MNIST-Width-Solution.ipynb 14.84Кб
011 1.TensorFlow-MNIST-Width-Solution.ipynb 14.01Кб
011 2.7.Mean-median-and-mode-lesson.xlsx 10.49Кб
011 2.TensorFlow-MNIST-Depth-Solution.ipynb 15.31Кб
011 2.TensorFlow-MNIST-Depth-Solution.ipynb 14.87Кб
011 3.12.Example.csv 283б
011 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-lesson.xlsx 9.83Кб
011 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb 15.30Кб
011 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb 16.81Кб
011 4.7.Test-for-the-mean.Dependent-samples-exercise.xlsx 12.80Кб
011 4.7.Test-for-the-mean.Dependent-samples-exercise-solution.xlsx 14.40Кб
011 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb 15.11Кб
011 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb 14.35Кб
011 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb 14.74Кб
011 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb 13.93Кб
011 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb 15.12Кб
011 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb 14.26Кб
011 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb 15.18Кб
011 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb 14.16Кб
011 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb 20.58Кб
011 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb 14.07Кб
011 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb 15.80Кб
011 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb 15.21Кб
011 Additional-Exercises-Combinatorics.pdf 106.58Кб
011 Additional-Exercises-Combinatorics-Solutions.pdf 245.67Кб
011 A Note on Calculation of P-values with sklearn.html 370б
011 A Practical Example of Combinatorics_en.vtt 12.46Кб
011 A Practical Example of Combinatorics.mp4 42.24Мб
011 Audiobooks-data.csv 710.77Кб
011 Backward Elimination or How to Simplify Your Model_en.vtt 4.58Кб
011 Backward Elimination or How to Simplify Your Model.mp4 31.96Мб
011 Bank-data.csv 19.55Кб
011 Bayes' Law_en.vtt 6.66Кб
011 Bayes' Law.mp4 20.94Мб
011 Binary Predictors in a Logistic Regression - Exercise.html 87б
011 Binary-Predictors-in-a-Logistic-Regression-Exercise.ipynb 2.54Кб
011 Binary-Predictors-in-a-Logistic-Regression-Solution.ipynb 4.51Кб
011 Business Case A Comment on the Homework_en.vtt 4.64Кб
011 Business Case A Comment on the Homework.mp4 19.64Мб
011 Business Case Testing the Model_en.vtt 1.91Кб
011 Business Case Testing the Model.mp4 8.19Мб
011 Confidence intervals. Two means. Independent Samples (Part 1)_en.vtt 5.38Кб
011 Confidence intervals. Two means. Independent Samples (Part 1).mp4 12.00Мб
011 Continuous Distributions The Students' T Distribution_en.vtt 2.66Кб
011 Continuous Distributions The Students' T Distribution.mp4 9.10Мб
011 Dealing with Categorical Data - Dummy Variables_en.vtt 7.20Кб
011 Dealing with Categorical Data - Dummy Variables.mp4 35.09Мб
011 Dummy-Variables.ipynb 4.62Кб
011 Dummy-variables-with-comments.ipynb 7.09Кб
011 GD-function-example.xlsx 42.33Кб
011 Logistic-Regression-prior-to-Backward-Elimination.url 189б
011 Market-segmentation-example.ipynb 3.80Кб
011 Market-segmentation-example-with-comments.ipynb 5.90Кб
011 Market Segmentation with Cluster Analysis (Part 1)_en.vtt 6.41Кб
011 Market Segmentation with Cluster Analysis (Part 1).mp4 21.15Мб
011 Mean, median and mode_en.vtt 5.21Кб
011 Mean, median and mode.mp4 17.53Мб
011 MNIST - Exercises.html 1.98Кб
011 MNIST Solutions.html 2.22Кб
011 Obtaining Dummies from a Single Feature_en.vtt 9.05Кб
011 Obtaining Dummies from a Single Feature.mp4 63.77Мб
011 Optimization Algorithm 1-Parameter Gradient Descent_en.vtt 7.70Кб
011 Optimization Algorithm 1-Parameter Gradient Descent.mp4 22.70Мб
011 pandas DataFrames - Indexing with .iloc[]_en.vtt 7.09Кб
011 pandas DataFrames - Indexing with .iloc[].mp4 23.54Мб
011 Real Life Examples of Machine Learning (ML)_en.vtt 2.60Кб
011 Real Life Examples of Machine Learning (ML).mp4 22.44Мб
011 R-Squared_en.vtt 5.93Кб
011 R-Squared.mp4 10.79Мб
011 sklearn-How-to-properly-include-p-values.ipynb 12.71Кб
011 TensorFlow-Audiobooks-Machine-learning-Homework.ipynb 14.40Кб
011 TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb 11.95Кб
011 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.19Кб
011 TensorFlow-MNIST-All-Exercises.ipynb 16.65Кб
011 TensorFlow-MNIST-around-98-percent-accuracy.ipynb 15.02Кб
011 TensorFlow-MNIST-around-98-percent-accuracy.ipynb 17.66Кб
011 Test for the Mean. Dependent Samples Exercise.html 81б
011 Why is Linear Algebra Useful_en.vtt 10.91Кб
011 Why is Linear Algebra Useful.mp4 86.18Мб
012 1.02.Multiple-linear-regression.csv 1.07Кб
012 2.7.Mean-median-and-mode-exercise.xlsx 10.87Кб
012 2.7.Mean-median-and-mode-exercise-solution.xlsx 11.35Кб
012 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise.xlsx 9.83Кб
012 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise-solution.xlsx 10.12Кб
012 4.8.Test-for-the-mean.Independent-samples-Part-1-lesson.xlsx 9.63Кб
012 Accuracy.ipynb 3.63Кб
012 Accuracy-with-comments.ipynb 11.67Кб
012 A Practical Example of Bayesian Inference_en.vtt 17.39Кб
012 A Practical Example of Bayesian Inference.mp4 125.49Мб
012 Audiobooks-data.csv 710.77Кб
012 Bayesian-Homework.pdf 27.26Кб
012 Bayesian-Homework-Solutions.pdf 30.35Кб
012 Business Case Final Exercise.html 433б
012 Business Case Final Exercise.html 441б
012 Calculating the Accuracy of the Model_en.vtt 3.86Кб
012 Calculating the Accuracy of the Model.mp4 20.28Мб
012 CDS-2017-2018-Hamilton.pdf 845.31Кб
012 Confidence intervals. Two means. Independent Samples (Part 1). Exercise.html 81б
012 Continuous Distributions The Chi-Squared Distribution_en.vtt 2.56Кб
012 Continuous Distributions The Chi-Squared Distribution.mp4 10.95Мб
012 Creating a Summary Table with P-values_en.vtt 2.65Кб
012 Creating a Summary Table with P-values.mp4 6.45Мб
012 Dealing with Categorical Data - Dummy Variables.html 76б
012 EXERCISE - Obtaining Dummies from a Single Feature.html 123б
012 Lending-company.csv 112.43Кб
012 Location.csv 13.49Кб
012 Market-segmentation-example-Part2.ipynb 4.68Кб
012 Market-segmentation-example-Part2-with-comments.ipynb 6.81Кб
012 Market Segmentation with Cluster Analysis (Part 2)_en.vtt 8.05Кб
012 Market Segmentation with Cluster Analysis (Part 2).mp4 34.08Мб
012 Mean, Median and Mode Exercise.html 81б
012 MNIST Testing the Model_en.vtt 5.30Кб
012 MNIST Testing the Model.mp4 22.64Мб
012 Multiple-Linear-Regression-with-Dummies-Exercise.ipynb 3.01Кб
012 Multiple-Linear-Regression-with-Dummies-Exercise-Solution.ipynb 18.00Кб
012 Optimization Algorithm n-Parameter Gradient Descent_en.vtt 6.78Кб
012 Optimization Algorithm n-Parameter Gradient Descent.mp4 16.35Мб
012 pandas DataFrames - Indexing with .loc[]_en.vtt 4.81Кб
012 pandas DataFrames - Indexing with .loc[].mp4 20.72Мб
012 pandas-Fundamentals-Exercises.ipynb 30.83Кб
012 pandas-Fundamentals-Lectures.ipynb 21.31Кб
012 pandas-Fundamentals-Solutions.ipynb 118.33Кб
012 real-estate-price-size-year-view.csv 3.39Кб
012 Region.csv 10.22Кб
012 Sales-products.csv 152.28Кб
012 sklearn-Multiple-Linear-Regression-Summary-Table.ipynb 13.71Кб
012 sklearn-Multiple-Linear-Regression-Summary-Table-with-comments.ipynb 16.63Кб
012 TensorFlow-Audiobooks-Machine-learning-Homework.ipynb 14.40Кб
012 TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb 11.95Кб
012 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.19Кб
012 TensorFlow-MNIST-complete.ipynb 6.78Кб
012 TensorFlow-MNIST-complete-with-comments.ipynb 14.51Кб
012 Test for the mean. Independent Samples (Part 1)_en.vtt 4.87Кб
012 Test for the mean. Independent Samples (Part 1).mp4 15.43Мб
012 Testing the Model We Created_en.vtt 5.72Кб
012 Testing the Model We Created.mp4 31.63Мб
013 2.8.Skewness-lesson.xlsx 34.63Кб
013 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-lesson.xlsx 9.52Кб
013 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx 10.77Кб
013 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise-solution.xlsx 11.25Кб
013 Bank-data.csv 19.55Кб
013 Calculating the Accuracy of the Model.html 87б
013 Calculating-the-Accuracy-of-the-Model-Exercise.ipynb 5.39Кб
013 Calculating-the-Accuracy-of-the-Model-Solution.ipynb 81.21Кб
013 Confidence intervals. Two means. Independent Samples (Part 2)_en.vtt 4.23Кб
013 Confidence intervals. Two means. Independent Samples (Part 2).mp4 13.05Мб
013 Continuous Distributions The Exponential Distribution_en.vtt 3.71Кб
013 Continuous Distributions The Exponential Distribution.mp4 15.76Мб
013 How is Clustering Useful_en.vtt 5.75Кб
013 How is Clustering Useful.mp4 36.49Мб
013 Making-predictions.ipynb 5.77Кб
013 Making-predictions-with-comments.ipynb 9.41Кб
013 Making Predictions with the Linear Regression_en.vtt 3.98Кб
013 Making Predictions with the Linear Regression.mp4 16.36Мб
013 Multiple Linear Regression - Exercise.html 76б
013 real-estate-price-size-year.csv 2.35Кб
013 Saving the Model and Preparing it for Deployment_en.vtt 4.96Кб
013 Saving the Model and Preparing it for Deployment.mp4 25.52Мб
013 Skewness_en.vtt 3.21Кб
013 Skewness.mp4 9.92Мб
013 sklearn-Multiple-Linear-Regression-Exercise.ipynb 5.67Кб
013 sklearn-Multiple-Linear-Regression-Exercise-Solution.ipynb 15.44Кб
013 SOLUTION - Obtaining Dummies from a Single Feature.html 117б
013 Test for the mean. Independent Samples (Part 1). Exercise.html 81б
014 1.02.Multiple-linear-regression.csv 1.07Кб
014 2.8.Skewness-exercise.xlsx 9.49Кб
014 2.8.Skewness-exercise-solution.xlsx 19.78Кб
014 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise.xlsx 9.17Кб
014 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise-solution.xlsx 9.79Кб
014 4.9.Test-for-the-mean.Independent-samples-Part-2-lesson.xlsx 9.31Кб
014 ARTICLE - A Note on 'pickling'.html 2.11Кб
014 Confidence intervals. Two means. Independent Samples (Part 2). Exercise.html 81б
014 Continuous Distributions The Logistic Distribution_en.vtt 4.73Кб
014 Continuous Distributions The Logistic Distribution.mp4 15.95Мб
014 Dropping a Dummy Variable from the Data Set.html 2.31Кб
014 EXERCISE Species Segmentation with Cluster Analysis (Part 1).html 87б
014 Feature Scaling (Standardization)_en.vtt 6.85Кб
014 Feature Scaling (Standardization).mp4 20.37Мб
014 iris-dataset.csv 2.40Кб
014 Skewness Exercise.html 81б
014 SKLEAR-1.IPY 12.87Кб
014 sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-1.ipynb 11.73Кб
014 Species-Segmentation-with-Cluster-Analysis-Part-1-Exercise.ipynb 4.46Кб
014 Species-Segmentation-with-Cluster-Analysis-Part-1-Solution.ipynb 7.35Кб
014 Test for the mean. Independent Samples (Part 2)_en.vtt 4.79Кб
014 Test for the mean. Independent Samples (Part 2).mp4 24.47Мб
014 Underfitting and Overfitting_en.vtt 4.31Кб
014 Underfitting and Overfitting.mp4 7.25Мб
015 1.02.Multiple-linear-regression.csv 1.07Кб
015 2.03.Test-dataset.csv 322б
015 2.9.Variance-lesson.xlsx 10.08Кб
015 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx 10.54Кб
015 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2-solution.xlsx 11.39Кб
015 A Practical Example of Probability Distributions_en.vtt 17.79Кб
015 A Practical Example of Probability Distributions.mp4 138.31Мб
015 Confidence intervals. Two means. Independent Samples (Part 3)_en.vtt 1.71Кб
015 Confidence intervals. Two means. Independent Samples (Part 3).mp4 6.82Мб
015 Customers-Membership.xlsx 9.69Кб
015 Customers-Membership-post.xlsx 15.62Кб
015 Daily-Views.xlsx 9.53Кб
015 Daily-Views-post.xlsx 20.21Кб
015 EXERCISE - Saving the Model (and Scaler).html 284б
015 EXERCISE Species Segmentation with Cluster Analysis (Part 2).html 87б
015 Feature Selection through Standardization of Weights_en.vtt 6.58Кб
015 Feature Selection through Standardization of Weights.mp4 27.16Мб
015 FIFA19.csv 8.64Мб
015 FIFA19-post.csv 8.64Мб
015 iris-dataset.csv 2.40Кб
015 iris-with-answers.csv 3.63Кб
015 Logistic-Regression.url 159б
015 Logistic-Regression-with-Comments.url 173б
015 More on Dummy Variables A Statistical Perspective_en.vtt 1.53Кб
015 More on Dummy Variables A Statistical Perspective.mp4 5.82Мб
015 SKLEAR-1.IPY 16.79Кб
015 sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-2.ipynb 14.89Кб
015 Species-Segmentation-with-Cluster-Analysis-Part-2-Exercise.ipynb 10.74Кб
015 Species-Segmentation-with-Cluster-Analysis-Part-2-Solution.ipynb 15.30Кб
015 Test for the mean. Independent Samples (Part 2). Exercise.html 81б
015 Testing the Model_en.vtt 5.67Кб
015 Testing-the-model.ipynb 5.77Кб
015 Testing the Model.mp4 21.60Мб
015 Testing-the-model-with-comments.ipynb 7.56Кб
015 Variance_en.vtt 6.91Кб
015 Variance.mp4 20.20Мб
016 1.02.Multiple-linear-regression.csv 1.07Кб
016 2.9.Variance-exercise.xlsx 10.83Кб
016 2.9.Variance-exercise-solution.xlsx 11.05Кб
016 Bank-data.csv 19.55Кб
016 Bank-data-testing.csv 8.30Кб
016 Classifying the Various Reasons for Absence_en.vtt 8.84Кб
016 Classifying the Various Reasons for Absence.mp4 51.32Мб
016 Predicting with the Standardized Coefficients_en.vtt 5.05Кб
016 Predicting with the Standardized Coefficients.mp4 18.34Мб
016 Preparing the Deployment of the Model through a Module_en.vtt 4.84Кб
016 Preparing the Deployment of the Model through a Module.mp4 28.57Мб
016 sklearn-Making-Predictions-with-the-Standardized-Coefficients.ipynb 29.75Кб
016 sklearn-Making-Predictions-with-the-Standardized-Coefficients-with-comments.ipynb 22.03Кб
016 Testing the Model - Exercise.html 87б
016 Testing-the-Model-Exercise.ipynb 6.79Кб
016 Testing-the-Model-Solution.ipynb 111.10Кб
016 Variance Exercise.html 522б
017 2.10.Standard-deviation-and-coefficient-of-variation-lesson.xlsx 10.97Кб
017 Feature Scaling (Standardization) - Exercise.html 76б
017 real-estate-price-size-year.csv 2.35Кб
017 sklearn-Feature-Scaling-Exercise.ipynb 6.07Кб
017 sklearn-Feature-Scaling-Exercise-Solution.ipynb 16.28Кб
017 Standard Deviation and Coefficient of Variation_en.vtt 5.81Кб
017 Standard Deviation and Coefficient of Variation.mp4 20.14Мб
017 Using .concat() in Python_en.vtt 4.55Кб
017 Using .concat() in Python.mp4 19.77Мб
018 2.10.Standard-deviation-and-coefficient-of-variation-exercise.xlsx 11.61Кб
018 2.10.Standard-deviation-and-coefficient-of-variation-exercise-solution.xlsx 12.60Кб
018 EXERCISE - Using .concat() in Python.html 189б
018 Standard Deviation and Coefficient of Variation Exercise.html 81б
018 Underfitting and Overfitting_en.vtt 3.04Кб
018 Underfitting and Overfitting.mp4 5.69Мб
019 2.11.Covariance-lesson.xlsx 24.92Кб
019 Covariance_en.vtt 4.35Кб
019 Covariance.mp4 18.41Мб
019 sklearn-Train-Test-Split.ipynb 7.23Кб
019 sklearn-Train-Test-Split-with-comments.ipynb 9.05Кб
019 SOLUTION - Using .concat() in Python.html 143б
019 Train - Test Split Explained_en.vtt 8.55Кб
019 Train - Test Split Explained.mp4 35.57Мб
020 2.11.Covariance-exercise.xlsx 20.23Кб
020 2.11.Covariance-exercise-solution.xlsx 29.51Кб
020 Covariance Exercise.html 81б
020 Reordering Columns in a Pandas DataFrame in Python_en.vtt 1.65Кб
020 Reordering Columns in a Pandas DataFrame in Python.mp4 7.18Мб
021 Correlation Coefficient_en.vtt 4.18Кб
021 Correlation Coefficient.mp4 19.38Мб
021 EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html 161б
022 2.12.Correlation-exercise.xlsx 29.30Кб
022 2.12.Correlation-exercise-solution.xlsx 29.48Кб
022 Correlation Coefficient Exercise.html 81б
022 SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html 478б
023 Absenteeism-Exercise-Preprocessing-df-reason-mod.ipynb 4.82Кб
023 Creating Checkpoints while Coding in Jupyter_en.vtt 3.26Кб
023 Creating Checkpoints while Coding in Jupyter.mp4 17.34Мб
024 EXERCISE - Creating Checkpoints while Coding in Jupyter.html 137б
025 SOLUTION - Creating Checkpoints while Coding in Jupyter.html 118б
026 Analyzing the Dates from the Initial Data Set_en.vtt 7.55Кб
026 Analyzing the Dates from the Initial Data Set.mp4 40.13Мб
027 Extracting the Month Value from the Date Column_en.vtt 6.93Кб
027 Extracting the Month Value from the Date Column.mp4 38.91Мб
028 Extracting the Day of the Week from the Date Column_en.vtt 3.87Кб
028 Extracting the Day of the Week from the Date Column.mp4 9.12Мб
029 Absenteeism-Exercise-Preprocessing-ChP-df-date-reason-mod.ipynb 7.33Кб
029 Absenteeism-Exercise-Preprocessing-LECTURES.ipynb 7.60Мб
029 Absenteeism-Exercise-Removing-the-Date-Column-SOLUTION.ipynb 8.33Кб
029 EXERCISE - Removing the Date Column.html 1.14Кб
030 Analyzing Several Straightforward Columns for this Exercise_en.vtt 3.89Кб
030 Analyzing Several Straightforward Columns for this Exercise.mp4 12.23Мб
031 Working on Education, Children, and Pets_en.vtt 4.98Кб
031 Working on Education, Children, and Pets.mp4 19.69Мб
032 Absenteeism-Exercise-EXERCISES-and-SOLUTIONS.ipynb 4.13Кб
032 Absenteeism-Exercise-Preprocessing-df-preprocessed.ipynb 8.51Кб
032 Final Remarks of this Section_en.vtt 2.23Кб
032 Final Remarks of this Section.mp4 17.04Мб
033 A Note on Exporting Your Data as a .csv File.html 880б
code.zip 57.22Мб
external-links.txt 105б
external-links.txt 134б
external-links.txt 790б
Статистика распространения по странам
Россия (RU) 3
Великобритания (GB) 1
Болгария (BG) 1
Южная Корея (KR) 1
Всего 6
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент