Общая информация
Название [DesireCourse.Net] Udemy - Artificial Intelligence Reinforcement Learning in Python
Тип
Размер 1.90Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[CourseClub.Me].url 48б
[DesireCourse.Net].url 51б
[FreeCourseWorld.Com].url 54б
1. Approximation Intro.mp4 6.47Мб
1. Approximation Intro.srt 7.99Кб
1. Gridworld.mp4 3.36Мб
1. Gridworld.srt 4.04Кб
1. Introduction.mp4 34.24Мб
1. Introduction.srt 4.17Кб
1. Intro to Dynamic Programming and Iterative Policy Evaluation.mp4 4.83Мб
1. Intro to Dynamic Programming and Iterative Policy Evaluation.srt 5.37Кб
1. Monte Carlo Intro.mp4 4.97Мб
1. Monte Carlo Intro.srt 5.96Кб
1. Naive Solution to Tic-Tac-Toe.mp4 6.12Мб
1. Naive Solution to Tic-Tac-Toe.srt 7.21Кб
1. Problem Setup and The Explore-Exploit Dilemma.mp4 6.47Мб
1. Problem Setup and The Explore-Exploit Dilemma.srt 7.80Кб
1. Stock Trading Project Section Introduction.mp4 26.77Мб
1. Stock Trading Project Section Introduction.srt 6.84Кб
1. Temporal Difference Intro.mp4 2.73Мб
1. Temporal Difference Intro.srt 3.33Кб
1. What is Reinforcement Learning.mp4 54.62Мб
1. What is Reinforcement Learning.srt 10.92Кб
1. What is the Appendix.mp4 5.45Мб
1. What is the Appendix.srt 3.72Кб
10. Thompson Sampling vs. Epsilon-Greedy vs. Optimistic Initial Values vs. UCB1.mp4 10.57Мб
10. Thompson Sampling vs. Epsilon-Greedy vs. Optimistic Initial Values vs. UCB1.srt 6.09Кб
10. Tic Tac Toe Code Main Loop and Demo.mp4 9.44Мб
10. Tic Tac Toe Code Main Loop and Demo.srt 9.25Кб
10. Value Iteration in Code.mp4 4.89Мб
10. Value Iteration in Code.srt 3.34Кб
10. What order should I take your courses in (part 1).mp4 29.32Мб
10. What order should I take your courses in (part 1).srt 16.03Кб
11. Dynamic Programming Summary.mp4 8.31Мб
11. Dynamic Programming Summary.srt 9.39Кб
11. Nonstationary Bandits.mp4 7.48Мб
11. Nonstationary Bandits.srt 7.79Кб
11. Tic Tac Toe Summary.mp4 8.32Мб
11. Tic Tac Toe Summary.srt 10.23Кб
11. What order should I take your courses in (part 2).mp4 37.62Мб
11. What order should I take your courses in (part 2).srt 23.04Кб
12. Bandit Summary, Real Data, and Online Learning.mp4 33.92Мб
12. Bandit Summary, Real Data, and Online Learning.srt 9.12Кб
12. BONUS Where to get discount coupons and FREE deep learning material.mp4 37.83Мб
12. BONUS Where to get discount coupons and FREE deep learning material.srt 7.87Кб
12. Tic Tac Toe Exercise.mp4 19.77Мб
12. Tic Tac Toe Exercise.srt 4.63Кб
2. Applications of the Explore-Exploit Dilemma.mp4 51.18Мб
2. Applications of the Explore-Exploit Dilemma.srt 10.92Кб
2. Components of a Reinforcement Learning System.mp4 12.71Мб
2. Components of a Reinforcement Learning System.srt 14.79Кб
2. Data and Environment.mp4 52.01Мб
2. Data and Environment.srt 15.69Кб
2. Gridworld in Code.mp4 11.46Мб
2. Gridworld in Code.srt 10.98Кб
2. Linear Models for Reinforcement Learning.mp4 6.47Мб
2. Linear Models for Reinforcement Learning.srt 7.39Кб
2. Monte Carlo Policy Evaluation.mp4 8.75Мб
2. Monte Carlo Policy Evaluation.srt 10.84Кб
2. On Unusual or Unexpected Strategies of RL.mp4 37.10Мб
2. On Unusual or Unexpected Strategies of RL.srt 7.95Кб
2. TD(0) Prediction.mp4 5.82Мб
2. TD(0) Prediction.srt 6.38Кб
2. The Markov Property.mp4 7.18Мб
2. The Markov Property.srt 8.43Кб
2. Where to get the Code.mp4 4.45Мб
2. Where to get the Code.srt 5.41Кб
2. Windows-Focused Environment Setup 2018.mp4 186.38Мб
2. Windows-Focused Environment Setup 2018.srt 20.10Кб
3. Defining and Formalizing the MDP.mp4 6.64Мб
3. Defining and Formalizing the MDP.srt 7.87Кб
3. Defining Some Terms.mp4 42.34Мб
3. Defining Some Terms.srt 9.15Кб
3. Designing Your RL Program.mp4 22.34Мб
3. Designing Your RL Program.srt 6.64Кб
3. Epsilon-Greedy.mp4 2.78Мб
3. Epsilon-Greedy.srt 3.21Кб
3. Features.mp4 6.25Мб
3. Features.srt 6.94Кб
3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4 43.92Мб
3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt 18.33Кб
3. How to Model Q for Q-Learning.mp4 44.89Мб
3. How to Model Q for Q-Learning.srt 12.01Кб
3. Monte Carlo Policy Evaluation in Code.mp4 7.92Мб
3. Monte Carlo Policy Evaluation in Code.srt 6.12Кб
3. Notes on Assigning Rewards.mp4 4.22Мб
3. Notes on Assigning Rewards.srt 4.94Кб
3. Strategy for Passing the Course.mp4 9.48Мб
3. Strategy for Passing the Course.srt 11.77Кб
3. TD(0) Prediction in Code.mp4 5.32Мб
3. TD(0) Prediction in Code.srt 3.97Кб
4. Course Outline.mp4 30.97Мб
4. Course Outline.srt 6.81Кб
4. Design of the Program.mp4 23.31Мб
4. Design of the Program.srt 8.51Кб
4. Future Rewards.mp4 5.17Мб
4. Future Rewards.srt 6.01Кб
4. How to Code by Yourself (part 1).mp4 24.54Мб
4. How to Code by Yourself (part 1).srt 30.21Кб
4. Iterative Policy Evaluation in Code.mp4 12.06Мб
4. Iterative Policy Evaluation in Code.srt 10.24Кб
4. Monte Carlo Prediction with Approximation.mp4 2.85Мб
4. Monte Carlo Prediction with Approximation.srt 2.34Кб
4. Policy Evaluation in Windy Gridworld.mp4 7.81Мб
4. Policy Evaluation in Windy Gridworld.srt 5.30Кб
4. SARSA.mp4 8.20Мб
4. SARSA.srt 9.70Кб
4. The Value Function and Your First Reinforcement Learning Algorithm.mp4 103.72Мб
4. The Value Function and Your First Reinforcement Learning Algorithm.srt 22.78Кб
4. Updating a Sample Mean.mp4 2.18Мб
4. Updating a Sample Mean.srt 2.17Кб
5. Code pt 1.mp4 49.72Мб
5. Code pt 1.srt 9.63Кб
5. Designing Your Bandit Program.mp4 24.51Мб
5. Designing Your Bandit Program.srt 5.61Кб
5. How to Code by Yourself (part 2).mp4 14.80Мб
5. How to Code by Yourself (part 2).srt 18.42Кб
5. Monte Carlo Control.mp4 9.26Мб
5. Monte Carlo Control.srt 10.24Кб
5. Monte Carlo Prediction with Approximation in Code.mp4 6.57Мб
5. Monte Carlo Prediction with Approximation in Code.srt 4.01Кб
5. Policy Improvement.mp4 4.53Мб
5. Policy Improvement.srt 5.17Кб
5. SARSA in Code.mp4 8.82Мб
5. SARSA in Code.srt 5.53Кб
5. Tic Tac Toe Code Outline.mp4 5.04Мб
5. Tic Tac Toe Code Outline.srt 6.42Кб
5. Value Function Introduction.mp4 19.72Мб
5. Value Function Introduction.srt 15.63Кб
6. Code pt 2.mp4 65.29Мб
6. Code pt 2.srt 11.75Кб
6. Comparing Different Epsilons.mp4 8.01Мб
6. Comparing Different Epsilons.srt 5.32Кб
6. How to Succeed in this Course (Long Version).mp4 18.31Мб
6. How to Succeed in this Course (Long Version).srt 14.55Кб
6. Monte Carlo Control in Code.mp4 10.17Мб
6. Monte Carlo Control in Code.srt 5.83Кб
6. Policy Iteration.mp4 3.14Мб
6. Policy Iteration.srt 3.47Кб
6. Q Learning.mp4 4.84Мб
6. Q Learning.srt 5.82Кб
6. TD(0) Semi-Gradient Prediction.mp4 8.36Мб
6. TD(0) Semi-Gradient Prediction.srt 6.36Кб
6. Tic Tac Toe Code Representing States.mp4 4.42Мб
6. Tic Tac Toe Code Representing States.srt 4.92Кб
6. Value Functions.mp4 8.29Мб
6. Value Functions.srt 11.76Кб
7. Bellman Examples.mp4 87.12Мб
7. Bellman Examples.srt 27.67Кб
7. Code pt 3.mp4 33.72Мб
7. Code pt 3.srt 5.41Кб
7. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 38.95Мб
7. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt 31.79Кб
7. Monte Carlo Control without Exploring Starts.mp4 4.62Мб
7. Monte Carlo Control without Exploring Starts.srt 5.53Кб
7. Optimistic Initial Values.mp4 15.84Мб
7. Optimistic Initial Values.srt 3.06Кб
7. Policy Iteration in Code.mp4 7.62Мб
7. Policy Iteration in Code.srt 6.08Кб
7. Q Learning in Code.mp4 5.42Мб
7. Q Learning in Code.srt 3.46Кб
7. Semi-Gradient SARSA.mp4 4.70Мб
7. Semi-Gradient SARSA.srt 5.47Кб
7. Tic Tac Toe Code Enumerating States Recursively.mp4 9.79Мб
7. Tic Tac Toe Code Enumerating States Recursively.srt 11.33Кб
8. Code pt 4.mp4 49.08Мб
8. Code pt 4.srt 8.04Кб
8. Monte Carlo Control without Exploring Starts in Code.mp4 8.06Мб
8. Monte Carlo Control without Exploring Starts in Code.srt 3.63Кб
8. Optimal Policy and Optimal Value Function.mp4 3.23Мб
8. Optimal Policy and Optimal Value Function.srt 4.96Кб
8. Policy Iteration in Windy Gridworld.mp4 9.10Мб
8. Policy Iteration in Windy Gridworld.srt 8.23Кб
8. Proof that using Jupyter Notebook is the same as not using it.mp4 78.32Мб
8. Proof that using Jupyter Notebook is the same as not using it.srt 14.12Кб
8. Semi-Gradient SARSA in Code.mp4 10.61Мб
8. Semi-Gradient SARSA in Code.srt 5.40Кб
8. TD Summary.mp4 3.94Мб
8. TD Summary.srt 4.66Кб
8. Tic Tac Toe Code The Environment.mp4 10.05Мб
8. Tic Tac Toe Code The Environment.srt 11.97Кб
8. UCB1.mp4 8.23Мб
8. UCB1.srt 8.13Кб
9. Bayesian Thompson Sampling.mp4 51.85Мб
9. Bayesian Thompson Sampling.srt 11.80Кб
9. Course Summary and Next Steps.mp4 13.24Мб
9. Course Summary and Next Steps.srt 15.95Кб
9. MDP Summary.mp4 5.67Мб
9. MDP Summary.srt 1.99Кб
9. Monte Carlo Summary.mp4 5.71Мб
9. Monte Carlo Summary.srt 7.10Кб
9. Python 2 vs Python 3.mp4 7.84Мб
9. Python 2 vs Python 3.srt 6.10Кб
9. Stock Trading Project Discussion.mp4 15.78Мб
9. Stock Trading Project Discussion.srt 4.35Кб
9. Tic Tac Toe Code The Agent.mp4 9.01Мб
9. Tic Tac Toe Code The Agent.srt 10.95Кб
9. Value Iteration.mp4 6.18Мб
9. Value Iteration.srt 6.97Кб
Статистика распространения по странам
Великобритания (GB) 1
США (US) 1
Всего 2
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент