Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
[CourseClub.Me].url |
122б |
[FreeCourseSite.com].url |
127б |
[GigaCourse.Com].url |
49б |
001 1.04.Real-life-example.csv |
219.83Кб |
001 2.13.Practical-example.Descriptive-statistics-lesson.xlsx |
146.51Кб |
001 3.17.Practical-example.Confidence-intervals-lesson.xlsx |
1.74Мб |
001 365-Data-Science-Data-Science-Interview-Questions-Guide.pdf |
15.56Мб |
001 4.10.Hypothesis-testing-section-practical-example.xlsx |
51.90Кб |
001 Absenteeism-data.csv |
32.05Кб |
001 Absenteeism-Exercise-Integration.ipynb |
62.35Кб |
001 absenteeism-module.py |
6.62Кб |
001 Absenteeism-new-data.csv |
1.87Кб |
001 Absenteeism-predictions.csv |
2.10Кб |
001 Absenteeism-preprocessed.csv |
29.13Кб |
001 Additional-Python-Tools-Exercises.ipynb |
11.37Кб |
001 Additional-Python-Tools-Lectures.ipynb |
13.47Кб |
001 Additional-Python-Tools-Solutions.ipynb |
25.49Кб |
001 Applying Traditional Data, Big Data, BI, Traditional Data Science and ML_en.vtt |
8.01Кб |
001 Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4 |
82.02Мб |
001 A Practical Example What You Will Learn in This Course_en.vtt |
5.66Кб |
001 A Practical Example What You Will Learn in This Course.mp4 |
43.88Мб |
001 Are You Sure You're All Set.html |
513б |
001 Arithmetic-Operators-Exercise-Py3.ipynb |
2.62Кб |
001 Arithmetic-Operators-Lecture-Py3.ipynb |
3.53Кб |
001 Arithmetic-Operators-Solution-Py3.ipynb |
4.24Кб |
001 Audiobooks-data.csv |
710.77Кб |
001 Audiobooks-data.csv |
710.77Кб |
001 Basic NN Example (Part 1)_en.vtt |
3.95Кб |
001 Basic NN Example (Part 1).mp4 |
9.34Мб |
001 Bonus Lecture Next Steps.html |
2.84Кб |
001 Business Case Exploring the Dataset and Identifying Predictors_en.vtt |
9.22Кб |
001 Business Case Exploring the Dataset and Identifying Predictors.mp4 |
51.38Мб |
001 Business Case Getting Acquainted with the Dataset_en.vtt |
9.30Кб |
001 Business Case Getting Acquainted with the Dataset.mp4 |
60.26Мб |
001 Comparison Operators_en.vtt |
2.17Кб |
001 Comparison Operators.mp4 |
4.16Мб |
001 Comparison-Operators-Exercise-Py3.ipynb |
1.61Кб |
001 Comparison-Operators-Lecture-Py3.ipynb |
2.53Кб |
001 Comparison-Operators-Solution-Py3.ipynb |
2.41Кб |
001 Course-Notes-Basic-Probability.pdf |
371.05Кб |
001 Course-Notes-Bayesian-Inference.pdf |
386.01Кб |
001 Course-Notes-Cluster-Analysis.pdf |
208.65Кб |
001 Course-Notes-Combinatorics.pdf |
226.12Кб |
001 Course-notes-descriptive-statistics.pdf |
482.21Кб |
001 Course-notes-descriptive-statistics.pdf |
482.21Кб |
001 Course-notes-hypothesis-testing.pdf |
656.44Кб |
001 Course-notes-inferential-statistics.pdf |
382.32Кб |
001 Course-Notes-Logistic-Regression.pdf |
335.17Кб |
001 Course-Notes-Probability-Distributions.pdf |
463.95Кб |
001 Course-notes-regression-analysis.pdf |
312.18Кб |
001 Course-notes-regression-analysis.pdf |
312.18Кб |
001 Course-Notes-Section-2.pdf |
578.08Кб |
001 Course-Notes-Section-6.pdf |
936.42Кб |
001 data-preprocessing-homework.pdf |
134.47Кб |
001 Data Science and Business Buzzwords Why are there so Many_en.vtt |
5.95Кб |
001 Data Science and Business Buzzwords Why are there so Many.mp4 |
54.72Мб |
001 Debunking Common Misconceptions_en.vtt |
4.78Кб |
001 Debunking Common Misconceptions.mp4 |
57.86Мб |
001 Defining a Function in Python_en.vtt |
2.14Кб |
001 Defining a Function in Python.mp4 |
3.23Мб |
001 Defining-a-Function-in-Python-Lecture-Py3.ipynb |
868б |
001 df-preprocessed.csv |
29.11Кб |
001 EXERCISE - Age vs Probability.html |
367б |
001 Exploring the Problem with a Machine Learning Mindset_en.vtt |
4.07Кб |
001 Exploring the Problem with a Machine Learning Mindset.mp4 |
11.08Мб |
001 Finding the Job - What to Expect and What to Look for_en.vtt |
3.83Кб |
001 Finding the Job - What to Expect and What to Look for.mp4 |
33.09Мб |
001 For Loops_en.vtt |
5.87Кб |
001 For Loops.mp4 |
23.58Мб |
001 For-Loops-Exercise-Py3.ipynb |
1.28Кб |
001 For-Loops-Lecture-Py3.ipynb |
1.26Кб |
001 For-Loops-Solution-Py3.ipynb |
1.80Кб |
001 Fundamentals of Combinatorics_en.vtt |
1.21Кб |
001 Fundamentals of Combinatorics.mp4 |
4.63Мб |
001 Fundamentals of Probability Distributions_en.vtt |
6.99Кб |
001 Fundamentals of Probability Distributions.mp4 |
19.28Мб |
001 Game Plan for this Python, SQL, and Tableau Business Exercise_en.vtt |
4.86Кб |
001 Game Plan for this Python, SQL, and Tableau Business Exercise.mp4 |
15.80Мб |
001 Glossary.xlsx |
19.97Кб |
001 How to Install TensorFlow 2.0_en.vtt |
5.70Кб |
001 How to Install TensorFlow 2.0.mp4 |
27.34Мб |
001 Introduction_en.vtt |
1.44Кб |
001 Introduction.mp4 |
3.02Мб |
001 Introduction to Cluster Analysis_en.vtt |
4.20Кб |
001 Introduction to Cluster Analysis.mp4 |
10.66Мб |
001 Introduction to Logistic Regression_en.vtt |
1.51Кб |
001 Introduction to Logistic Regression.mp4 |
4.16Мб |
001 Introduction to Neural Networks_en.vtt |
5.33Кб |
001 Introduction to Neural Networks.mp4 |
10.37Мб |
001 Introduction to pandas Series_en.vtt |
9.33Кб |
001 Introduction to pandas Series.mp4 |
22.22Мб |
001 Introduction to Programming_en.vtt |
6.11Кб |
001 Introduction to Programming.mp4 |
14.33Мб |
001 Introduction to Regression Analysis_en.vtt |
1.96Кб |
001 Introduction to Regression Analysis.mp4 |
3.50Мб |
001 Introduction-to-the-If-Statement-Exercise-Py3.ipynb |
1.53Кб |
001 Introduction-to-the-If-Statement-Lecture-Py3.ipynb |
1.14Кб |
001 Introduction-to-the-If-Statement-Solution-Py3.ipynb |
2.19Кб |
001 K-Means Clustering_en.vtt |
5.64Кб |
001 K-Means Clustering.mp4 |
10.52Мб |
001 Lending-company.csv |
112.43Кб |
001 Lists_en.vtt |
8.75Кб |
001 Lists.mp4 |
20.50Мб |
001 Lists-Exercise-Py3.ipynb |
2.14Кб |
001 Lists-Lecture-Py3.ipynb |
2.70Кб |
001 Lists-Solution-Py3.ipynb |
3.18Кб |
001 Location.csv |
13.49Кб |
001 Minimal-example-Part-1.ipynb |
1.19Кб |
001 MNIST The Dataset_en.vtt |
3.06Кб |
001 MNIST The Dataset.mp4 |
4.40Мб |
001 MNIST What is the MNIST Dataset_en.vtt |
3.09Кб |
001 MNIST What is the MNIST Dataset.mp4 |
4.65Мб |
001 model |
1.01Кб |
001 Multiple Linear Regression_en.vtt |
2.93Кб |
001 Multiple Linear Regression.mp4 |
5.54Мб |
001 Necessary Programming Languages and Software Used in Data Science_en.vtt |
6.47Кб |
001 Necessary Programming Languages and Software Used in Data Science.mp4 |
66.73Мб |
001 Null vs Alternative Hypothesis_en.vtt |
6.45Кб |
001 Null vs Alternative Hypothesis.mp4 |
80.83Мб |
001 Object Oriented Programming_en.vtt |
5.35Кб |
001 Object Oriented Programming.mp4 |
8.42Мб |
001 pandas-Fundamentals-Exercises.ipynb |
30.83Кб |
001 pandas-Fundamentals-Lectures.ipynb |
21.31Кб |
001 pandas-Fundamentals-Solutions.ipynb |
118.33Кб |
001 Population and Sample_en.vtt |
4.91Кб |
001 Population and Sample.mp4 |
34.16Мб |
001 Practical Example Descriptive Statistics_en.vtt |
18.19Кб |
001 Practical Example Descriptive Statistics.mp4 |
150.18Мб |
001 Practical Example Hypothesis Testing_en.vtt |
7.64Кб |
001 Practical Example Hypothesis Testing.mp4 |
45.84Мб |
001 Practical Example Inferential Statistics_en.vtt |
12.01Кб |
001 Practical Example Inferential Statistics.mp4 |
69.04Мб |
001 Practical Example Linear Regression (Part 1)_en.vtt |
13.07Кб |
001 Practical Example Linear Regression (Part 1).mp4 |
84.83Мб |
001 Preprocessing Introduction_en.vtt |
3.35Кб |
001 Preprocessing Introduction.mp4 |
8.98Мб |
001 Probability in Finance_en.vtt |
8.66Кб |
001 Probability in Finance.mp4 |
39.66Мб |
001 Probability-in-Finance-Homework.pdf |
110.68Кб |
001 Probability-in-Finance-Solutions.pdf |
184.46Кб |
001 Python-Introduction-Course-Notes.pdf |
2.03Мб |
001 READ ME!!!!.html |
564б |
001 Region.csv |
10.22Кб |
001 Sales-products.csv |
152.28Кб |
001 scaler |
1.86Кб |
001 Sets and Events_en.vtt |
4.70Кб |
001 Sets and Events.mp4 |
17.44Мб |
001 Shortcuts-for-Jupyter.pdf |
619.17Кб |
001 Shortcuts-for-Jupyter.pdf |
619.17Кб |
001 sklearn-Linear-Regression-Practical-Example-Part-1.ipynb |
166.91Кб |
001 sklearn-Linear-Regression-Practical-Example-Part-1-with-comments.ipynb |
171.38Кб |
001 Statistics-Glossary.xlsx |
20.26Кб |
001 Stochastic Gradient Descent_en.vtt |
4.14Кб |
001 Stochastic Gradient Descent.mp4 |
7.62Мб |
001 Summary on What You've Learned_en.vtt |
4.65Кб |
001 Summary on What You've Learned.mp4 |
9.66Мб |
001 Techniques for Working with Traditional Data_en.vtt |
9.36Кб |
001 Techniques for Working with Traditional Data.mp4 |
105.52Мб |
001 The Basic Probability Formula_en.vtt |
7.95Кб |
001 The Basic Probability Formula.mp4 |
29.13Мб |
001 The IF Statement_en.vtt |
3.09Кб |
001 The IF Statement.mp4 |
5.33Мб |
001 The Linear Regression Model_en.vtt |
6.00Кб |
001 The Linear Regression Model.mp4 |
13.16Мб |
001 The Reason Behind These Disciplines_en.vtt |
5.74Кб |
001 The Reason Behind These Disciplines.mp4 |
45.87Мб |
001 Types of Clustering_en.vtt |
4.19Кб |
001 Types of Clustering.mp4 |
8.90Мб |
001 Types of Data_en.vtt |
5.41Кб |
001 Types of Data.mp4 |
42.47Мб |
001 Using Arithmetic Operators in Python_en.vtt |
3.75Кб |
001 Using Arithmetic Operators in Python.mp4 |
7.28Мб |
001 Using the .format() Method_en.vtt |
10.80Кб |
001 Using the .format() Method.mp4 |
21.66Мб |
001 Variables_en.vtt |
3.98Кб |
001 Variables.mp4 |
8.93Мб |
001 Variables-Exercise-Py3.ipynb |
2.23Кб |
001 Variables-Lecture-Py3.ipynb |
3.61Кб |
001 Variables-Solution-Py3.ipynb |
3.79Кб |
001 What are Confidence Intervals_en.vtt |
2.89Кб |
001 What are Confidence Intervals.mp4 |
28.38Мб |
001 What are Data, Servers, Clients, Requests, and Responses_en.vtt |
5.21Кб |
001 What are Data, Servers, Clients, Requests, and Responses.mp4 |
19.17Мб |
001 What is a Layer_en.vtt |
2.17Кб |
001 What is a Layer.mp4 |
4.96Мб |
001 What is a Matrix_en.vtt |
3.88Кб |
001 What is a Matrix.mp4 |
11.70Мб |
001 What is Initialization_en.vtt |
3.17Кб |
001 What is Initialization.mp4 |
17.42Мб |
001 What is Overfitting_en.vtt |
5.04Кб |
001 What is Overfitting.mp4 |
10.50Мб |
001 What is sklearn and How is it Different from Other Packages_en.vtt |
2.98Кб |
001 What is sklearn and How is it Different from Other Packages.mp4 |
6.24Мб |
001 What to Expect from the Following Sections.html |
2.43Кб |
001 What to Expect from this Part_en.vtt |
4.04Кб |
001 What to Expect from this Part.mp4 |
9.29Мб |
002 1.02.Multiple-linear-regression.csv |
1.09Кб |
002 1.04.Real-life-example.csv |
219.83Кб |
002 2.01.Admittance.csv |
1.58Кб |
002 2.13.Practical-example.Descriptive-statistics-exercise.xlsx |
120.27Кб |
002 2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx |
146.38Кб |
002 3.01.Country-clusters.csv |
200б |
002 3.17.Practical-example.Confidence-intervals-exercise.xlsx |
1.73Мб |
002 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx |
1.82Мб |
002 3.2.What-is-a-distribution-lesson.xlsx |
19.46Кб |
002 3.9.Population-variance-known-z-score-lesson.xlsx |
11.21Кб |
002 3.9.The-z-table.xlsx |
25.58Кб |
002 4.10.Hypothesis-testing-section-practical-example-exercise.xlsx |
43.69Кб |
002 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx |
44.27Кб |
002 Absenteeism-predictions.csv |
2.10Кб |
002 Add-an-Else-Statement-Exercise-Py3.ipynb |
1.02Кб |
002 Add-an-Else-Statement-Lecture-Py3.ipynb |
1.76Кб |
002 Add-an-Else-Statement-Solution-Py3.ipynb |
1.40Кб |
002 Adjusted R-Squared_en.vtt |
6.66Кб |
002 Adjusted R-Squared.mp4 |
34.22Мб |
002 Admittance.ipynb |
3.54Кб |
002 Admittance-with-comments.ipynb |
5.32Кб |
002 Analyzing Age vs Probability in Tableau_en.vtt |
8.91Кб |
002 Analyzing Age vs Probability in Tableau.mp4 |
38.69Мб |
002 A Simple Example in Python_en.vtt |
5.16Кб |
002 A Simple Example in Python.mp4 |
21.91Мб |
002 A Simple Example of Clustering_en.vtt |
8.25Кб |
002 A Simple Example of Clustering.mp4 |
26.08Мб |
002 Basic NN Example (Part 2)_en.vtt |
5.99Кб |
002 Basic NN Example (Part 2).mp4 |
15.23Мб |
002 Business Case Outlining the Solution_en.vtt |
1.69Кб |
002 Business Case Outlining the Solution_en.vtt |
2.19Кб |
002 Business Case Outlining the Solution.mp4 |
2.95Мб |
002 Business Case Outlining the Solution.mp4 |
4.04Мб |
002 Computing Expected Values_en.vtt |
5.93Кб |
002 Computing Expected Values.mp4 |
29.24Мб |
002 Confidence Intervals; Population Variance Known; Z-score_en.vtt |
9.06Кб |
002 Confidence Intervals; Population Variance Known; Z-score.mp4 |
52.21Мб |
002 Correlation vs Regression_en.vtt |
1.78Кб |
002 Correlation vs Regression.mp4 |
3.75Мб |
002 Country-clusters.ipynb |
3.31Кб |
002 Country-clusters-with-comments.ipynb |
5.80Кб |
002 Course-Notes-Cluster-Analysis.pdf |
208.65Кб |
002 Course-notes-inferential-statistics.pdf |
382.32Кб |
002 Course-Notes-Logistic-Regression.pdf |
335.17Кб |
002 Course-Notes-Section-2.pdf |
578.08Кб |
002 Course-Notes-Section-6.pdf |
936.42Кб |
002 Creating-a-Function-with-a-Parameter-Exercise-Py3.ipynb |
1.16Кб |
002 Creating-a-Function-with-a-Parameter-Lecture-Py3.ipynb |
1.59Кб |
002 Creating-a-Function-with-a-Parameter-Solution-Py3.ipynb |
1.79Кб |
002 Creating the Targets for the Logistic Regression_en.vtt |
7.51Кб |
002 Creating the Targets for the Logistic Regression.mp4 |
32.50Мб |
002 Dendrogram_en.vtt |
6.38Кб |
002 Dendrogram.mp4 |
17.34Мб |
002 Deploying the 'absenteeism_module' - Part I_en.vtt |
4.27Кб |
002 Deploying the 'absenteeism_module' - Part I.mp4 |
16.93Мб |
002 Further Reading on Null and Alternative Hypothesis.html |
2.23Кб |
002 Help-Yourself-with-Methods-Exercise-Py3.ipynb |
1.91Кб |
002 Help-Yourself-with-Methods-Lecture-Py3.ipynb |
4.39Кб |
002 Help-Yourself-with-Methods-Solution-Py3.ipynb |
2.83Кб |
002 How are we Going to Approach this Section_en.vtt |
2.56Кб |
002 How are we Going to Approach this Section.mp4 |
5.24Мб |
002 How to Create a Function with a Parameter_en.vtt |
3.76Кб |
002 How to Create a Function with a Parameter.mp4 |
8.29Мб |
002 How to Install TensorFlow 1_en.vtt |
2.91Кб |
002 How to Install TensorFlow 1.mp4 |
4.85Мб |
002 Importing the Absenteeism Data in Python_en.vtt |
3.42Кб |
002 Importing the Absenteeism Data in Python.mp4 |
18.03Мб |
002 Iterating Over Range Objects_en.vtt |
5.30Кб |
002 Iterating Over Range Objects.mp4 |
11.07Мб |
002 Levels of Measurement_en.vtt |
4.16Кб |
002 Levels of Measurement.mp4 |
31.44Мб |
002 Logical and Identity Operators_en.vtt |
5.12Кб |
002 Logical and Identity Operators.mp4 |
19.00Мб |
002 Logical-and-Identity-Operators-Lecture-Py3.ipynb |
5.86Кб |
002 Logical-and-Identity-Operators-Solution-Py3.ipynb |
3.43Кб |
002 Minimal-example-Part-2.ipynb |
3.65Кб |
002 MNIST How to Tackle the MNIST_en.vtt |
3.32Кб |
002 MNIST How to Tackle the MNIST_en.vtt |
3.27Кб |
002 MNIST How to Tackle the MNIST.mp4 |
7.66Мб |
002 MNIST How to Tackle the MNIST.mp4 |
7.68Мб |
002 Modules and Packages_en.vtt |
1.19Кб |
002 Modules and Packages.mp4 |
2.00Мб |
002 Multiple-linear-regression-and-Adjusted-R-squared.ipynb |
2.15Кб |
002 Multiple-linear-regression-and-Adjusted-R-squared-with-comments.ipynb |
2.80Кб |
002 Numbers-and-Boolean-Values-Exercise-Py3.ipynb |
2.29Кб |
002 Numbers and Boolean Values in Python_en.vtt |
3.15Кб |
002 Numbers and Boolean Values in Python.mp4 |
6.56Мб |
002 Numbers-and-Boolean-Values-Lecture-Py3.ipynb |
3.36Кб |
002 Numbers-and-Boolean-Values-Solution-Py3.ipynb |
3.23Кб |
002 Permutations and How to Use Them_en.vtt |
3.74Кб |
002 Permutations and How to Use Them.mp4 |
13.97Мб |
002 Practical Example Descriptive Statistics Exercise.html |
81б |
002 Practical Example Hypothesis Testing Exercise.html |
81б |
002 Practical Example Inferential Statistics Exercise.html |
81б |
002 Practical Example Linear Regression (Part 2)_en.vtt |
7.11Кб |
002 Practical Example Linear Regression (Part 2).mp4 |
31.90Мб |
002 Probability in Statistics_en.vtt |
7.62Кб |
002 Probability in Statistics.mp4 |
18.37Мб |
002 Problems with Gradient Descent_en.vtt |
2.56Кб |
002 Problems with Gradient Descent.mp4 |
3.51Мб |
002 Real Life Examples of Traditional Data_en.vtt |
1.96Кб |
002 Real Life Examples of Traditional Data.mp4 |
13.92Мб |
002 Scalars and Vectors_en.vtt |
3.35Кб |
002 Scalars and Vectors.mp4 |
8.39Мб |
002 sklearn-Linear-Regression-Practical-Example-Part-2.ipynb |
328.74Кб |
002 sklearn-Linear-Regression-Practical-Example-Part-2-with-comments.ipynb |
335.63Кб |
002 Some Examples of Clusters_en.vtt |
5.41Кб |
002 Some Examples of Clusters.mp4 |
35.12Мб |
002 TensorFlow Outline and Comparison with Other Libraries_en.vtt |
4.74Кб |
002 TensorFlow Outline and Comparison with Other Libraries.mp4 |
14.94Мб |
002 The Business Task_en.vtt |
3.29Кб |
002 The Business Task.mp4 |
11.08Мб |
002 The Double Equality Sign_en.vtt |
1.55Кб |
002 The Double Equality Sign.mp4 |
2.72Мб |
002 The-Double-Equality-Sign-Exercise-Py3.ipynb |
838б |
002 The-Double-Equality-Sign-Lecture-Py3.ipynb |
1.45Кб |
002 The-Double-Equality-Sign-Solution-Py3.ipynb |
1.14Кб |
002 The ELSE Statement_en.vtt |
2.73Кб |
002 The ELSE Statement.mp4 |
5.25Мб |
002 Training the Model_en.vtt |
3.89Кб |
002 Training the Model.mp4 |
7.57Мб |
002 Types of Basic Preprocessing_en.vtt |
1.52Кб |
002 Types of Basic Preprocessing.mp4 |
3.19Мб |
002 Types of Probability Distributions_en.vtt |
8.61Кб |
002 Types of Probability Distributions.mp4 |
28.69Мб |
002 Types of Simple Initializations_en.vtt |
3.35Кб |
002 Types of Simple Initializations.mp4 |
5.73Мб |
002 Underfitting and Overfitting for Classification_en.vtt |
2.36Кб |
002 Underfitting and Overfitting for Classification.mp4 |
13.53Мб |
002 Using Methods_en.vtt |
7.32Кб |
002 Using Methods.mp4 |
23.41Мб |
002 Ways Sets Can Interact_en.vtt |
3.90Кб |
002 Ways Sets Can Interact.mp4 |
19.02Мб |
002 What's Further out there in terms of Machine Learning_en.vtt |
2.34Кб |
002 What's Further out there in terms of Machine Learning.mp4 |
4.73Мб |
002 What are Data Connectivity, APIs, and Endpoints_en.vtt |
7.55Кб |
002 What are Data Connectivity, APIs, and Endpoints.mp4 |
58.83Мб |
002 What Does the Course Cover_en.vtt |
4.52Кб |
002 What Does the Course Cover.mp4 |
49.69Мб |
002 What is a Deep Net_en.vtt |
2.89Кб |
002 What is a Deep Net.mp4 |
11.06Мб |
002 What is a Distribution_en.vtt |
5.32Кб |
002 What is a Distribution.mp4 |
16.90Мб |
002 What is the difference between Analysis and Analytics_en.vtt |
4.40Кб |
002 What is the difference between Analysis and Analytics.mp4 |
11.05Мб |
002 While Loops and Incrementing_en.vtt |
5.36Кб |
002 While Loops and Incrementing.mp4 |
20.20Мб |
002 While-Loops-and-Incrementing-Exercise-Py3.ipynb |
1.12Кб |
002 While-Loops-and-Incrementing-Lecture-Py3.ipynb |
1.08Кб |
002 While-Loops-and-Incrementing-Solution-Py3.ipynb |
1.75Кб |
002 Why Python_en.vtt |
6.04Кб |
002 Why Python.mp4 |
11.77Мб |
002 Working with Methods in Python - Part I_en.vtt |
6.09Кб |
002 Working with Methods in Python - Part I.mp4 |
16.80Мб |
003 1.01.Simple-linear-regression.csv |
922б |
003 12.3.TensorFlow-MNIST-with-comments-Part-1.ipynb |
3.89Кб |
003 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx |
30.77Кб |
003 3.9.Population-variance-known-z-score-exercise.xlsx |
10.83Кб |
003 3.9.Population-variance-known-z-score-exercise-solution.xlsx |
11.16Кб |
003 3.9.The-z-table.xlsx |
25.58Кб |
003 365-DataScience-Diagram.pdf |
323.08Кб |
003 A Note on Installing Packages in Anaconda.html |
2.28Кб |
003 A Note on Multicollinearity.html |
849б |
003 Another-Way-to-Define-a-Function-Exercise-Py3.ipynb |
1.24Кб |
003 Another-Way-to-Define-a-Function-Lecture-Py3.ipynb |
3.29Кб |
003 Another-Way-to-Define-a-Function-Solution-Py3.ipynb |
1.98Кб |
003 A Simple Example of Clustering - Exercise.html |
87б |
003 A-Simple-Example-of-Clustering-Exercise.ipynb |
3.62Кб |
003 A-Simple-Example-of-Clustering-Solution.ipynb |
4.65Кб |
003 Audiobooks-data.csv |
710.77Кб |
003 Basic NN Example (Part 3)_en.vtt |
3.85Кб |
003 Basic NN Example (Part 3).mp4 |
15.68Мб |
003 Business Analytics, Data Analytics, and Data Science An Introduction_en.vtt |
9.53Кб |
003 Business Analytics, Data Analytics, and Data Science An Introduction.mp4 |
49.96Мб |
003 Business Case Balancing the Dataset_en.vtt |
4.11Кб |
003 Business Case Balancing the Dataset.mp4 |
26.19Мб |
003 Categorical Variables - Visualization Techniques_en.vtt |
5.68Кб |
003 Categorical Variables - Visualization Techniques.mp4 |
36.65Мб |
003 Characteristics of Discrete Distributions_en.vtt |
2.21Кб |
003 Characteristics of Discrete Distributions.mp4 |
9.25Мб |
003 Checking the Content of the Data Set_en.vtt |
6.22Кб |
003 Checking the Content of the Data Set.mp4 |
54.27Мб |
003 Confidence Intervals; Population Variance Known; Z-score; Exercise.html |
81б |
003 Countries-exercise.csv |
8.27Кб |
003 Country-clusters-standardized.csv |
244б |
003 Course-notes-hypothesis-testing.pdf |
656.44Кб |
003 Create-Lists-with-the-range-Function-Exercise-Py3.ipynb |
1.45Кб |
003 Create-Lists-with-the-range-Function-Lecture-Py3.ipynb |
1.34Кб |
003 Create-Lists-with-the-range-Function-Solution-Py3.ipynb |
2.25Кб |
003 DeepMind and Deep Learning.html |
1.04Кб |
003 Defining a Function in Python - Part II_en.vtt |
2.54Кб |
003 Defining a Function in Python - Part II.mp4 |
6.45Мб |
003 Deploying the 'absenteeism_module' - Part II_en.vtt |
6.76Кб |
003 Deploying the 'absenteeism_module' - Part II.mp4 |
25.99Мб |
003 Difference between Classification and Clustering_en.vtt |
2.94Кб |
003 Difference between Classification and Clustering.mp4 |
9.53Мб |
003 Digging into a Deep Net_en.vtt |
5.91Кб |
003 Digging into a Deep Net.mp4 |
19.14Мб |
003 Download-all-resources.url |
97б |
003 Download All Resources and Important FAQ.html |
21.26Кб |
003 Else-If-for-Brief-Elif-Exercise-Py3.ipynb |
1.75Кб |
003 Else-If-for-Brief-Elif-Lecture-Py3.ipynb |
3.24Кб |
003 Else-If-for-Brief-Elif-Solution-Py3.ipynb |
2.40Кб |
003 EXERCISE - Reasons vs Probability.html |
385б |
003 FAQ-The-Data-Science-Course.pdf |
306.10Кб |
003 Frequency_en.vtt |
5.58Кб |
003 Frequency.mp4 |
36.39Мб |
003 Geometrical Representation of the Linear Regression Model_en.vtt |
1.47Кб |
003 Geometrical Representation of the Linear Regression Model.mp4 |
2.19Мб |
003 Heatmaps_en.vtt |
5.42Кб |
003 Heatmaps.ipynb |
1.82Кб |
003 Heatmaps.mp4 |
25.71Мб |
003 Heatmaps-with-comments.ipynb |
17.66Кб |
003 How to Reassign Values_en.vtt |
1.21Кб |
003 How to Reassign Values.mp4 |
1.86Мб |
003 Intersection of Sets_en.vtt |
2.21Кб |
003 Intersection of Sets.mp4 |
8.78Мб |
003 Introducing the Data Set_en.vtt |
3.65Кб |
003 Introducing the Data Set.mp4 |
15.29Мб |
003 Introduction to Nested For Loops_en.vtt |
7.30Кб |
003 Introduction to Nested For Loops.mp4 |
12.26Мб |
003 Linear Algebra and Geometry_en.vtt |
3.54Кб |
003 Linear Algebra and Geometry.mp4 |
13.56Мб |
003 List Slicing_en.vtt |
4.63Кб |
003 List Slicing.mp4 |
19.17Мб |
003 List-Slicing-Exercise-Py3.ipynb |
2.79Кб |
003 List-Slicing-Lecture-Py3.ipynb |
5.02Кб |
003 List-Slicing-Solution-Py3.ipynb |
4.26Кб |
003 Lists with the range() Function_en.vtt |
7.07Кб |
003 Lists with the range() Function.mp4 |
14.50Мб |
003 Logistic vs Logit Function_en.vtt |
4.30Кб |
003 Logistic vs Logit Function.mp4 |
43.96Мб |
003 Minimal-example-Part-3.ipynb |
6.79Кб |
003 MNIST Importing the Relevant Packages and Loading the Data_en.vtt |
2.65Кб |
003 MNIST Importing the Relevant Packages and Loading the Data.mp4 |
12.24Мб |
003 MNIST Relevant Packages_en.vtt |
1.97Кб |
003 MNIST Relevant Packages.mp4 |
7.88Мб |
003 Momentum_en.vtt |
3.15Кб |
003 Momentum.mp4 |
5.01Мб |
003 Multiple Linear Regression Exercise.html |
76б |
003 Multiple-Linear-Regression-Exercise.ipynb |
2.45Кб |
003 Multiple-Linear-Regression-Exercise-Solution.ipynb |
13.39Кб |
003 Probability-Cheat-Sheet.pdf |
320.28Кб |
003 Probability in Data Science_en.vtt |
5.87Кб |
003 Probability in Data Science.mp4 |
23.94Мб |
003 Python Strings_en.vtt |
6.24Кб |
003 Python Strings.mp4 |
19.73Мб |
003 real-estate-price-size-year.csv |
2.35Кб |
003 Reassign-Values-Exercise-Py3.ipynb |
1.67Кб |
003 Reassign-Values-Lecture-Py3.ipynb |
3.08Кб |
003 Reassign-Values-Solution-Py3.ipynb |
2.12Кб |
003 Rejection Region and Significance Level_en.vtt |
7.99Кб |
003 Rejection Region and Significance Level.mp4 |
38.20Мб |
003 Selecting the Inputs for the Logistic Regression_en.vtt |
2.99Кб |
003 Selecting the Inputs for the Logistic Regression.mp4 |
9.81Мб |
003 Simple Linear Regression with sklearn_en.vtt |
6.71Кб |
003 Simple Linear Regression with sklearn.mp4 |
31.65Мб |
003 Simple Operations with Factorials_en.vtt |
3.15Кб |
003 Simple Operations with Factorials.mp4 |
13.98Мб |
003 sklearn-Simple-Linear-Regression.ipynb |
4.92Кб |
003 sklearn-Simple-Linear-Regression-with-comments.ipynb |
6.06Кб |
003 Standardization_en.vtt |
5.50Кб |
003 Standardization.mp4 |
11.95Мб |
003 State-of-the-Art Method - (Xavier) Glorot Initialization_en.vtt |
3.21Кб |
003 State-of-the-Art Method - (Xavier) Glorot Initialization.mp4 |
5.24Мб |
003 Strings-Exercise-Py3.ipynb |
2.61Кб |
003 Strings-Lecture-Py3.ipynb |
7.56Кб |
003 Strings-Solution-Py3.ipynb |
5.45Кб |
003 Taking a Closer Look at APIs_en.vtt |
9.31Кб |
003 Taking a Closer Look at APIs.mp4 |
65.29Мб |
003 Techniques for Working with Big Data_en.vtt |
5.02Кб |
003 Techniques for Working with Big Data.mp4 |
60.48Мб |
003 TensorFlow 1 vs TensorFlow 2_en.vtt |
3.30Кб |
003 TensorFlow 1 vs TensorFlow 2.mp4 |
14.94Мб |
003 TensorFlow-MNIST-Part1-with-comments.ipynb |
3.97Кб |
003 The ELIF Statement_en.vtt |
5.75Кб |
003 The ELIF Statement.mp4 |
14.25Мб |
003 The Importance of Working with a Balanced Dataset_en.vtt |
4.11Кб |
003 The Importance of Working with a Balanced Dataset.mp4 |
21.60Мб |
003 The Normal Distribution_en.vtt |
4.43Кб |
003 The Normal Distribution.mp4 |
16.16Мб |
003 Types of Machine Learning_en.vtt |
4.69Кб |
003 Types of Machine Learning.mp4 |
9.81Мб |
003 What is the Standard Library_en.vtt |
3.22Кб |
003 What is the Standard Library.mp4 |
4.87Мб |
003 What is Validation_en.vtt |
4.28Кб |
003 What is Validation.mp4 |
8.14Мб |
003 Why Jupyter_en.vtt |
4.10Кб |
003 Why Jupyter.mp4 |
7.96Мб |
003 Working with Methods in Python - Part II_en.vtt |
3.19Кб |
003 Working with Methods in Python - Part II.mp4 |
8.99Мб |
004 0.6.4-Using-a-Function-in-another-Function-Exercise-Py3.ipynb |
1.04Кб |
004 0.6.4-Using-a-Function-in-another-Function-Lecture-Py3.ipynb |
1015б |
004 0.6.4-Using-a-Function-in-another-Function-Solution-Py3.ipynb |
1.60Кб |
004 1.01.Simple-linear-regression.csv |
922б |
004 12.4.TensorFlow-MNIST-with-comments-Part-2.ipynb |
6.10Кб |
004 2.3.Categorical-variables.Visualization-techniques-exercise.xlsx |
15.24Кб |
004 2.3.Categorical-variables.Visualization-techniques-exercise-solution.xlsx |
41.11Кб |
004 3.4.Standard-normal-distribution-lesson.xlsx |
10.38Кб |
004 365-DataScience.png |
6.92Мб |
004 365-DataScience-Diagram.pdf |
323.08Кб |
004 Absenteeism-Exercise-Deploying-the-absenteeism-module.ipynb |
973б |
004 Add Comments_en.vtt |
1.57Кб |
004 Add Comments.mp4 |
2.41Мб |
004 Add-Comments-Lecture-Py3.ipynb |
1.03Кб |
004 Admittance-regression.ipynb |
2.09Кб |
004 Admittance-regression-summary-error.ipynb |
2.48Кб |
004 Admittance-regression-tables-fixed-error.ipynb |
4.11Кб |
004 Analyzing Reasons vs Probability in Tableau_en.vtt |
8.49Кб |
004 Analyzing Reasons vs Probability in Tableau.mp4 |
40.24Мб |
004 A Note on Boolean Values_en.vtt |
2.56Кб |
004 A Note on Boolean Values.mp4 |
4.24Мб |
004 A-Note-on-Boolean-Values-Lecture-Py3.ipynb |
791б |
004 A Note on TensorFlow 2 Syntax_en.vtt |
1.25Кб |
004 A Note on TensorFlow 2 Syntax.mp4 |
2.76Мб |
004 An overview of CNNs_en.vtt |
5.91Кб |
004 An overview of CNNs.mp4 |
30.47Мб |
004 Arrays in Python - A Convenient Way To Represent Matrices_en.vtt |
5.26Кб |
004 Arrays in Python - A Convenient Way To Represent Matrices.mp4 |
19.01Мб |
004 Audiobooks-data.csv |
710.77Кб |
004 Basic NN Example (Part 4)_en.vtt |
9.28Кб |
004 Basic NN Example (Part 4).mp4 |
30.06Мб |
004 Building a Logistic Regression_en.vtt |
3.00Кб |
004 Building a Logistic Regression.mp4 |
8.61Мб |
004 Business Case Preprocessing_en.vtt |
11.75Кб |
004 Business Case Preprocessing.mp4 |
74.39Мб |
004 Business Case Preprocessing the Data_en.vtt |
11.73Кб |
004 Business Case Preprocessing the Data.mp4 |
73.82Мб |
004 Categorical-data.ipynb |
3.35Кб |
004 Categorical-data-with-comments.ipynb |
5.62Кб |
004 Categorical Variables Exercise.html |
81б |
004 Clustering Categorical Data_en.vtt |
2.88Кб |
004 Clustering Categorical Data.mp4 |
10.35Мб |
004 Communication between Software Products through Text Files_en.vtt |
4.84Кб |
004 Communication between Software Products through Text Files.mp4 |
17.26Мб |
004 Conditional Statements and Loops_en.vtt |
6.75Кб |
004 Conditional Statements and Loops.mp4 |
21.94Мб |
004 Confidence Interval Clarifications_en.vtt |
5.13Кб |
004 Confidence Interval Clarifications.mp4 |
18.56Мб |
004 Continuing with BI, ML, and AI_en.vtt |
10.51Кб |
004 Continuing with BI, ML, and AI.mp4 |
35.94Мб |
004 Discrete Distributions The Uniform Distribution_en.vtt |
2.51Кб |
004 Discrete Distributions The Uniform Distribution.mp4 |
10.08Мб |
004 Events and Their Complements_en.vtt |
6.28Кб |
004 Events and Their Complements.mp4 |
20.83Мб |
004 Exporting the Obtained Data Set as a .csv.html |
964б |
004 How to Use a Function within a Function_en.vtt |
1.82Кб |
004 How to Use a Function within a Function.mp4 |
3.25Мб |
004 Importing Modules in Python_en.vtt |
3.94Кб |
004 Importing Modules in Python.mp4 |
8.53Мб |
004 Installing Python and Jupyter_en.vtt |
8.00Кб |
004 Installing Python and Jupyter.mp4 |
32.86Мб |
004 Introduction to Terms with Multiple Meanings_en.vtt |
3.63Кб |
004 Introduction to Terms with Multiple Meanings.mp4 |
18.04Мб |
004 Learning Rate Schedules, or How to Choose the Optimal Learning Rate_en.vtt |
5.38Кб |
004 Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4 |
12.03Мб |
004 Math Prerequisites_en.vtt |
3.64Кб |
004 Math Prerequisites.mp4 |
5.10Мб |
004 Minimal-example-Part-4-Complete.ipynb |
11.41Кб |
004 MNIST Model Outline_en.vtt |
7.85Кб |
004 MNIST Model Outline.mp4 |
34.69Мб |
004 MNIST Preprocess the Data - Create a Validation Set and Scale It_en.vtt |
5.77Кб |
004 MNIST Preprocess the Data - Create a Validation Set and Scale It.mp4 |
22.93Мб |
004 Non-Linearities and their Purpose_en.vtt |
3.34Кб |
004 Non-Linearities and their Purpose.mp4 |
9.74Мб |
004 Parameters and Arguments in pandas_en.vtt |
4.89Кб |
004 Parameters and Arguments in pandas.mp4 |
15.45Мб |
004 Practical Example Linear Regression (Part 3)_en.vtt |
3.70Кб |
004 Practical Example Linear Regression (Part 3).mp4 |
16.68Мб |
004 Preprocessing Categorical Data_en.vtt |
2.51Кб |
004 Preprocessing Categorical Data.mp4 |
5.34Мб |
004 Python Packages Installation_en.vtt |
4.74Кб |
004 Python Packages Installation.mp4 |
23.70Мб |
004 Real Life Examples of Big Data_en.vtt |
1.66Кб |
004 Real Life Examples of Big Data.mp4 |
12.69Мб |
004 Scalars-Vectors-and-Matrices.ipynb |
4.55Кб |
004 Simple Linear Regression with sklearn - A StatsModels-like Summary Table_en.vtt |
6.08Кб |
004 Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4 |
28.88Мб |
004 sklearn-Linear-Regression-Practical-Example-Part-3.ipynb |
343.58Кб |
004 sklearn-Linear-Regression-Practical-Example-Part-3-.url |
97б |
004 sklearn-Linear-Regression-Practical-Example-Part-3-with-comments.ipynb |
351.47Кб |
004 sklearn-Simple-Linear-Regression.ipynb |
26.07Кб |
004 sklearn-Simple-Linear-Regression-with-comments.ipynb |
28.35Кб |
004 Solving Variations with Repetition_en.vtt |
3.21Кб |
004 Solving Variations with Repetition.mp4 |
13.75Мб |
004 Standardizing the Data_en.vtt |
3.67Кб |
004 Standardizing the Data.mp4 |
15.14Мб |
004 Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf |
289.12Кб |
004 TensorFlow-Audiobooks-Preprocessing.ipynb |
5.58Кб |
004 TensorFlow-Audiobooks-Preprocessing.ipynb |
5.58Кб |
004 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb |
11.19Кб |
004 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb |
11.19Кб |
004 TensorFlow Intro_en.vtt |
4.61Кб |
004 TensorFlow Intro.mp4 |
16.56Мб |
004 Test for Significance of the Model (F-Test)_en.vtt |
2.24Кб |
004 Test for Significance of the Model (F-Test).mp4 |
5.90Мб |
004 The Linear Model (Linear Algebraic Version)_en.vtt |
3.47Кб |
004 The Linear Model (Linear Algebraic Version).mp4 |
7.87Мб |
004 The Standard Normal Distribution_en.vtt |
3.65Кб |
004 The Standard Normal Distribution.mp4 |
8.62Мб |
004 Training, Validation, and Test Datasets_en.vtt |
2.99Кб |
004 Training, Validation, and Test Datasets.mp4 |
7.74Мб |
004 Triple Nested For Loops_en.vtt |
7.05Кб |
004 Triple Nested For Loops.mp4 |
19.40Мб |
004 Tuples_en.vtt |
6.33Кб |
004 Tuples.mp4 |
16.27Мб |
004 Tuples-Exercise-Py3.ipynb |
2.07Кб |
004 Tuples-Lecture-Py3.ipynb |
2.91Кб |
004 Tuples-Solution-Py3.ipynb |
4.61Кб |
004 Type I Error and Type II Error_en.vtt |
4.64Кб |
004 Type I Error and Type II Error.mp4 |
18.17Мб |
004 Union of Sets_en.vtt |
5.34Кб |
004 Union of Sets.mp4 |
19.47Мб |
004 Use-Conditional-Statements-and-Loops-Together-Exercise-Py3.ipynb |
2.10Кб |
004 Use-Conditional-Statements-and-Loops-Together-Lecture-Py3.ipynb |
1.95Кб |
004 Use-Conditional-Statements-and-Loops-Together-Solution-Py3.ipynb |
2.96Кб |
005 1.01.Simple-linear-regression.csv |
922б |
005 1.04.Real-life-example.csv |
219.83Кб |
005 12.5.TensorFlow-MNIST-with-comments-Part-3.ipynb |
7.31Кб |
005 2.4.Numerical-variables.Frequency-distribution-table-lesson.xlsx |
11.44Кб |
005 3.4.Standard-normal-distribution-exercise.xlsx |
11.99Кб |
005 3.4.Standard-normal-distribution-exercise-solution.xlsx |
24.04Кб |
005 365-DataScience.png |
6.92Мб |
005 4.4.Test-for-the-mean.Population-variance-known-lesson.xlsx |
10.96Кб |
005 A Breakdown of our Data Science Infographic_en.vtt |
4.53Кб |
005 A Breakdown of our Data Science Infographic.mp4 |
33.95Мб |
005 Activation Functions_en.vtt |
4.64Кб |
005 Activation Functions.mp4 |
8.53Мб |
005 Actual Introduction to TensorFlow_en.vtt |
2.00Кб |
005 Actual Introduction to TensorFlow.mp4 |
6.17Мб |
005 All-In-Exercise-Py3.ipynb |
1.30Кб |
005 All-In-Lecture-Py3.ipynb |
1.62Кб |
005 All-In-Solution-Py3.ipynb |
1.90Кб |
005 A Note on Normalization.html |
729б |
005 An Overview of RNNs_en.vtt |
3.34Кб |
005 An Overview of RNNs.mp4 |
6.75Мб |
005 Audiobooks-data.csv |
710.77Кб |
005 Basic NN Example Exercises.html |
1.65Кб |
005 Binary and One-Hot Encoding_en.vtt |
4.19Кб |
005 Binary and One-Hot Encoding.mp4 |
8.36Мб |
005 Building a Logistic Regression - Exercise.html |
87б |
005 Building-a-Logistic-Regression-Exercise.ipynb |
2.92Кб |
005 Building-a-Logistic-Regression-Solution.ipynb |
4.44Кб |
005 Business Case Preprocessing Exercise.html |
379б |
005 Business Case Preprocessing the Data - Exercise.html |
370б |
005 Business Intelligence (BI) Techniques_en.vtt |
7.79Кб |
005 Business Intelligence (BI) Techniques.mp4 |
51.34Мб |
005 Categorical.csv |
10.34Кб |
005 Clustering Categorical Data - Exercise.html |
87б |
005 Clustering-Categorical-Data-Exercise.ipynb |
3.78Кб |
005 Clustering-Categorical-Data-Solution.ipynb |
4.90Кб |
005 Combining-Conditional-Statements-and-Functions-Exercise-Py3.ipynb |
1.06Кб |
005 Combining-Conditional-Statements-and-Functions-Lecture-Py3.ipynb |
1.29Кб |
005 Combining-Conditional-Statements-and-Functions-Solution-Py3.ipynb |
1.65Кб |
005 Conditional Statements, Functions, and Loops_en.vtt |
2.05Кб |
005 Conditional Statements, Functions, and Loops.mp4 |
4.27Мб |
005 Conditional Statements and Functions_en.vtt |
3.13Кб |
005 Conditional Statements and Functions.mp4 |
6.04Мб |
005 Dictionaries_en.vtt |
7.82Кб |
005 Dictionaries.mp4 |
24.91Мб |
005 Dictionaries-Exercise-Py3.ipynb |
2.92Кб |
005 Dictionaries-Lecture-Py3.ipynb |
4.35Кб |
005 Dictionaries-Solution-Py3.ipynb |
6.16Кб |
005 Discrete Distributions The Bernoulli Distribution_en.vtt |
3.78Кб |
005 Discrete Distributions The Bernoulli Distribution.mp4 |
14.76Мб |
005 Dummies and Variance Inflation Factor - Exercise.html |
76б |
005 Example-bank-data.csv |
6.21Кб |
005 EXERCISE - Transportation Expense vs Probability.html |
529б |
005 First Regression in Python_en.vtt |
6.96Кб |
005 First Regression in Python.mp4 |
29.63Мб |
005 Learning Rate Schedules Visualized_en.vtt |
1.89Кб |
005 Learning Rate Schedules Visualized.mp4 |
3.07Мб |
005 Line-Continuation-Exercise-Py3.ipynb |
1.14Кб |
005 Line-Continuation-Lecture-Py3.ipynb |
779б |
005 Line-Continuation-Solution-Py3.ipynb |
1.50Кб |
005 List Comprehensions_en.vtt |
10.85Кб |
005 List Comprehensions.mp4 |
43.23Мб |
005 Minimal-example-All-Exercises.ipynb |
12.89Кб |
005 Minimal-example-Exercise-1-Solution.ipynb |
69.00Кб |
005 Minimal-example-Exercise-2-Solution.ipynb |
61.41Кб |
005 Minimal-example-Exercise-3.a.Solution.ipynb |
67.89Кб |
005 Minimal-example-Exercise-3.b.Solution.ipynb |
67.72Кб |
005 Minimal-example-Exercise-3.c.Solution.ipynb |
70.13Кб |
005 Minimal-example-Exercise-3.d.Solution.ipynb |
84.13Кб |
005 Minimal-example-Exercise-4-Solution.ipynb |
66.52Кб |
005 Minimal-example-Exercise-5-Solution.ipynb |
68.88Кб |
005 Minimal-example-Exercise-6.ipynb |
61.76Кб |
005 Minimal-example-Exercise-6-Solution.ipynb |
61.76Кб |
005 MNIST Loss and Optimization Algorithm_en.vtt |
3.14Кб |
005 MNIST Loss and Optimization Algorithm.mp4 |
11.55Мб |
005 MNIST Preprocess the Data - Scale the Test Data - Exercise.html |
79б |
005 Mutually Exclusive Sets_en.vtt |
2.34Кб |
005 Mutually Exclusive Sets.mp4 |
8.57Мб |
005 N-Fold Cross Validation_en.vtt |
3.77Кб |
005 N-Fold Cross Validation.mp4 |
6.03Мб |
005 Numerical Variables - Frequency Distribution Table_en.vtt |
3.88Кб |
005 Numerical Variables - Frequency Distribution Table.mp4 |
12.80Мб |
005 OLS Assumptions_en.vtt |
2.63Кб |
005 OLS Assumptions.mp4 |
5.12Мб |
005 Shortcuts-for-Jupyter.pdf |
619.17Кб |
005 Simple-linear-regression.ipynb |
3.79Кб |
005 Simple-linear-regression-with-comments.ipynb |
4.06Кб |
005 sklearn-Dummies-and-VIF-Exercise.ipynb |
344.62Кб |
005 sklearn-Dummies-and-VIF-Exercise-Solution.ipynb |
370.22Кб |
005 Software Integration - Explained_en.vtt |
6.03Кб |
005 Software Integration - Explained.mp4 |
41.99Мб |
005 Solving Variations without Repetition_en.vtt |
4.16Кб |
005 Solving Variations without Repetition.mp4 |
14.76Мб |
005 Splitting the Data for Training and Testing_en.vtt |
7.40Кб |
005 Splitting the Data for Training and Testing.mp4 |
36.12Мб |
005 Student's T Distribution_en.vtt |
3.75Кб |
005 Student's T Distribution.mp4 |
13.33Мб |
005 TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb |
8.60Кб |
005 TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb |
8.60Кб |
005 TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb |
10.04Кб |
005 TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb |
10.03Кб |
005 TensorFlow-Minimal-example-Part1.ipynb |
1.66Кб |
005 TensorFlow-MNIST-Part2-with-comments.ipynb |
6.39Кб |
005 Tensors.ipynb |
2.08Кб |
005 Test for the Mean. Population Variance Known_en.vtt |
7.34Кб |
005 Test for the Mean. Population Variance Known.mp4 |
36.96Мб |
005 The Linear Model with Multiple Inputs_en.vtt |
2.85Кб |
005 The Linear Model with Multiple Inputs.mp4 |
7.77Мб |
005 The Standard Normal Distribution Exercise.html |
81б |
005 Types of File Formats Supporting TensorFlow_en.vtt |
3.08Кб |
005 Types of File Formats Supporting TensorFlow.mp4 |
7.25Мб |
005 Understanding Jupyter's Interface - the Notebook Dashboard_en.vtt |
3.25Кб |
005 Understanding Jupyter's Interface - the Notebook Dashboard.mp4 |
6.06Мб |
005 Understanding Line Continuation_en.vtt |
1.01Кб |
005 Understanding Line Continuation.mp4 |
1.20Мб |
005 Using .unique() and .nunique()_en.vtt |
4.91Кб |
005 Using .unique() and .nunique().mp4 |
26.33Мб |
005 What's Regression Analysis - a Quick Refresher.html |
2.80Кб |
005 What is a Tensor_en.vtt |
3.24Кб |
005 What is a Tensor.mp4 |
11.61Мб |
006 1.04.Real-life-example.csv |
219.83Кб |
006 12.6.TensorFlow-MNIST-with-comments-Part-4.ipynb |
7.90Кб |
006 2.4.Numerical-variables.Frequency-distribution-table-exercise-solution.xlsx |
13.15Кб |
006 3.11.Population-variance-unknown-t-score-lesson.xlsx |
10.78Кб |
006 3.11.The-t-table.xlsx |
15.85Кб |
006 4.4.Test-for-the-mean.Population-variance-known-exercise.xlsx |
11.03Кб |
006 4.4.Test-for-the-mean.Population-variance-known-exercise-solution.xlsx |
11.22Кб |
006 5.3.TensorFlow-Minimal-example-Part-1.ipynb |
3.36Кб |
006 A1 Linearity_en.vtt |
2.09Кб |
006 A1 Linearity.mp4 |
3.45Мб |
006 Activation Functions Softmax Activation_en.vtt |
3.97Кб |
006 Activation Functions Softmax Activation.mp4 |
8.42Мб |
006 Adaptive Learning Rate Schedules (AdaGrad and RMSprop )_en.vtt |
4.59Кб |
006 Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp4 |
8.24Мб |
006 Adding-and-subtracting-matrices.ipynb |
3.22Кб |
006 Additional-Python-Tools-Exercises.ipynb |
11.37Кб |
006 Additional-Python-Tools-Lectures.ipynb |
13.47Кб |
006 Additional-Python-Tools-Solutions.ipynb |
25.49Кб |
006 Addition and Subtraction of Matrices_en.vtt |
3.49Кб |
006 Addition and Subtraction of Matrices.mp4 |
22.08Мб |
006 Analyzing Transportation Expense vs Probability in Tableau_en.vtt |
6.45Кб |
006 Analyzing Transportation Expense vs Probability in Tableau.mp4 |
16.48Мб |
006 An Invaluable Coding Tip_en.vtt |
2.74Кб |
006 An Invaluable Coding Tip.mp4 |
16.77Мб |
006 Anonymous (Lambda) Functions_en.vtt |
8.75Кб |
006 Anonymous (Lambda) Functions.mp4 |
33.71Мб |
006 An Overview of non-NN Approaches_en.vtt |
4.68Кб |
006 An Overview of non-NN Approaches.mp4 |
15.65Мб |
006 Business Case Load the Preprocessed Data_en.vtt |
4.20Кб |
006 Business Case Load the Preprocessed Data.mp4 |
13.80Мб |
006 Calculating the Accuracy of the Model_en.vtt |
4.64Кб |
006 Calculating the Accuracy of the Model.mp4 |
16.64Мб |
006 Central Limit Theorem_en.vtt |
5.01Кб |
006 Central Limit Theorem.mp4 |
22.86Мб |
006 Combinations-With-Repetition.pdf |
207.41Кб |
006 Confidence Intervals; Population Variance Unknown; T-score_en.vtt |
5.00Кб |
006 Confidence Intervals; Population Variance Unknown; T-score.mp4 |
11.58Мб |
006 Creating a Data Provider_en.vtt |
6.84Кб |
006 Creating a Data Provider.mp4 |
56.23Мб |
006 Creating-Functions-Containing-a-Few-Arguments-Lecture-Py3.ipynb |
1.72Кб |
006 Dependence and Independence of Sets_en.vtt |
3.05Кб |
006 Dependence and Independence of Sets.mp4 |
11.98Мб |
006 Discrete Distributions The Binomial Distribution_en.vtt |
7.67Кб |
006 Discrete Distributions The Binomial Distribution.mp4 |
24.94Мб |
006 Early Stopping or When to Stop Training_en.vtt |
5.98Кб |
006 Early Stopping or When to Stop Training.mp4 |
8.50Мб |
006 First Regression in Python Exercise.html |
1.31Кб |
006 Fitting the Model and Assessing its Accuracy_en.vtt |
6.35Кб |
006 Fitting the Model and Assessing its Accuracy.mp4 |
35.29Мб |
006 Functions Containing a Few Arguments_en.vtt |
1.16Кб |
006 Functions Containing a Few Arguments.mp4 |
2.83Мб |
006 How to Choose the Number of Clusters_en.vtt |
6.49Кб |
006 How to Choose the Number of Clusters.mp4 |
19.79Мб |
006 How to Iterate over Dictionaries_en.vtt |
6.64Кб |
006 How to Iterate over Dictionaries.mp4 |
16.46Мб |
006 Indexing Elements_en.vtt |
1.43Кб |
006 Indexing Elements.mp4 |
2.36Мб |
006 Indexing-Elements-Exercise-Py3.ipynb |
1.35Кб |
006 Indexing-Elements-Lecture-Py3.ipynb |
1.32Кб |
006 Indexing-Elements-Solution-Py3.ipynb |
2.17Кб |
006 Iterating-over-Dictionaries-Exercise-Py3.ipynb |
2.19Кб |
006 Iterating-over-Dictionaries-Lecture-Py3.ipynb |
1.08Кб |
006 Iterating-over-Dictionaries-Solution-Py3.ipynb |
2.87Кб |
006 MNIST Preprocess the Data - Shuffle and Batch_en.vtt |
8.32Кб |
006 MNIST Preprocess the Data - Shuffle and Batch.mp4 |
32.71Мб |
006 Numerical Variables Exercise.html |
81б |
006 Outlining the Model with TensorFlow 2_en.vtt |
6.99Кб |
006 Outlining the Model with TensorFlow 2.mp4 |
26.99Мб |
006 Practical Example Linear Regression (Part 4)_en.vtt |
10.22Кб |
006 Practical Example Linear Regression (Part 4).mp4 |
29.84Мб |
006 Prerequisites for Coding in the Jupyter Notebooks_en.vtt |
6.73Кб |
006 Prerequisites for Coding in the Jupyter Notebooks.mp4 |
15.38Мб |
006 real-estate-price-size.csv |
1.86Кб |
006 real-estate-price-size.csv |
1.86Кб |
006 Real Life Examples of Business Intelligence (BI)_en.vtt |
1.90Кб |
006 Real Life Examples of Business Intelligence (BI).mp4 |
19.35Мб |
006 Selecting-the-number-of-clusters.ipynb |
4.53Кб |
006 Selecting-the-number-of-clusters-with-comments.ipynb |
7.48Кб |
006 Simple-Linear-Regression-Exercise.ipynb |
2.78Кб |
006 Simple-Linear-Regression-Exercise-Solution.ipynb |
3.57Кб |
006 Simple Linear Regression with sklearn - Exercise.html |
76б |
006 Simple-Linear-Regression-with-sklearn-Exercise.ipynb |
4.08Кб |
006 Simple-Linear-Regression-with-sklearn-Exercise-Solution.ipynb |
26.61Кб |
006 sklearn-Linear-Regression-Practical-Example-Part-4.ipynb |
397.23Кб |
006 sklearn-Linear-Regression-Practical-Example-Part-4-with-comments.ipynb |
407.59Кб |
006 Solving Combinations_en.vtt |
5.05Кб |
006 Solving Combinations.mp4 |
18.99Мб |
006 TensorFlow-Minimal-example-Part2.ipynb |
9.06Кб |
006 Test for the Mean. Population Variance Known Exercise.html |
81б |
006 The Linear model with Multiple Inputs and Multiple Outputs_en.vtt |
4.81Кб |
006 The Linear model with Multiple Inputs and Multiple Outputs.mp4 |
16.23Мб |
006 Types of File Formats, supporting Tensors_en.vtt |
2.90Кб |
006 Types of File Formats, supporting Tensors.mp4 |
8.90Мб |
006 Using .sort_values()_en.vtt |
4.87Кб |
006 Using .sort_values().mp4 |
13.20Мб |
006 Using a Statistical Approach towards the Solution to the Exercise_en.vtt |
2.55Кб |
006 Using a Statistical Approach towards the Solution to the Exercise.mp4 |
9.90Мб |
007 1.02.Multiple-linear-regression.csv |
1.07Кб |
007 12.7.TensorFlow-MNIST-with-comments-Part-5.ipynb |
8.53Кб |
007 2.5.The-Histogram-lesson.xlsx |
18.63Кб |
007 3.11.Population-variance-unknown-t-score-exercise.xlsx |
10.62Кб |
007 3.11.Population-variance-unknown-t-score-exercise-solution.xlsx |
11.10Кб |
007 3.11.The-t-table.xlsx |
15.85Кб |
007 5.4.TensorFlow-Minimal-example-Part-2.ipynb |
6.17Кб |
007 A2 No Endogeneity_en.vtt |
4.62Кб |
007 A2 No Endogeneity.mp4 |
8.99Мб |
007 Adam (Adaptive Moment Estimation)_en.vtt |
2.98Кб |
007 Adam (Adaptive Moment Estimation).mp4 |
6.88Мб |
007 Backpropagation_en.vtt |
3.94Кб |
007 Backpropagation.mp4 |
19.49Мб |
007 Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases_en.vtt |
6.63Кб |
007 Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp4 |
28.00Мб |
007 Built-in Functions in Python_en.vtt |
3.74Кб |
007 Built-in Functions in Python.mp4 |
8.50Мб |
007 Business Case Load the Preprocessed Data - Exercise.html |
79б |
007 Business Case Model Outline_en.vtt |
6.19Кб |
007 Business Case Model Outline.mp4 |
42.48Мб |
007 Confidence Intervals; Population Variance Unknown; T-score; Exercise.html |
81б |
007 Countries-exercise.csv |
8.27Кб |
007 Creating a Summary Table with the Coefficients and Intercept_en.vtt |
5.81Кб |
007 Creating a Summary Table with the Coefficients and Intercept.mp4 |
26.98Мб |
007 Discrete Distributions The Poisson Distribution_en.vtt |
5.85Кб |
007 Discrete Distributions The Poisson Distribution.mp4 |
14.62Мб |
007 Dropping a Column from a DataFrame in Python_en.vtt |
6.79Кб |
007 Dropping a Column from a DataFrame in Python.mp4 |
41.30Мб |
007 Dummy Variables - Exercise.html |
705б |
007 Errors when Adding Matrices_en.vtt |
2.30Кб |
007 Errors when Adding Matrices.mp4 |
6.46Мб |
007 Errors-when-adding-scalars-vectors-and-matrices-in-Python.ipynb |
3.17Кб |
007 Graphical Representation of Simple Neural Networks_en.vtt |
2.44Кб |
007 Graphical Representation of Simple Neural Networks.mp4 |
6.35Мб |
007 How to Choose the Number of Clusters - Exercise.html |
87б |
007 How-to-Choose-the-Number-of-Clusters-Exercise.ipynb |
5.55Кб |
007 How-to-Choose-the-Number-of-Clusters-Solution.ipynb |
8.49Кб |
007 Interpreting the Result and Extracting the Weights and Bias_en.vtt |
5.48Кб |
007 Interpreting the Result and Extracting the Weights and Bias.mp4 |
13.67Мб |
007 Introduction to pandas DataFrames - Part I_en.vtt |
6.22Кб |
007 Introduction to pandas DataFrames - Part I.mp4 |
10.60Мб |
007 MNIST Batching and Early Stopping_en.vtt |
2.50Кб |
007 MNIST Batching and Early Stopping.mp4 |
8.70Мб |
007 MNIST Preprocess the Data - Shuffle and Batch - Exercise.html |
79б |
007 Multiple Linear Regression with sklearn_en.vtt |
3.80Кб |
007 Multiple Linear Regression with sklearn.mp4 |
9.81Мб |
007 Notable-Built-In-Functions-in-Python-Exercise-Py3.ipynb |
3.66Кб |
007 Notable-Built-In-Functions-in-Python-Lecture-Py3.ipynb |
4.51Кб |
007 Notable-Built-In-Functions-in-Python-Solution-Py3.ipynb |
5.52Кб |
007 Online-p-value-calculator.pdf |
1.15Мб |
007 Poisson-Expected-Value-and-Variance.pdf |
145.99Кб |
007 p-value_en.vtt |
4.75Кб |
007 p-value.mp4 |
33.08Мб |
007 sklearn-Multiple-Linear-Regression.ipynb |
7.79Кб |
007 sklearn-Multiple-Linear-Regression-with-comments.ipynb |
8.65Кб |
007 Standard error_en.vtt |
1.69Кб |
007 Standard error.mp4 |
13.33Мб |
007 Structure-Your-Code-with-Indentation-Exercise-Py3.ipynb |
956б |
007 Structure-Your-Code-with-Indentation-Lecture-Py3.ipynb |
958б |
007 Structure-Your-Code-with-Indentation-Solution-Py3.ipynb |
1.50Кб |
007 Structuring with Indentation_en.vtt |
1.92Кб |
007 Structuring with Indentation.mp4 |
2.80Мб |
007 Symmetry-Explained.pdf |
85.04Кб |
007 Symmetry of Combinations_en.vtt |
3.74Кб |
007 Symmetry of Combinations.mp4 |
13.50Мб |
007 Techniques for Working with Traditional Methods_en.vtt |
9.84Кб |
007 Techniques for Working with Traditional Methods.mp4 |
74.75Мб |
007 TensorFlow-Audiobooks-Machine-Learning-Part1-with-comments.ipynb |
4.61Кб |
007 TensorFlow-Audiobooks-Outlining-the-model.ipynb |
9.36Кб |
007 TensorFlow-Audiobooks-Outlining-the-model-with-comments.ipynb |
10.34Кб |
007 TensorFlow-Minimal-example-Part3.ipynb |
76.52Кб |
007 TensorFlow-MNIST-Part3-with-comments.ipynb |
8.61Кб |
007 The Conditional Probability Formula_en.vtt |
4.66Кб |
007 The Conditional Probability Formula.mp4 |
16.33Мб |
007 The Histogram_en.vtt |
2.77Кб |
007 The Histogram.mp4 |
9.59Мб |
007 Understanding Logistic Regression Tables_en.vtt |
4.82Кб |
007 Understanding Logistic Regression Tables.mp4 |
12.89Мб |
007 Using Seaborn for Graphs_en.vtt |
1.35Кб |
007 Using Seaborn for Graphs.mp4 |
7.37Мб |
008 1.02.Multiple-linear-regression.csv |
1.07Кб |
008 1.04.Real-life-example.csv |
219.83Кб |
008 12.8.TensorFlow-MNIST-with-comments-Part-6.ipynb |
11.50Кб |
008 2.5.The-Histogram-exercise.xlsx |
15.50Кб |
008 2.5.The-Histogram-exercise-solution.xlsx |
17.10Кб |
008 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx |
14.54Кб |
008 5.5.TensorFlow-Minimal-example-Part-3.ipynb |
8.65Кб |
008 A3 Normality and Homoscedasticity_en.vtt |
5.75Кб |
008 A3 Normality and Homoscedasticity.mp4 |
27.39Мб |
008 Backpropagation Picture_en.vtt |
3.67Кб |
008 Backpropagation Picture.mp4 |
7.68Мб |
008 Bank-data.csv |
19.55Кб |
008 Basic NN Example with TF Loss Function and Gradient Descent_en.vtt |
4.17Кб |
008 Basic NN Example with TF Loss Function and Gradient Descent.mp4 |
15.72Мб |
008 Business Case Learning and Interpreting the Result_en.vtt |
5.45Кб |
008 Business Case Learning and Interpreting the Result.mp4 |
27.77Мб |
008 Business Case Optimization_en.vtt |
5.69Кб |
008 Business Case Optimization.mp4 |
26.95Мб |
008 Calculating the Adjusted R-Squared in sklearn_en.vtt |
5.78Кб |
008 Calculating the Adjusted R-Squared in sklearn.mp4 |
16.92Мб |
008 Characteristics of Continuous Distributions_en.vtt |
7.81Кб |
008 Characteristics of Continuous Distributions.mp4 |
28.87Мб |
008 Customizing a TensorFlow 2 Model_en.vtt |
3.65Кб |
008 Customizing a TensorFlow 2 Model.mp4 |
16.78Мб |
008 Estimators and Estimates_en.vtt |
3.40Кб |
008 Estimators and Estimates.mp4 |
16.13Мб |
008 EXERCISE - Dropping a Column from a DataFrame in Python.html |
864б |
008 Histogram Exercise.html |
81б |
008 How to Interpret the Regression Table_en.vtt |
5.75Кб |
008 How to Interpret the Regression Table.mp4 |
28.72Мб |
008 Interpreting the Coefficients for Our Problem_en.vtt |
7.06Кб |
008 Interpreting the Coefficients for Our Problem.mp4 |
34.40Мб |
008 Introduction to pandas DataFrames - Part II_en.vtt |
6.70Кб |
008 Introduction to pandas DataFrames - Part II.mp4 |
17.83Мб |
008 Margin of Error_en.vtt |
5.51Кб |
008 Margin of Error.mp4 |
22.66Мб |
008 MNIST Learning_en.vtt |
8.74Кб |
008 MNIST Learning.mp4 |
31.87Мб |
008 MNIST Outline the Model_en.vtt |
6.32Кб |
008 MNIST Outline the Model.mp4 |
22.09Мб |
008 Practical Example Linear Regression (Part 5)_en.vtt |
9.20Кб |
008 Practical Example Linear Regression (Part 5).mp4 |
50.42Мб |
008 Pros and Cons of K-Means Clustering_en.vtt |
4.07Кб |
008 Pros and Cons of K-Means Clustering.mp4 |
10.93Мб |
008 Real Life Examples of Traditional Methods_en.vtt |
3.12Кб |
008 Real Life Examples of Traditional Methods.mp4 |
21.17Мб |
008 sklearn-Linear-Regression-Practical-Example-Part-5.ipynb |
698.36Кб |
008 sklearn-Linear-Regression-Practical-Example-Part-5-with-comments.ipynb |
711.05Кб |
008 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared.ipynb |
9.11Кб |
008 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-with-comments.ipynb |
10.41Кб |
008 Solving Combinations with Separate Sample Spaces_en.vtt |
3.37Кб |
008 Solving Combinations with Separate Sample Spaces.mp4 |
12.87Мб |
008 Solving-Integrals.pdf |
343.85Кб |
008 Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf |
289.12Кб |
008 TensorFlow-Audiobooks-Machine-Learning-Part2-with-comments.ipynb |
19.69Кб |
008 TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb |
10.64Кб |
008 TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb |
12.73Кб |
008 TensorFlow-Minimal-example-complete.ipynb |
76.85Кб |
008 TensorFlow-Minimal-example-complete-with-comments.ipynb |
82.29Кб |
008 TensorFlow-MNIST-Part4-with-comments.ipynb |
10.49Кб |
008 Test for the Mean. Population Variance Unknown_en.vtt |
5.44Кб |
008 Test for the Mean. Population Variance Unknown.mp4 |
19.72Мб |
008 The Law of Total Probability_en.vtt |
3.01Кб |
008 The Law of Total Probability.mp4 |
11.39Мб |
008 Tranpose-of-a-matrix.ipynb |
2.89Кб |
008 Transpose of a Matrix_en.vtt |
4.98Кб |
008 Transpose of a Matrix.mp4 |
20.49Мб |
008 Understanding Logistic Regression Tables - Exercise.html |
87б |
008 Understanding-Logistic-Regression-Tables-Exercise.ipynb |
3.16Кб |
008 Understanding-Logistic-Regression-Tables-Solution.ipynb |
4.79Кб |
008 What is the Objective Function_en.vtt |
1.88Кб |
008 What is the Objective Function.mp4 |
6.03Мб |
009 1.02.Multiple-linear-regression.csv |
1.07Кб |
009 12.9.TensorFlow-MNIST-with-comments.ipynb |
13.03Кб |
009 2.6.Cross-table-and-scatter-plot.xlsx |
26.12Кб |
009 3.13.Confidence-intervals.Two-means.Dependent-samples-lesson.xlsx |
10.47Кб |
009 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx |
11.34Кб |
009 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx |
12.63Кб |
009 5.6.TensorFlow-Minimal-example-complete.ipynb |
12.15Кб |
009 A4 No Autocorrelation_en.vtt |
4.23Кб |
009 A4 No Autocorrelation.mp4 |
7.67Мб |
009 Backpropagation - A Peek into the Mathematics of Optimization.html |
539б |
009 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf |
182.38Кб |
009 Basic NN Example with TF Model Output_en.vtt |
6.71Кб |
009 Basic NN Example with TF Model Output.mp4 |
17.09Мб |
009 Basic NN with TensorFlow Exercises.html |
1.28Кб |
009 Business Case Interpretation_en.vtt |
2.58Кб |
009 Business Case Interpretation.mp4 |
18.59Мб |
009 Business Case Setting an Early Stopping Mechanism_en.vtt |
6.98Кб |
009 Business Case Setting an Early Stopping Mechanism.mp4 |
43.81Мб |
009 Calculating the Adjusted R-Squared in sklearn - Exercise.html |
76б |
009 Combinatorics in Real-Life The Lottery_en.vtt |
3.66Кб |
009 Combinatorics in Real-Life The Lottery.mp4 |
16.16Мб |
009 Common Objective Functions L2-norm Loss_en.vtt |
2.44Кб |
009 Common Objective Functions L2-norm Loss.mp4 |
5.41Мб |
009 Confidence intervals. Two means. Dependent samples_en.vtt |
7.23Кб |
009 Confidence intervals. Two means. Dependent samples.mp4 |
45.04Мб |
009 Continuous Distributions The Normal Distribution_en.vtt |
4.34Кб |
009 Continuous Distributions The Normal Distribution.mp4 |
19.67Мб |
009 Cross Tables and Scatter Plots_en.vtt |
5.91Кб |
009 Cross Tables and Scatter Plots.mp4 |
19.69Мб |
009 Decomposition of Variability_en.vtt |
3.69Кб |
009 Decomposition of Variability.mp4 |
8.62Мб |
009 Dot Product_en.vtt |
3.75Кб |
009 Dot-product.ipynb |
2.13Кб |
009 Dot Product.mp4 |
11.36Мб |
009 Linear Regression - Exercise.html |
497б |
009 Logistic-Regression-prior-to-Custom-Scaler.url |
182б |
009 Machine Learning (ML) Techniques_en.vtt |
7.83Кб |
009 Machine Learning (ML) Techniques.mp4 |
47.78Мб |
009 MNIST Results and Testing_en.vtt |
7.26Кб |
009 MNIST Results and Testing.mp4 |
38.19Мб |
009 MNIST Select the Loss and the Optimizer_en.vtt |
2.75Кб |
009 MNIST Select the Loss and the Optimizer.mp4 |
10.65Мб |
009 Normal-Distribution-Exp-and-Var.pdf |
144.08Кб |
009 pandas DataFrames - Common Attributes_en.vtt |
5.52Кб |
009 pandas DataFrames - Common Attributes.mp4 |
29.80Мб |
009 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise.ipynb |
9.83Кб |
009 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise-Solution.ipynb |
10.31Кб |
009 SOLUTION - Dropping a Column from a DataFrame in Python.html |
114б |
009 Standardizing only the Numerical Variables (Creating a Custom Scaler)_en.vtt |
4.40Кб |
009 Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4 |
28.02Мб |
009 TensorFlow-Audiobooks-Machine-Learning-Part3-with-comments.ipynb |
10.06Кб |
009 TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb |
10.64Кб |
009 TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb |
12.73Кб |
009 TensorFlow-Minimal-example-All-exercises.ipynb |
83.62Кб |
009 TensorFlow-Minimal-example-Exercise-1-Solution.ipynb |
27.96Кб |
009 TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb |
83.68Кб |
009 TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb |
77.52Кб |
009 TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb |
84.44Кб |
009 TensorFlow-MNIST-Part5-with-comments.ipynb |
10.99Кб |
009 Test for the Mean. Population Variance Unknown Exercise.html |
81б |
009 The Additive Rule_en.vtt |
2.48Кб |
009 The Additive Rule.mp4 |
10.89Мб |
009 To Standardize or not to Standardize_en.vtt |
5.32Кб |
009 To Standardize or not to Standardize.mp4 |
10.50Мб |
009 What do the Odds Actually Mean_en.vtt |
4.42Кб |
009 What do the Odds Actually Mean.mp4 |
11.38Мб |
010 1.02.Multiple-linear-regression.csv |
1.07Кб |
010 2.02.Binary-predictors.csv |
2.56Кб |
010 2.6.Cross-table-and-scatter-plot-exercise.xlsx |
16.28Кб |
010 2.6.Cross-table-and-scatter-plot-exercise-solution.xlsx |
40.44Кб |
010 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise.xlsx |
13.74Кб |
010 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise-solution.xlsx |
14.24Кб |
010 4.7.Test-for-the-mean.Dependent-samples-lesson.xlsx |
9.79Кб |
010 A5 No Multicollinearity_en.vtt |
4.10Кб |
010 A5 No Multicollinearity.mp4 |
7.36Мб |
010 Analyzing the Reasons for Absence_en.vtt |
5.39Кб |
010 Analyzing the Reasons for Absence.mp4 |
27.63Мб |
010 A Recap of Combinatorics_en.vtt |
3.27Кб |
010 A Recap of Combinatorics.mp4 |
12.00Мб |
010 Basic NN Example with TF Exercises.html |
1.58Кб |
010 Binary-predictors.ipynb |
2.41Кб |
010 Binary Predictors in a Logistic Regression_en.vtt |
4.98Кб |
010 Binary Predictors in a Logistic Regression.mp4 |
18.47Мб |
010 Business Case Testing the Model_en.vtt |
2.36Кб |
010 Business Case Testing the Model.mp4 |
4.39Мб |
010 Common Objective Functions Cross-Entropy Loss_en.vtt |
4.89Кб |
010 Common Objective Functions Cross-Entropy Loss.mp4 |
9.68Мб |
010 Confidence intervals. Two means. Dependent samples Exercise.html |
81б |
010 Continuous Distributions The Standard Normal Distribution_en.vtt |
4.81Кб |
010 Continuous Distributions The Standard Normal Distribution.mp4 |
20.72Мб |
010 Cross Tables and Scatter Plots Exercise.html |
81б |
010 Data Selection in pandas DataFrames_en.vtt |
8.81Кб |
010 Data Selection in pandas DataFrames.mp4 |
37.28Мб |
010 Dot Product of Matrices_en.vtt |
8.34Кб |
010 Dot Product of Matrices.mp4 |
26.42Мб |
010 Dot-product-Part-2.ipynb |
3.60Кб |
010 Feature Selection (F-regression)_en.vtt |
5.89Кб |
010 Feature Selection (F-regression).mp4 |
15.68Мб |
010 Interpreting the Coefficients of the Logistic Regression_en.vtt |
6.40Кб |
010 Interpreting the Coefficients of the Logistic Regression.mp4 |
15.22Мб |
010 MNIST Exercises.html |
2.16Кб |
010 MNIST Learning_en.vtt |
6.85Кб |
010 MNIST Learning.mp4 |
31.03Мб |
010 Relationship between Clustering and Regression_en.vtt |
1.97Кб |
010 Relationship between Clustering and Regression.mp4 |
3.39Мб |
010 Setting an Early Stopping Mechanism - Exercise.html |
192б |
010 sklearn-Feature-Selection-with-F-regression.ipynb |
10.44Кб |
010 sklearn-Feature-Selection-with-F-regression-with-comments.ipynb |
12.99Кб |
010 TensorFlow-Minimal-Example-All-Exercises.ipynb |
13.97Кб |
010 TensorFlow-Minimal-Example-Exercise-1-Solution.ipynb |
23.63Кб |
010 TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb |
25.54Кб |
010 TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb |
25.51Кб |
010 TensorFlow-Minimal-Example-Exercise-2-3-Solution.ipynb |
49.96Кб |
010 TensorFlow-Minimal-Example-Exercise-2-4-Solution.ipynb |
21.75Кб |
010 TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb |
26.71Кб |
010 TensorFlow-Minimal-Example-Exercise-4-Solution.ipynb |
26.98Кб |
010 TensorFlow-MNIST-Exercises-All.ipynb |
15.47Кб |
010 TensorFlow-MNIST-Part6-with-comments.ipynb |
12.54Кб |
010 Test for the Mean. Dependent Samples_en.vtt |
5.96Кб |
010 Test for the Mean. Dependent Samples.mp4 |
32.80Мб |
010 The Multiplication Law_en.vtt |
4.13Кб |
010 The Multiplication Law.mp4 |
19.80Мб |
010 Types of Machine Learning_en.vtt |
9.23Кб |
010 Types of Machine Learning.mp4 |
61.78Мб |
010 What is the OLS_en.vtt |
3.32Кб |
010 What is the OLS.mp4 |
22.44Мб |
011 0.TensorFlow-MNIST-take-note-of-time-Solution.ipynb |
14.00Кб |
011 1.02.Multiple-linear-regression.csv |
1.07Кб |
011 1.03.Dummies.csv |
1.19Кб |
011 1.TensorFlow-MNIST-Width-Solution.ipynb |
14.84Кб |
011 1.TensorFlow-MNIST-Width-Solution.ipynb |
14.01Кб |
011 2.7.Mean-median-and-mode-lesson.xlsx |
10.49Кб |
011 2.TensorFlow-MNIST-Depth-Solution.ipynb |
15.31Кб |
011 2.TensorFlow-MNIST-Depth-Solution.ipynb |
14.87Кб |
011 3.12.Example.csv |
283б |
011 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-lesson.xlsx |
9.83Кб |
011 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb |
15.30Кб |
011 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb |
16.81Кб |
011 4.7.Test-for-the-mean.Dependent-samples-exercise.xlsx |
12.80Кб |
011 4.7.Test-for-the-mean.Dependent-samples-exercise-solution.xlsx |
14.40Кб |
011 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb |
15.11Кб |
011 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb |
14.35Кб |
011 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb |
14.74Кб |
011 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb |
13.93Кб |
011 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb |
15.12Кб |
011 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb |
14.26Кб |
011 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb |
15.18Кб |
011 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb |
14.16Кб |
011 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb |
20.58Кб |
011 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb |
14.07Кб |
011 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb |
15.80Кб |
011 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb |
15.21Кб |
011 Additional-Exercises-Combinatorics.pdf |
106.58Кб |
011 Additional-Exercises-Combinatorics-Solutions.pdf |
245.67Кб |
011 A Note on Calculation of P-values with sklearn.html |
370б |
011 A Practical Example of Combinatorics_en.vtt |
12.46Кб |
011 A Practical Example of Combinatorics.mp4 |
42.24Мб |
011 Audiobooks-data.csv |
710.77Кб |
011 Backward Elimination or How to Simplify Your Model_en.vtt |
4.58Кб |
011 Backward Elimination or How to Simplify Your Model.mp4 |
31.96Мб |
011 Bank-data.csv |
19.55Кб |
011 Bayes' Law_en.vtt |
6.66Кб |
011 Bayes' Law.mp4 |
20.94Мб |
011 Binary Predictors in a Logistic Regression - Exercise.html |
87б |
011 Binary-Predictors-in-a-Logistic-Regression-Exercise.ipynb |
2.54Кб |
011 Binary-Predictors-in-a-Logistic-Regression-Solution.ipynb |
4.51Кб |
011 Business Case A Comment on the Homework_en.vtt |
4.64Кб |
011 Business Case A Comment on the Homework.mp4 |
19.64Мб |
011 Business Case Testing the Model_en.vtt |
1.91Кб |
011 Business Case Testing the Model.mp4 |
8.19Мб |
011 Confidence intervals. Two means. Independent Samples (Part 1)_en.vtt |
5.38Кб |
011 Confidence intervals. Two means. Independent Samples (Part 1).mp4 |
12.00Мб |
011 Continuous Distributions The Students' T Distribution_en.vtt |
2.66Кб |
011 Continuous Distributions The Students' T Distribution.mp4 |
9.10Мб |
011 Dealing with Categorical Data - Dummy Variables_en.vtt |
7.20Кб |
011 Dealing with Categorical Data - Dummy Variables.mp4 |
35.09Мб |
011 Dummy-Variables.ipynb |
4.62Кб |
011 Dummy-variables-with-comments.ipynb |
7.09Кб |
011 GD-function-example.xlsx |
42.33Кб |
011 Logistic-Regression-prior-to-Backward-Elimination.url |
189б |
011 Market-segmentation-example.ipynb |
3.80Кб |
011 Market-segmentation-example-with-comments.ipynb |
5.90Кб |
011 Market Segmentation with Cluster Analysis (Part 1)_en.vtt |
6.41Кб |
011 Market Segmentation with Cluster Analysis (Part 1).mp4 |
21.15Мб |
011 Mean, median and mode_en.vtt |
5.21Кб |
011 Mean, median and mode.mp4 |
17.53Мб |
011 MNIST - Exercises.html |
1.98Кб |
011 MNIST Solutions.html |
2.22Кб |
011 Obtaining Dummies from a Single Feature_en.vtt |
9.05Кб |
011 Obtaining Dummies from a Single Feature.mp4 |
63.77Мб |
011 Optimization Algorithm 1-Parameter Gradient Descent_en.vtt |
7.70Кб |
011 Optimization Algorithm 1-Parameter Gradient Descent.mp4 |
22.70Мб |
011 pandas DataFrames - Indexing with .iloc[]_en.vtt |
7.09Кб |
011 pandas DataFrames - Indexing with .iloc[].mp4 |
23.54Мб |
011 Real Life Examples of Machine Learning (ML)_en.vtt |
2.60Кб |
011 Real Life Examples of Machine Learning (ML).mp4 |
22.44Мб |
011 R-Squared_en.vtt |
5.93Кб |
011 R-Squared.mp4 |
10.79Мб |
011 sklearn-How-to-properly-include-p-values.ipynb |
12.71Кб |
011 TensorFlow-Audiobooks-Machine-learning-Homework.ipynb |
14.40Кб |
011 TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb |
11.95Кб |
011 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb |
11.19Кб |
011 TensorFlow-MNIST-All-Exercises.ipynb |
16.65Кб |
011 TensorFlow-MNIST-around-98-percent-accuracy.ipynb |
15.02Кб |
011 TensorFlow-MNIST-around-98-percent-accuracy.ipynb |
17.66Кб |
011 Test for the Mean. Dependent Samples Exercise.html |
81б |
011 Why is Linear Algebra Useful_en.vtt |
10.91Кб |
011 Why is Linear Algebra Useful.mp4 |
86.18Мб |
012 1.02.Multiple-linear-regression.csv |
1.07Кб |
012 2.7.Mean-median-and-mode-exercise.xlsx |
10.87Кб |
012 2.7.Mean-median-and-mode-exercise-solution.xlsx |
11.35Кб |
012 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise.xlsx |
9.83Кб |
012 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise-solution.xlsx |
10.12Кб |
012 4.8.Test-for-the-mean.Independent-samples-Part-1-lesson.xlsx |
9.63Кб |
012 Accuracy.ipynb |
3.63Кб |
012 Accuracy-with-comments.ipynb |
11.67Кб |
012 A Practical Example of Bayesian Inference_en.vtt |
17.39Кб |
012 A Practical Example of Bayesian Inference.mp4 |
125.49Мб |
012 Audiobooks-data.csv |
710.77Кб |
012 Bayesian-Homework.pdf |
27.26Кб |
012 Bayesian-Homework-Solutions.pdf |
30.35Кб |
012 Business Case Final Exercise.html |
433б |
012 Business Case Final Exercise.html |
441б |
012 Calculating the Accuracy of the Model_en.vtt |
3.86Кб |
012 Calculating the Accuracy of the Model.mp4 |
20.28Мб |
012 CDS-2017-2018-Hamilton.pdf |
845.31Кб |
012 Confidence intervals. Two means. Independent Samples (Part 1). Exercise.html |
81б |
012 Continuous Distributions The Chi-Squared Distribution_en.vtt |
2.56Кб |
012 Continuous Distributions The Chi-Squared Distribution.mp4 |
10.95Мб |
012 Creating a Summary Table with P-values_en.vtt |
2.65Кб |
012 Creating a Summary Table with P-values.mp4 |
6.45Мб |
012 Dealing with Categorical Data - Dummy Variables.html |
76б |
012 EXERCISE - Obtaining Dummies from a Single Feature.html |
123б |
012 Lending-company.csv |
112.43Кб |
012 Location.csv |
13.49Кб |
012 Market-segmentation-example-Part2.ipynb |
4.68Кб |
012 Market-segmentation-example-Part2-with-comments.ipynb |
6.81Кб |
012 Market Segmentation with Cluster Analysis (Part 2)_en.vtt |
8.05Кб |
012 Market Segmentation with Cluster Analysis (Part 2).mp4 |
34.08Мб |
012 Mean, Median and Mode Exercise.html |
81б |
012 MNIST Testing the Model_en.vtt |
5.30Кб |
012 MNIST Testing the Model.mp4 |
22.64Мб |
012 Multiple-Linear-Regression-with-Dummies-Exercise.ipynb |
3.01Кб |
012 Multiple-Linear-Regression-with-Dummies-Exercise-Solution.ipynb |
18.00Кб |
012 Optimization Algorithm n-Parameter Gradient Descent_en.vtt |
6.78Кб |
012 Optimization Algorithm n-Parameter Gradient Descent.mp4 |
16.35Мб |
012 pandas DataFrames - Indexing with .loc[]_en.vtt |
4.81Кб |
012 pandas DataFrames - Indexing with .loc[].mp4 |
20.72Мб |
012 pandas-Fundamentals-Exercises.ipynb |
30.83Кб |
012 pandas-Fundamentals-Lectures.ipynb |
21.31Кб |
012 pandas-Fundamentals-Solutions.ipynb |
118.33Кб |
012 real-estate-price-size-year-view.csv |
3.39Кб |
012 Region.csv |
10.22Кб |
012 Sales-products.csv |
152.28Кб |
012 sklearn-Multiple-Linear-Regression-Summary-Table.ipynb |
13.71Кб |
012 sklearn-Multiple-Linear-Regression-Summary-Table-with-comments.ipynb |
16.63Кб |
012 TensorFlow-Audiobooks-Machine-learning-Homework.ipynb |
14.40Кб |
012 TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb |
11.95Кб |
012 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb |
11.19Кб |
012 TensorFlow-MNIST-complete.ipynb |
6.78Кб |
012 TensorFlow-MNIST-complete-with-comments.ipynb |
14.51Кб |
012 Test for the mean. Independent Samples (Part 1)_en.vtt |
4.87Кб |
012 Test for the mean. Independent Samples (Part 1).mp4 |
15.43Мб |
012 Testing the Model We Created_en.vtt |
5.72Кб |
012 Testing the Model We Created.mp4 |
31.63Мб |
013 2.8.Skewness-lesson.xlsx |
34.63Кб |
013 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-lesson.xlsx |
9.52Кб |
013 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx |
10.77Кб |
013 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise-solution.xlsx |
11.25Кб |
013 Bank-data.csv |
19.55Кб |
013 Calculating the Accuracy of the Model.html |
87б |
013 Calculating-the-Accuracy-of-the-Model-Exercise.ipynb |
5.39Кб |
013 Calculating-the-Accuracy-of-the-Model-Solution.ipynb |
81.21Кб |
013 Confidence intervals. Two means. Independent Samples (Part 2)_en.vtt |
4.23Кб |
013 Confidence intervals. Two means. Independent Samples (Part 2).mp4 |
13.05Мб |
013 Continuous Distributions The Exponential Distribution_en.vtt |
3.71Кб |
013 Continuous Distributions The Exponential Distribution.mp4 |
15.76Мб |
013 How is Clustering Useful_en.vtt |
5.75Кб |
013 How is Clustering Useful.mp4 |
36.49Мб |
013 Making-predictions.ipynb |
5.77Кб |
013 Making-predictions-with-comments.ipynb |
9.41Кб |
013 Making Predictions with the Linear Regression_en.vtt |
3.98Кб |
013 Making Predictions with the Linear Regression.mp4 |
16.36Мб |
013 Multiple Linear Regression - Exercise.html |
76б |
013 real-estate-price-size-year.csv |
2.35Кб |
013 Saving the Model and Preparing it for Deployment_en.vtt |
4.96Кб |
013 Saving the Model and Preparing it for Deployment.mp4 |
25.52Мб |
013 Skewness_en.vtt |
3.21Кб |
013 Skewness.mp4 |
9.92Мб |
013 sklearn-Multiple-Linear-Regression-Exercise.ipynb |
5.67Кб |
013 sklearn-Multiple-Linear-Regression-Exercise-Solution.ipynb |
15.44Кб |
013 SOLUTION - Obtaining Dummies from a Single Feature.html |
117б |
013 Test for the mean. Independent Samples (Part 1). Exercise.html |
81б |
014 1.02.Multiple-linear-regression.csv |
1.07Кб |
014 2.8.Skewness-exercise.xlsx |
9.49Кб |
014 2.8.Skewness-exercise-solution.xlsx |
19.78Кб |
014 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise.xlsx |
9.17Кб |
014 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise-solution.xlsx |
9.79Кб |
014 4.9.Test-for-the-mean.Independent-samples-Part-2-lesson.xlsx |
9.31Кб |
014 ARTICLE - A Note on 'pickling'.html |
2.11Кб |
014 Confidence intervals. Two means. Independent Samples (Part 2). Exercise.html |
81б |
014 Continuous Distributions The Logistic Distribution_en.vtt |
4.73Кб |
014 Continuous Distributions The Logistic Distribution.mp4 |
15.95Мб |
014 Dropping a Dummy Variable from the Data Set.html |
2.31Кб |
014 EXERCISE Species Segmentation with Cluster Analysis (Part 1).html |
87б |
014 Feature Scaling (Standardization)_en.vtt |
6.85Кб |
014 Feature Scaling (Standardization).mp4 |
20.37Мб |
014 iris-dataset.csv |
2.40Кб |
014 Skewness Exercise.html |
81б |
014 SKLEAR-1.IPY |
12.87Кб |
014 sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-1.ipynb |
11.73Кб |
014 Species-Segmentation-with-Cluster-Analysis-Part-1-Exercise.ipynb |
4.46Кб |
014 Species-Segmentation-with-Cluster-Analysis-Part-1-Solution.ipynb |
7.35Кб |
014 Test for the mean. Independent Samples (Part 2)_en.vtt |
4.79Кб |
014 Test for the mean. Independent Samples (Part 2).mp4 |
24.47Мб |
014 Underfitting and Overfitting_en.vtt |
4.31Кб |
014 Underfitting and Overfitting.mp4 |
7.25Мб |
015 1.02.Multiple-linear-regression.csv |
1.07Кб |
015 2.03.Test-dataset.csv |
322б |
015 2.9.Variance-lesson.xlsx |
10.08Кб |
015 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx |
10.54Кб |
015 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2-solution.xlsx |
11.39Кб |
015 A Practical Example of Probability Distributions_en.vtt |
17.79Кб |
015 A Practical Example of Probability Distributions.mp4 |
138.31Мб |
015 Confidence intervals. Two means. Independent Samples (Part 3)_en.vtt |
1.71Кб |
015 Confidence intervals. Two means. Independent Samples (Part 3).mp4 |
6.82Мб |
015 Customers-Membership.xlsx |
9.69Кб |
015 Customers-Membership-post.xlsx |
15.62Кб |
015 Daily-Views.xlsx |
9.53Кб |
015 Daily-Views-post.xlsx |
20.21Кб |
015 EXERCISE - Saving the Model (and Scaler).html |
284б |
015 EXERCISE Species Segmentation with Cluster Analysis (Part 2).html |
87б |
015 Feature Selection through Standardization of Weights_en.vtt |
6.58Кб |
015 Feature Selection through Standardization of Weights.mp4 |
27.16Мб |
015 FIFA19.csv |
8.64Мб |
015 FIFA19-post.csv |
8.64Мб |
015 iris-dataset.csv |
2.40Кб |
015 iris-with-answers.csv |
3.63Кб |
015 Logistic-Regression.url |
159б |
015 Logistic-Regression-with-Comments.url |
173б |
015 More on Dummy Variables A Statistical Perspective_en.vtt |
1.53Кб |
015 More on Dummy Variables A Statistical Perspective.mp4 |
5.82Мб |
015 SKLEAR-1.IPY |
16.79Кб |
015 sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-2.ipynb |
14.89Кб |
015 Species-Segmentation-with-Cluster-Analysis-Part-2-Exercise.ipynb |
10.74Кб |
015 Species-Segmentation-with-Cluster-Analysis-Part-2-Solution.ipynb |
15.30Кб |
015 Test for the mean. Independent Samples (Part 2). Exercise.html |
81б |
015 Testing the Model_en.vtt |
5.67Кб |
015 Testing-the-model.ipynb |
5.77Кб |
015 Testing the Model.mp4 |
21.60Мб |
015 Testing-the-model-with-comments.ipynb |
7.56Кб |
015 Variance_en.vtt |
6.91Кб |
015 Variance.mp4 |
20.20Мб |
016 1.02.Multiple-linear-regression.csv |
1.07Кб |
016 2.9.Variance-exercise.xlsx |
10.83Кб |
016 2.9.Variance-exercise-solution.xlsx |
11.05Кб |
016 Bank-data.csv |
19.55Кб |
016 Bank-data-testing.csv |
8.30Кб |
016 Classifying the Various Reasons for Absence_en.vtt |
8.84Кб |
016 Classifying the Various Reasons for Absence.mp4 |
51.32Мб |
016 Predicting with the Standardized Coefficients_en.vtt |
5.05Кб |
016 Predicting with the Standardized Coefficients.mp4 |
18.34Мб |
016 Preparing the Deployment of the Model through a Module_en.vtt |
4.84Кб |
016 Preparing the Deployment of the Model through a Module.mp4 |
28.57Мб |
016 sklearn-Making-Predictions-with-the-Standardized-Coefficients.ipynb |
29.75Кб |
016 sklearn-Making-Predictions-with-the-Standardized-Coefficients-with-comments.ipynb |
22.03Кб |
016 Testing the Model - Exercise.html |
87б |
016 Testing-the-Model-Exercise.ipynb |
6.79Кб |
016 Testing-the-Model-Solution.ipynb |
111.10Кб |
016 Variance Exercise.html |
522б |
017 2.10.Standard-deviation-and-coefficient-of-variation-lesson.xlsx |
10.97Кб |
017 Feature Scaling (Standardization) - Exercise.html |
76б |
017 real-estate-price-size-year.csv |
2.35Кб |
017 sklearn-Feature-Scaling-Exercise.ipynb |
6.07Кб |
017 sklearn-Feature-Scaling-Exercise-Solution.ipynb |
16.28Кб |
017 Standard Deviation and Coefficient of Variation_en.vtt |
5.81Кб |
017 Standard Deviation and Coefficient of Variation.mp4 |
20.14Мб |
017 Using .concat() in Python_en.vtt |
4.55Кб |
017 Using .concat() in Python.mp4 |
19.77Мб |
018 2.10.Standard-deviation-and-coefficient-of-variation-exercise.xlsx |
11.61Кб |
018 2.10.Standard-deviation-and-coefficient-of-variation-exercise-solution.xlsx |
12.60Кб |
018 EXERCISE - Using .concat() in Python.html |
189б |
018 Standard Deviation and Coefficient of Variation Exercise.html |
81б |
018 Underfitting and Overfitting_en.vtt |
3.04Кб |
018 Underfitting and Overfitting.mp4 |
5.69Мб |
019 2.11.Covariance-lesson.xlsx |
24.92Кб |
019 Covariance_en.vtt |
4.35Кб |
019 Covariance.mp4 |
18.41Мб |
019 sklearn-Train-Test-Split.ipynb |
7.23Кб |
019 sklearn-Train-Test-Split-with-comments.ipynb |
9.05Кб |
019 SOLUTION - Using .concat() in Python.html |
143б |
019 Train - Test Split Explained_en.vtt |
8.55Кб |
019 Train - Test Split Explained.mp4 |
35.57Мб |
020 2.11.Covariance-exercise.xlsx |
20.23Кб |
020 2.11.Covariance-exercise-solution.xlsx |
29.51Кб |
020 Covariance Exercise.html |
81б |
020 Reordering Columns in a Pandas DataFrame in Python_en.vtt |
1.65Кб |
020 Reordering Columns in a Pandas DataFrame in Python.mp4 |
7.18Мб |
021 Correlation Coefficient_en.vtt |
4.18Кб |
021 Correlation Coefficient.mp4 |
19.38Мб |
021 EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html |
161б |
022 2.12.Correlation-exercise.xlsx |
29.30Кб |
022 2.12.Correlation-exercise-solution.xlsx |
29.48Кб |
022 Correlation Coefficient Exercise.html |
81б |
022 SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html |
478б |
023 Absenteeism-Exercise-Preprocessing-df-reason-mod.ipynb |
4.82Кб |
023 Creating Checkpoints while Coding in Jupyter_en.vtt |
3.26Кб |
023 Creating Checkpoints while Coding in Jupyter.mp4 |
17.34Мб |
024 EXERCISE - Creating Checkpoints while Coding in Jupyter.html |
137б |
025 SOLUTION - Creating Checkpoints while Coding in Jupyter.html |
118б |
026 Analyzing the Dates from the Initial Data Set_en.vtt |
7.55Кб |
026 Analyzing the Dates from the Initial Data Set.mp4 |
40.13Мб |
027 Extracting the Month Value from the Date Column_en.vtt |
6.93Кб |
027 Extracting the Month Value from the Date Column.mp4 |
38.91Мб |
028 Extracting the Day of the Week from the Date Column_en.vtt |
3.87Кб |
028 Extracting the Day of the Week from the Date Column.mp4 |
9.12Мб |
029 Absenteeism-Exercise-Preprocessing-ChP-df-date-reason-mod.ipynb |
7.33Кб |
029 Absenteeism-Exercise-Preprocessing-LECTURES.ipynb |
7.60Мб |
029 Absenteeism-Exercise-Removing-the-Date-Column-SOLUTION.ipynb |
8.33Кб |
029 EXERCISE - Removing the Date Column.html |
1.14Кб |
030 Analyzing Several Straightforward Columns for this Exercise_en.vtt |
3.89Кб |
030 Analyzing Several Straightforward Columns for this Exercise.mp4 |
12.23Мб |
031 Working on Education, Children, and Pets_en.vtt |
4.98Кб |
031 Working on Education, Children, and Pets.mp4 |
19.69Мб |
032 Absenteeism-Exercise-EXERCISES-and-SOLUTIONS.ipynb |
4.13Кб |
032 Absenteeism-Exercise-Preprocessing-df-preprocessed.ipynb |
8.51Кб |
032 Final Remarks of this Section_en.vtt |
2.23Кб |
032 Final Remarks of this Section.mp4 |
17.04Мб |
033 A Note on Exporting Your Data as a .csv File.html |
880б |
code.zip |
57.22Мб |
external-links.txt |
105б |
external-links.txt |
134б |
external-links.txt |
790б |