|
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
| [Tutorialsplanet.NET].url |
128б |
| [Tutorialsplanet.NET].url |
128б |
| [Tutorialsplanet.NET].url |
128б |
| [Tutorialsplanet.NET].url |
128б |
| [Tutorialsplanet.NET].url |
128б |
| 001 Coordinate systems and coordinates in the plane and in the 3-space.en.srt |
23.35Кб |
| 001 Coordinate systems and coordinates in the plane and in the 3-space.mp4 |
122.57Мб |
| 001 Different ways of looking at equations.en.srt |
5.37Кб |
| 001 Different ways of looking at equations.mp4 |
33.63Мб |
| 001 Formally about the number of solutions to systems of linear equations.en.srt |
23.41Кб |
| 001 Formally about the number of solutions to systems of linear equations.mp4 |
348.60Мб |
| 001 Introduction.en.srt |
16.03Кб |
| 001 Introduction.mp4 |
153.33Мб |
| 001 Introduction to matrices.en.srt |
11.20Кб |
| 001 Introduction to matrices.mp4 |
55.11Мб |
| 001 Inverse matrices, introduction to the algorithm.en.srt |
17.47Кб |
| 001 Inverse matrices, introduction to the algorithm.mp4 |
406.27Мб |
| 001 Our earlier problem revisited; an algebraical solution.en.srt |
10.25Кб |
| 001 Our earlier problem revisited; an algebraical solution.mp4 |
182.33Мб |
| 001 Outline_Linear_Algebra_and_Geometry_1.pdf |
1.04Мб |
| 001 Properties of matrix operations, an introduction.en.srt |
5.57Кб |
| 001 Properties of matrix operations, an introduction.mp4 |
41.73Мб |
| 001 Slides Introduction to the course.pdf |
34.78Мб |
| 001 Solving systems of linear equations in Linear Algebra and Geometry.en.srt |
8.47Кб |
| 001 Solving systems of linear equations in Linear Algebra and Geometry.mp4 |
94.07Мб |
| 001 Vectors, a repetition.en.srt |
9.32Кб |
| 001 Vectors, a repetition.mp4 |
55.29Мб |
| 001 Why the determinants are important.en.srt |
4.83Кб |
| 001 Why the determinants are important.mp4 |
68.48Мб |
| 002 2-by-2 determinants; notation for n-by-n determinants.en.srt |
11.32Кб |
| 002 2-by-2 determinants; notation for n-by-n determinants.mp4 |
47.88Мб |
| 002 Algorithm for inverse matrices, an example.en.srt |
10.38Кб |
| 002 Algorithm for inverse matrices, an example.mp4 |
57.55Мб |
| 002 Computation rules for vector addition and scaling.en.srt |
12.80Кб |
| 002 Computation rules for vector addition and scaling.mp4 |
108.46Мб |
| 002 Different types of matrices.en.srt |
11.08Кб |
| 002 Different types of matrices.mp4 |
51.47Мб |
| 002 Matrix addition has all the good properties.en.srt |
8.02Кб |
| 002 Matrix addition has all the good properties.mp4 |
32.07Мб |
| 002 Slides Coordinate systems and coordinates.pdf |
996.11Кб |
| 002 Slope-intercept equations of straight lines in the plane.en.srt |
11.44Кб |
| 002 Slope-intercept equations of straight lines in the plane.mp4 |
70.38Мб |
| 002 Solution set.en.srt |
14.54Кб |
| 002 Solution set.mp4 |
58.54Мб |
| 002 Solving systems of linear equations (Calculus) Problem 1.en.srt |
7.97Кб |
| 002 Solving systems of linear equations (Calculus) Problem 1.mp4 |
143.97Мб |
| 002 Three elementary operations.en.srt |
10.45Кб |
| 002 Three elementary operations.mp4 |
70.77Мб |
| 002 Two more statements in our important theorem.en.srt |
9.92Кб |
| 002 Two more statements in our important theorem.mp4 |
136.69Мб |
| 003 Computations with vectors, Problem 1.en.srt |
8.56Кб |
| 003 Computations with vectors, Problem 1.mp4 |
172.33Мб |
| 003 Geometrical interpretations of determinants.en.srt |
21.16Кб |
| 003 Geometrical interpretations of determinants.mp4 |
104.80Мб |
| 003 Linear and non-linear equations.en.srt |
14.27Кб |
| 003 Linear and non-linear equations.mp4 |
63.27Мб |
| 003 Matrix addition and subtraction, Problem 1.en.srt |
5.31Кб |
| 003 Matrix addition and subtraction, Problem 1.mp4 |
27.23Мб |
| 003 Matrix inverse, Problem 1.en.srt |
16.33Кб |
| 003 Matrix inverse, Problem 1.mp4 |
289.45Мб |
| 003 Matrix multiplication has a neutral element for square matrices.en.srt |
8.37Кб |
| 003 Matrix multiplication has a neutral element for square matrices.mp4 |
119.76Мб |
| 003 Normal equations of planes in the 3-space.en.srt |
10.99Кб |
| 003 Normal equations of planes in the 3-space.mp4 |
63.91Мб |
| 003 Slides Slope intercept equations of lines in the plane.pdf |
1.54Мб |
| 003 Solution of a linear system using A inverse, Problem 1.en.srt |
17.29Кб |
| 003 Solution of a linear system using A inverse, Problem 1.mp4 |
334.86Мб |
| 003 Solving systems of linear equations (Calculus) Problem 2.en.srt |
10.19Кб |
| 003 Solving systems of linear equations (Calculus) Problem 2.mp4 |
206.19Мб |
| 003 What is Gauss—Jordan elimination and Gaussian elimination_.en.srt |
8.60Кб |
| 003 What is Gauss—Jordan elimination and Gaussian elimination_.mp4 |
47.87Мб |
| 004 Computations with vectors, Problem 2.en.srt |
7.49Кб |
| 004 Computations with vectors, Problem 2.mp4 |
131.76Мб |
| 004 Determining consistency by elimination, Problem 2.en.srt |
23.37Кб |
| 004 Determining consistency by elimination, Problem 2.mp4 |
465.18Мб |
| 004 Gauss—Jordan elimination, a 2-by-2 system with unique solution.en.srt |
9.61Кб |
| 004 Gauss—Jordan elimination, a 2-by-2 system with unique solution.mp4 |
38.68Мб |
| 004 Geometrically about the determinant of a product.en.srt |
7.88Кб |
| 004 Geometrically about the determinant of a product.mp4 |
68.66Мб |
| 004 Matrix inverse, Problem 2.en.srt |
11.25Кб |
| 004 Matrix inverse, Problem 2.mp4 |
204.71Мб |
| 004 Matrix multiplication is associative.en.srt |
19.52Кб |
| 004 Matrix multiplication is associative.mp4 |
282.36Мб |
| 004 Matrix scaling, with geometrical interpretation.en.srt |
6.42Кб |
| 004 Matrix scaling, with geometrical interpretation.mp4 |
33.00Мб |
| 004 Slides Normal equations of planes in the 3-space.pdf |
641.93Кб |
| 004 Solving systems of linear equations (Calculus) Problem 3.en.srt |
25.02Кб |
| 004 Solving systems of linear equations (Calculus) Problem 3.mp4 |
513.66Мб |
| 004 Systems of linear equations.en.srt |
4.80Кб |
| 004 Systems of linear equations.mp4 |
26.96Мб |
| 004 Vectors.en.srt |
14.96Кб |
| 004 Vectors.mp4 |
56.19Мб |
| 005 Computations with vectors, Problem 3.en.srt |
5.33Кб |
| 005 Computations with vectors, Problem 3.mp4 |
105.22Мб |
| 005 Definition of determinants.en.srt |
16.10Кб |
| 005 Definition of determinants.mp4 |
101.96Мб |
| 005 Matrix equations, Problem 3.en.srt |
13.48Кб |
| 005 Matrix equations, Problem 3.en.srt |
14.40Кб |
| 005 Matrix equations, Problem 3.mp4 |
250.36Мб |
| 005 Matrix equations, Problem 3.mp4 |
278.16Мб |
| 005 Matrix multiplication is not commutative.en.srt |
8.17Кб |
| 005 Matrix multiplication is not commutative.mp4 |
43.95Мб |
| 005 Matrix scaling, Problem 2.en.srt |
3.41Кб |
| 005 Matrix scaling, Problem 2.mp4 |
57.25Мб |
| 005 Scalars.en.srt |
2.33Кб |
| 005 Scalars.mp4 |
48.22Мб |
| 005 Slides Vectors.pdf |
952.42Кб |
| 005 Solution sets of systems of linear equations.en.srt |
11.57Кб |
| 005 Solution sets of systems of linear equations.mp4 |
54.16Мб |
| 005 Solving systems of linear equations (Calculus) Problem 4.en.srt |
27.98Кб |
| 005 Solving systems of linear equations (Calculus) Problem 4.mp4 |
572.23Мб |
| 005 The same example solved with Gaussian elimination and back-substitution.en.srt |
3.87Кб |
| 005 The same example solved with Gaussian elimination and back-substitution.mp4 |
30.12Мб |
| 006 An example of a 2 × 2 system of linear equations, a graphical solution.en.srt |
3.48Кб |
| 006 An example of a 2 × 2 system of linear equations, a graphical solution.mp4 |
31.21Мб |
| 006 Conclusion 1_ Determinant of matrices with interchanged columns.en.srt |
11.58Кб |
| 006 Conclusion 1_ Determinant of matrices with interchanged columns.mp4 |
54.76Мб |
| 006 Matrix equations, Problem 4.en.srt |
8.45Кб |
| 006 Matrix equations, Problem 4.mp4 |
155.95Мб |
| 006 Matrix multiplication, with geometrical interpretation.en.srt |
19.40Кб |
| 006 Matrix multiplication, with geometrical interpretation.mp4 |
110.63Мб |
| 006 Parallel vectors, Problem 4.en.srt |
7.10Кб |
| 006 Parallel vectors, Problem 4.mp4 |
143.21Мб |
| 006 Problem 5 (Chemistry).en.srt |
16.68Кб |
| 006 Problem 5 (Chemistry).mp4 |
277.27Мб |
| 006 Sometimes commutativity happens, Problem 1.en.srt |
14.13Кб |
| 006 Sometimes commutativity happens, Problem 1.mp4 |
309.55Мб |
| 006 The same example solved with matrix operations; coefficient matrix and augmented.en.srt |
13.15Кб |
| 006 The same example solved with matrix operations; coefficient matrix and augmented.mp4 |
66.82Мб |
| 006 Vector addition and vector scaling.en.srt |
11.64Кб |
| 006 Vector addition and vector scaling.mp4 |
63.50Мб |
| 007 Conclusion 2_ What happens when one column is a linear combination of others.en.srt |
20.27Кб |
| 007 Conclusion 2_ What happens when one column is a linear combination of others.mp4 |
248.51Мб |
| 007 How to write the augmented matrix for a given system of equations, Problem 1.en.srt |
12.85Кб |
| 007 How to write the augmented matrix for a given system of equations, Problem 1.mp4 |
258.05Мб |
| 007 Linear combinations.en.srt |
24.66Кб |
| 007 Linear combinations.mp4 |
165.54Мб |
| 007 Matrix equations, Problem 5.en.srt |
17.10Кб |
| 007 Matrix equations, Problem 5.mp4 |
341.83Мб |
| 007 Matrix multiplication, how to do.en.srt |
6.13Кб |
| 007 Matrix multiplication, how to do.mp4 |
41.55Мб |
| 007 Parallel vectors, Problem 5.en.srt |
8.88Кб |
| 007 Parallel vectors, Problem 5.mp4 |
100.00Мб |
| 007 Possible solution sets of 2 × 2 systems of linear equations.en.srt |
5.09Кб |
| 007 Possible solution sets of 2 × 2 systems of linear equations.mp4 |
42.65Мб |
| 007 Problem 6 (Electrical circuits).en.srt |
19.08Кб |
| 007 Problem 6 (Electrical circuits).mp4 |
270.56Мб |
| 007 Slides Vector addition and vector scaling.pdf |
443.29Кб |
| 007 Two distributive laws.en.srt |
9.47Кб |
| 007 Two distributive laws.mp4 |
163.69Мб |
| 008 Conclusion 3_ About adding a multiple of a column to another column.en.srt |
5.44Кб |
| 008 Conclusion 3_ About adding a multiple of a column to another column.mp4 |
72.17Мб |
| 008 How to write system of equations to a given augmented matrix, Problem 2.en.srt |
7.10Кб |
| 008 How to write system of equations to a given augmented matrix, Problem 2.mp4 |
148.11Мб |
| 008 Matrices.en.srt |
7.23Кб |
| 008 Matrices.mp4 |
41.67Мб |
| 008 Matrix equations, Problem 6.en.srt |
21.34Кб |
| 008 Matrix equations, Problem 6.mp4 |
437.57Мб |
| 008 Matrix multiplication, Problem 3.en.srt |
7.55Кб |
| 008 Matrix multiplication, Problem 3.mp4 |
35.28Мб |
| 008 Matrix multiplication does not have the zero-product property.en.srt |
3.60Кб |
| 008 Matrix multiplication does not have the zero-product property.mp4 |
17.53Мб |
| 008 Notes Linear combinations.pdf |
606.31Кб |
| 008 Possible solution sets of 3 × 2 systems of linear equations.en.srt |
8.68Кб |
| 008 Possible solution sets of 3 × 2 systems of linear equations.mp4 |
37.62Мб |
| 008 Slides Linear combinations.pdf |
1.16Мб |
| 009 Conclusion 4_ Determinant of kA for any k ∈ R.en.srt |
8.57Кб |
| 009 Conclusion 4_ Determinant of kA for any k ∈ R.mp4 |
43.03Мб |
| 009 Gaussian elimination, Problem 3.en.srt |
28.98Кб |
| 009 Gaussian elimination, Problem 3.mp4 |
558.28Мб |
| 009 Linear transformations.en.srt |
26.76Кб |
| 009 Linear transformations.mp4 |
123.63Мб |
| 009 Matrix inverse, Problem 7.en.srt |
18.32Кб |
| 009 Matrix inverse, Problem 7.mp4 |
387.07Мб |
| 009 Matrix multiplication and systems of equations, Problem 4.en.srt |
11.00Кб |
| 009 Matrix multiplication and systems of equations, Problem 4.mp4 |
49.96Мб |
| 009 Possible solution sets of 3 × 3 systems of linear equations.en.srt |
11.31Кб |
| 009 Possible solution sets of 3 × 3 systems of linear equations.mp4 |
52.60Мб |
| 009 Slides Matrices.pdf |
4.80Мб |
| 009 There is no cancellation law for matrix multiplication.en.srt |
6.28Кб |
| 009 There is no cancellation law for matrix multiplication.mp4 |
26.92Мб |
| 010 Elementary column operations.en.srt |
14.36Кб |
| 010 Elementary column operations.mp4 |
208.11Мб |
| 010 Elementary operations and elementary matrices.en.srt |
12.61Кб |
| 010 Elementary operations and elementary matrices.mp4 |
71.57Мб |
| 010 Gaussian elimination, Problem 4.en.srt |
18.03Кб |
| 010 Gaussian elimination, Problem 4.mp4 |
376.41Мб |
| 010 Inverse matrices; not all non-zero square matrices have an inverse.en.srt |
11.32Кб |
| 010 Inverse matrices; not all non-zero square matrices have an inverse.mp4 |
68.61Мб |
| 010 Matrix—vector multiplication.en.srt |
8.49Кб |
| 010 Matrix—vector multiplication.mp4 |
60.13Мб |
| 010 Possible solution sets of 2 × 3 systems of linear equations.en.srt |
4.15Кб |
| 010 Possible solution sets of 2 × 3 systems of linear equations.mp4 |
22.45Мб |
| 010 Slides Linear transformations.pdf |
2.16Мб |
| 010 Transposed matrix, definition and some examples.en.srt |
5.47Кб |
| 010 Transposed matrix, definition and some examples.mp4 |
75.79Мб |
| 011 Gaussian elimination, Problem 5.en.srt |
16.04Кб |
| 011 Gaussian elimination, Problem 5.mp4 |
312.42Мб |
| 011 How to compute 2-by-2 determinants from the definition.en.srt |
7.63Кб |
| 011 How to compute 2-by-2 determinants from the definition.mp4 |
56.53Мб |
| 011 Inverse elementary operations and their matrices.en.srt |
6.81Кб |
| 011 Inverse elementary operations and their matrices.mp4 |
35.05Мб |
| 011 Inverse matrix for 2-by-2 matrices; non-zero determinant.en.srt |
10.95Кб |
| 011 Inverse matrix for 2-by-2 matrices; non-zero determinant.mp4 |
129.29Мб |
| 011 Possible solution sets of m × n systems of linear equations.en.srt |
6.29Кб |
| 011 Possible solution sets of m × n systems of linear equations.mp4 |
40.92Мб |
| 011 Rules for computations with real numbers.en.srt |
11.41Кб |
| 011 Rules for computations with real numbers.mp4 |
59.47Мб |
| 011 Slides Matrix vector multiplication.pdf |
1.19Мб |
| 011 Trace of a matrix, definition and an example.en.srt |
3.60Кб |
| 011 Trace of a matrix, definition and an example.mp4 |
20.22Мб |
| 012 A really important theorem.en.srt |
5.91Кб |
| 012 A really important theorem.mp4 |
67.09Мб |
| 012 Gaussian elimination, Problem 6.en.srt |
16.41Кб |
| 012 Gaussian elimination, Problem 6.mp4 |
315.33Мб |
| 012 How to compute 3-by-3 determinants from the definition.en.srt |
15.51Кб |
| 012 How to compute 3-by-3 determinants from the definition.mp4 |
82.36Мб |
| 012 Pythagorean Theorem and distance between points.en.srt |
16.92Кб |
| 012 Pythagorean Theorem and distance between points.mp4 |
66.55Мб |
| 012 Slides Rules for computations with real numbers.pdf |
150.36Кб |
| 012 Solving matrix equations, Problem 2.en.srt |
18.88Кб |
| 012 Solving matrix equations, Problem 2.mp4 |
343.30Мб |
| 012 Various matrix operations, Problem 7.en.srt |
13.36Кб |
| 012 Various matrix operations, Problem 7.mp4 |
238.82Мб |
| 013 Four equivalent statements.en.srt |
16.62Кб |
| 013 Four equivalent statements.mp4 |
148.25Мб |
| 013 Powers of matrices; powers of diagonal matrices.en.srt |
3.96Кб |
| 013 Powers of matrices; powers of diagonal matrices.mp4 |
19.24Мб |
| 013 Sarrus’ rule for 3-by-3 determinants.en.srt |
23.05Кб |
| 013 Sarrus’ rule for 3-by-3 determinants.mp4 |
338.86Мб |
| 013 Sine, cosine, and pythagorean identity.en.srt |
6.44Кб |
| 013 Sine, cosine, and pythagorean identity.mp4 |
31.79Мб |
| 013 Slides Pythagorean Theorem and distance between points.pdf |
689.54Кб |
| 013 Various matrix operations, Problem 8.en.srt |
21.49Кб |
| 013 Various matrix operations, Problem 8.mp4 |
287.18Мб |
| 013 What happens if the system is inconsistent_.en.srt |
4.72Кб |
| 013 What happens if the system is inconsistent_.mp4 |
36.28Мб |
| 014 Computation rules for transposed matrices.en.srt |
11.08Кб |
| 014 Computation rules for transposed matrices.mp4 |
139.38Мб |
| 014 Cosine Rule.en.srt |
12.35Кб |
| 014 Cosine Rule.mp4 |
55.02Мб |
| 014 Determinant of transposed matrix; row operations.en.srt |
18.50Кб |
| 014 Determinant of transposed matrix; row operations.mp4 |
76.32Мб |
| 014 Gaussian elimination, Problem 7.en.srt |
6.05Кб |
| 014 Gaussian elimination, Problem 7.mp4 |
122.99Мб |
| 014 Slides Sine cosine and pythagorean identity.pdf |
632.83Кб |
| 015 Evaluating determinants by cofactor expansion along rows or columns.en.srt |
47.95Кб |
| 015 Evaluating determinants by cofactor expansion along rows or columns.mp4 |
620.22Мб |
| 015 Preparation to the general formulation of the algorithm; REF and RREF matrices.en.srt |
17.44Кб |
| 015 Preparation to the general formulation of the algorithm; REF and RREF matrices.mp4 |
178.11Мб |
| 015 Slides Cosine Rule.pdf |
684.77Кб |
| 015 Supplement to Video 83; Inverse of a product.en.srt |
11.61Кб |
| 015 Supplement to Video 83; Inverse of a product.mp4 |
118.61Мб |
| 016 Evaluating determinants by row or column reduction.en.srt |
13.28Кб |
| 016 Evaluating determinants by row or column reduction.mp4 |
156.51Мб |
| 016 How to read solutions from REF and RREF matrices_.en.srt |
28.80Кб |
| 016 How to read solutions from REF and RREF matrices_.mp4 |
402.56Мб |
| 016 Inverse of a transposed matrix.en.srt |
5.03Кб |
| 016 Inverse of a transposed matrix.mp4 |
26.83Мб |
| 016 Slides Different ways of looking at equations.pdf |
122.79Кб |
| 017 Determinant of inverse.en.srt |
6.80Кб |
| 017 Determinant of inverse.mp4 |
31.70Мб |
| 017 General formulation of the algorithm in Gauss–Jordan elimination.en.srt |
28.32Кб |
| 017 General formulation of the algorithm in Gauss–Jordan elimination.mp4 |
458.12Мб |
| 017 Slides Solution set.pdf |
2.49Мб |
| 017 Various rules, Problem 3.en.srt |
15.37Кб |
| 017 Various rules, Problem 3.mp4 |
223.39Мб |
| 018 Gauss–Jordan elimination, Problem 8.en.srt |
18.72Кб |
| 018 Gauss–Jordan elimination, Problem 8.mp4 |
312.68Мб |
| 018 Properties of determinants, Problem 1.en.srt |
5.82Кб |
| 018 Properties of determinants, Problem 1.mp4 |
100.97Мб |
| 018 Slides Linear and nonlinear equations.pdf |
328.37Кб |
| 019 Gauss–Jordan elimination, Problem 9.en.srt |
9.23Кб |
| 019 Gauss–Jordan elimination, Problem 9.mp4 |
191.99Мб |
| 019 Properties of determinants, Problem 2.en.srt |
7.26Кб |
| 019 Properties of determinants, Problem 2.mp4 |
124.14Мб |
| 019 Slides Systems of linear equations.pdf |
2.12Мб |
| 020 Gaussian elimination, Problem 10.en.srt |
6.30Кб |
| 020 Gaussian elimination, Problem 10.mp4 |
112.24Мб |
| 020 Properties of determinants, Problem 3.en.srt |
10.12Кб |
| 020 Properties of determinants, Problem 3.mp4 |
190.43Мб |
| 020 Slides Solution sets of systems of linear equations.pdf |
1.32Мб |
| 021 Determinant equations, Problem 4.en.srt |
9.37Кб |
| 021 Determinant equations, Problem 4.mp4 |
175.60Мб |
| 021 Gauss–Jordan elimination, Problem 11.en.srt |
19.41Кб |
| 021 Gauss–Jordan elimination, Problem 11.mp4 |
406.45Мб |
| 021 Slides An example of a 2 by 2 system of linear equations A graphical solution.pdf |
486.16Кб |
| 022 Determinant equations, Problem 5.en.srt |
15.79Кб |
| 022 Determinant equations, Problem 5.mp4 |
301.98Мб |
| 022 Gauss–Jordan elimination, Problem 12.en.srt |
26.02Кб |
| 022 Gauss–Jordan elimination, Problem 12.mp4 |
520.49Мб |
| 022 Slides Possible solution sets of 2 by 2 systems of linear equations.pdf |
984.73Кб |
| 023 Determinant equations, Problem 6.en.srt |
7.58Кб |
| 023 Determinant equations, Problem 6.mp4 |
36.97Мб |
| 023 Gauss–Jordan elimination, Problem 13.en.srt |
27.06Кб |
| 023 Gauss–Jordan elimination, Problem 13.mp4 |
566.79Мб |
| 023 Slides Possible solution sets of 3 by 2 systems of linear equations Overdetermined systems.pdf |
0б |
| 024 Determinant equations, Problem 7.en.srt |
9.42Кб |
| 024 Determinant equations, Problem 7.mp4 |
29.85Мб |
| 024 Slides Possible solution sets of 3 by 3 systems of linear equations.pdf |
2.27Мб |
| 025 Invertible matrices, determinant test with a proof, Problem 8.en.srt |
26.17Кб |
| 025 Invertible matrices, determinant test with a proof, Problem 8.mp4 |
331.85Мб |
| 025 Slides Possible solution sets of 2 by 3 systems of linear equations Underdetermined systems.pdf |
0б |
| 026 Cramer’s rule, a proof, an example, and a geometrical interpretation.en.srt |
20.03Кб |
| 026 Cramer’s rule, a proof, an example, and a geometrical interpretation.mp4 |
206.73Мб |
| 026 Slides Possible solution sets of m by n systems of linear equations.pdf |
1.03Мб |
| 027 Cramer’s rule, Problem 9.en.srt |
15.05Кб |
| 027 Cramer’s rule, Problem 9.mp4 |
231.82Мб |
| 027 Notes An example of a 2 by 2 system of linear equations An algebraical solution.pdf |
747.17Кб |
| 027 Slides An example of a 2 by 2 system of linear equations An algebraical solution.pdf |
270.76Кб |
| 028 Inverse matrix, an explicit formula.en.srt |
28.35Кб |
| 028 Inverse matrix, an explicit formula.mp4 |
199.93Мб |
| 028 Slides Three elementary operations.pdf |
910.61Кб |
| 029 Invertible matrices, Problem 10.en.srt |
15.35Кб |
| 029 Invertible matrices, Problem 10.mp4 |
180.07Мб |
| 029 Slides What is Gauss Jordan and Gaussian elimination.pdf |
1.21Мб |
| 030 Problem 11, a large determinant.en.srt |
8.21Кб |
| 030 Problem 11, a large determinant.mp4 |
43.08Мб |
| 030 Slides Gauss Jordan elimination Example 2 by 2 unique solution.pdf |
466.54Кб |
| 031 Problem 12, another large determinant.en.srt |
16.36Кб |
| 031 Problem 12, another large determinant.mp4 |
267.97Мб |
| 031 Slides The same example solved with Gaussian elimination and back-substitution.pdf |
1.04Мб |
| 032 Problem 13_ a trigonometric determinant.en.srt |
9.75Кб |
| 032 Problem 13_ a trigonometric determinant.mp4 |
203.05Мб |
| 032 Slides The same example solved with matrix operations Coefficient matrix and augmented matrix.pdf |
2.01Мб |
| 033 Notes How to write the augmented matrix for a given system of equations Problem 1.pdf |
776.28Кб |
| 033 Problem 14_ Vandermonde determinant.en.srt |
27.48Кб |
| 033 Problem 14_ Vandermonde determinant.mp4 |
456.43Мб |
| 033 Slides How to write the augmented matrix for a given system of equations Problem 1.pdf |
166.95Кб |
| 034 Notes How to write system of equations corresponding to a given augmented matrix Problem 2.pdf |
536.88Кб |
| 034 Slides How to write system of equations corresponding to a given augmented matrix Problem 2.pdf |
170.09Кб |
| 035 Notes Gaussian elimination Problem 3.pdf |
2.11Мб |
| 035 Slides Gaussian elimination Problem 3.pdf |
169.10Кб |
| 036 Notes Gaussian elimination Problem 4.pdf |
1.87Мб |
| 036 Slides Gaussian elimination Problem 4.pdf |
167.57Кб |
| 037 Notes Gaussian elimination Problem 5.pdf |
1.35Мб |
| 037 Slides Gaussian elimination Problem 5.pdf |
168.26Кб |
| 038 Notes Gaussian elimination Problem 6.pdf |
1.23Мб |
| 038 Slides Gaussian elimination Problem 6.pdf |
141.72Кб |
| 039 Slides What happens if the system is inconsistent.pdf |
348.67Кб |
| 040 Notes Gaussian elimination Problem 7.pdf |
559.79Кб |
| 040 Slides Gaussian elimination Problem 7.pdf |
141.84Кб |
| 041 Notes Preparation to the general formulation of the algorithm REF and RREF matrices.pdf |
569.81Кб |
| 041 Slides Preparation to the general formulation of the algorithm REF and RREF matrices.pdf |
1.80Мб |
| 042 Notes How to read solutions from REF and RREF matrices.pdf |
1.70Мб |
| 042 Slides How to read solutions from REF and RREF matrices.pdf |
1.01Мб |
| 043 Notes General formulation of the algorithm in Gauss Jordan elimination.pdf |
1.88Мб |
| 043 Slides General formulation of the algorithm in Gauss Jordan elimination.pdf |
906.80Кб |
| 044 Notes Gauss Jordan elimination Problem 8.pdf |
1.47Мб |
| 044 Slides Gauss Jordan elimination Problem 8.pdf |
210.90Кб |
| 045 Notes Gauss Jordan elimination Problem 9.pdf |
1.02Мб |
| 045 Slides Gauss Jordan elimination Problem 9.pdf |
260.79Кб |
| 046 Notes Gauss Jordan elimination Problem 10.pdf |
537.05Кб |
| 046 Slides Gauss Jordan elimination Problem 10.pdf |
198.30Кб |
| 047 Notes Gauss Jordan elimination Problem 11.pdf |
2.11Мб |
| 047 Slides Gauss Jordan elimination Problem 11.pdf |
143.54Кб |
| 048 Notes Gaussian elimination Problem 12.pdf |
2.44Мб |
| 048 Slides Gaussian elimination Problem 12.pdf |
144.71Кб |
| 049 Article-Solved-Problems-Systems-of-Equations.pdf |
120.74Кб |
| 049 Notes Gauss Jordan elimination Problem 13.pdf |
2.21Мб |
| 049 Slides Gauss Jordan elimination Problem 13.pdf |
265.96Кб |
| 050 Slides Solving systems of linear equations in Linear Algebra and Geometry.pdf |
203.82Кб |
| 051 Notes Problem 1 Calculus.pdf |
668.44Кб |
| 051 Slides Problem 1 Calculus.pdf |
269.06Кб |
| 052 Notes Problem 2 Calculus.pdf |
1.13Мб |
| 052 Slides Problem 2 Calculus.pdf |
329.84Кб |
| 053 Notes Problem 3 Calculus.pdf |
2.13Мб |
| 053 Slides Problem 3 Calculus.pdf |
144.27Кб |
| 054 Notes Problem 4 Calculus.pdf |
2.54Мб |
| 054 Slides Problem 4 Calculus.pdf |
144.80Кб |
| 055 Notes Problem 5 Chemistry.pdf |
1.37Мб |
| 055 Slides Problem 5 Chemistry.pdf |
223.30Кб |
| 056 Notes Problem 6 Electrical circuits.pdf |
1.33Мб |
| 056 Slides Problem 6 Electrical circuits.pdf |
161.24Кб |
| 057 Slides Introduction to matrices.pdf |
1.69Мб |
| 058 Slides Different types of matrices.pdf |
308.25Кб |
| 059 Slides Matrix addition and subtraction Problem 1.pdf |
917.81Кб |
| 060 Slides Matrix scaling with geometrical interpretation.pdf |
1.15Мб |
| 061 Notes Matrix scaling Problem 2.pdf |
418.28Кб |
| 061 Slides Matrix scaling Problem 2.pdf |
496.69Кб |
| 062 Slides Matrix multiplication with geometrical interpretation.pdf |
2.47Мб |
| 063 Slides Matrix multiplication how to do.pdf |
1.87Мб |
| 064 Slides Matrix multiplication Problem 3.pdf |
2.08Мб |
| 065 Slides Matrix multiplication and systems of equations Problem 4.pdf |
1.25Мб |
| 066 Notes Transposed matrix Definition and some examples.pdf |
399.44Кб |
| 066 Slides Transposed matrix Definition and some examples.pdf |
744.38Кб |
| 067 Slides Trace of a matrix Definition and an example.pdf |
751.16Кб |
| 068 Notes Various matrix operations Problem 7.pdf |
900.55Кб |
| 068 Slides Various matrix operations Problem 7.pdf |
190.25Кб |
| 069 Notes Various matrix operations Problem 8.pdf |
1.29Мб |
| 069 Slides Various matrix operations Problem 8.pdf |
600.88Кб |
| 070 Slides Properties of matrix operations An introduction.pdf |
285.00Кб |
| 071 Slides Matrix addition has all the good properties.pdf |
711.47Кб |
| 072 Notes Matrix multiplication has a neutral element for square matrices.pdf |
587.20Кб |
| 072 Slides Matrix multiplication has a neutral element for square matrices.pdf |
158.13Кб |
| 073 Notes Matrix multiplication is associative.pdf |
1.07Мб |
| 073 Slides Matrix multiplication is associative.pdf |
1.72Мб |
| 074 Slides Matrix multiplication is not commutative.pdf |
1.58Мб |
| 075 Notes Sometimes commutativity happens Problem 1.pdf |
1.42Мб |
| 075 Slides Sometimes commutativity happens Problem 1.pdf |
263.58Кб |
| 076 Notes Two distributive laws.pdf |
632.07Кб |
| 076 Slides Two distributive laws.pdf |
280.48Кб |
| 077 Slides Matrix multiplication does not have the zero-product property.pdf |
168.74Кб |
| 078 Slides There is no cancellation law for matrix multiplication.pdf |
3.89Мб |
| 079 Slides Inverse matrices Not all non-zero square matrices have an inverse.pdf |
315.90Кб |
| 080 Notes Inverse matrix for 2-by-2 matrices Non-zero determinant.pdf |
465.75Кб |
| 080 Slides Inverse matrix for 2-by-2 matrices Non-zero determinant.pdf |
1.94Мб |
| 081 Notes Solving matrix equations Problem 2.pdf |
1.35Мб |
| 081 Slides Solving matrix equations Problem 2.pdf |
1.88Мб |
| 082 Slides Powers of matrices Powers of diagonal matrices.pdf |
668.32Кб |
| 083 Notes Computation rules for transposed matrices.pdf |
686.01Кб |
| 083 Slides Computation rules for transposed matrices.pdf |
293.06Кб |
| 084 Notes Supplement to Video 83.pdf |
488.42Кб |
| 084 Slides Supplement to Video 83 Inverse of a product.pdf |
572.49Кб |
| 085 Slides Inverse of a transposed matrix.pdf |
350.13Кб |
| 086 Article-Solved-Problems-Matrix-Arithmetics.pdf |
104.45Кб |
| 086 Notes Various rules Problem 3.pdf |
970.84Кб |
| 086 Slides Various rules Problem 3.pdf |
620.24Кб |
| 087 Notes Inverse matrices Introduction to the algorithm.pdf |
1.46Мб |
| 087 Slides Inverse matrices Introduction to the algorithm.pdf |
106.52Кб |
| 088 Slides Algorithm for inverse matrices An example.pdf |
3.28Мб |
| 089 Notes Matrix inverse Problem 1.pdf |
1.42Мб |
| 089 Slides Matrix inverse Problem 1.pdf |
193.01Кб |
| 090 Notes Matrix inverse Problem 2.pdf |
658.95Кб |
| 090 Slides Matrix inverse Problem 2.pdf |
184.61Кб |
| 091 Notes Matrix equations Problem 3.pdf |
1.15Мб |
| 091 Slides Matrix equations Problem 3.pdf |
1.81Мб |
| 092 Notes Matrix equations Problem 4.pdf |
744.74Кб |
| 092 Slides Matrix equations Problem 4.pdf |
1.81Мб |
| 093 Notes Matrix equations Problem 5.pdf |
1.23Мб |
| 093 Slides Matrix equations Problem 5.pdf |
171.74Кб |
| 094 Notes Matrix equations Problem 6.pdf |
1.83Мб |
| 094 Slides Matrix equations Problem 6.pdf |
171.74Кб |
| 095 Notes Matrix inverse Problem 7.pdf |
1.69Мб |
| 095 Slides Matrix inverse Problem 7.pdf |
292.74Кб |
| 096 Slides Elementary operations and elementary matrices.pdf |
1.46Мб |
| 097 Slides Inverse elementary operations and their matrices.pdf |
3.26Мб |
| 098 Slides A really important theorem.pdf |
648.58Кб |
| 099 Article-Solved-Problems-Matrix-Inverse.pdf |
166.58Кб |
| 099 Notes Four equivalent statements.pdf |
640.46Кб |
| 099 Slides Four equivalent statements.pdf |
1.98Мб |
| 100 Notes Formally about the number of solutions to systems of linear equations.pdf |
1.79Мб |
| 100 Slides Formally about the number of solutions to systems of linear equations.pdf |
720.42Кб |
| 101 Notes Two more statements in our important theorem.pdf |
715.80Кб |
| 101 Slides Two more statements in our important theorem.pdf |
708.47Кб |
| 102 Notes Solution of a linear system using A inverse Problem 1.pdf |
1.37Мб |
| 102 Slides Solution of a linear system using A inverse Problem 1.pdf |
825.54Кб |
| 103 Notes Determining consistency by elimination Problem 2.pdf |
2.25Мб |
| 103 Slides Determining consistency by elimination Problem 2.pdf |
721.27Кб |
| 104 Notes Matrix equations Problem 3.pdf |
949.43Кб |
| 104 Slides Matrix equations Problem 3.pdf |
293.91Кб |
| 105 Slides Why the determinants are important.pdf |
736.67Кб |
| 106 Slides 2-by-2 determinants Notation for n by n determinants.pdf |
562.87Кб |
| 107 Slides Geometrical interpretations of determinants.pdf |
3.44Мб |
| 108 Slides Geometrically about the determinant of a product.pdf |
2.08Мб |
| 109 Slides Definition of determinants.pdf |
5.19Мб |
| 110 Slides Conclusion 1 Determinant of matrices with interchanged columns.pdf |
2.86Мб |
| 111 Notes Conclusion 2 What happens when one column is a linear combination of the other columns.pdf |
1.33Мб |
| 111 Slides Conclusion 2 What happens when one column is a linear combination of the other columns.pdf |
3.83Мб |
| 112 Notes Conclusion 3 About adding a multiple of a column to another column.pdf |
546.39Кб |
| 112 Slides Conclusion 3 About adding a multiple of a column to another column.pdf |
733.65Кб |
| 113 Slides Conclusion 4 Determinant of kA for any real k.pdf |
1.82Мб |
| 114 Notes Elementary column operations.pdf |
888.15Кб |
| 114 Slides Elementary column operations.pdf |
793.98Кб |
| 115 Slides How to compute 2 by 2 determinants from the definition.pdf |
1.06Мб |
| 116 Slides How to compute 3 by 3 determinants from the definition.pdf |
2.17Мб |
| 117 Notes Sarrus method for 3 by 3 determinants.pdf |
848.04Кб |
| 117 Slides Sarrus method for 3 by 3 determinants.pdf |
742.23Кб |
| 118 Slides Determinant of transposed matrix Row operations.pdf |
1.67Мб |
| 119 Notes Cofactor expansion along columns or rows.pdf |
2.97Мб |
| 119 Slides Cofactor expansion along columns or rows.pdf |
2.67Мб |
| 120 Notes Evaluating determinants by row or column reduction.pdf |
960.03Кб |
| 120 Slides Evaluating determinants by row or column reduction.pdf |
1.37Мб |
| 121 Slides Determinant of inverse.pdf |
1.21Мб |
| 122 Notes Properties of determinants Problem 1.pdf |
650.74Кб |
| 122 Slides Properties of determinants Problem 1.pdf |
2.51Мб |
| 123 Notes Properties of determinants Problem 2.pdf |
795.35Кб |
| 123 Slides Properties of determinants Problem 2.pdf |
1.72Мб |
| 124 Notes Properties of determinants Problem 3.pdf |
794.44Кб |
| 124 Slides Properties of determinants Problem 3.pdf |
2.33Мб |
| 125 Notes Determinant equations Problem 4.pdf |
547.55Кб |
| 125 Slides Determinant equations Problem 4.pdf |
274.19Кб |
| 126 Notes Determinant equations Problem 5.pdf |
1.32Мб |
| 126 Slides Determinant equations Problem 5.pdf |
274.15Кб |
| 127 Slides Determinant equations Problem 6.pdf |
525.85Кб |
| 128 Slides Determinant equations Problem 7.pdf |
723.39Кб |
| 129 Notes Invertible matrices Determinant test with a proof Problem 8.pdf |
1.00Мб |
| 129 Slides Invertible matrices Determinant test with a proof Problem 8.pdf |
1.96Мб |
| 130 Notes Cramers rule Proof Example Geometrical interpretation.pdf |
791.82Кб |
| 130 Slides Cramers rule Proof Example Geometrical interpretation.pdf |
1.56Мб |
| 131 Notes Cramers rule, Problem 9.pdf |
1.20Мб |
| 131 Slides Cramers rule, Problem 9.pdf |
1.11Мб |
| 132 Notes Inverse matrix An explicit formula.pdf |
688.58Кб |
| 132 Slides Inverse matrix An explicit formula.pdf |
2.82Мб |
| 133 Notes Inverse matrix An explicit formula Problem 10.pdf |
1.02Мб |
| 133 Slides Inverse matrix An explicit formula Problem 10.pdf |
1007.75Кб |
| 134 Slides Problem 11 A large determinant.pdf |
1.18Мб |
| 135 Notes Problem 12 Another large determinant.pdf |
1.32Мб |
| 135 Slides Problem 12 Another large determinant.pdf |
206.43Кб |
| 136 Notes Problem 13 A trigonometric determinant.pdf |
1.21Мб |
| 136 Slides Problem 13 A trigonometric determinant.pdf |
221.88Кб |
| 137 Article-Solved-Problems-Determinants.pdf |
1.54Мб |
| 137 Notes Problem 14 Vandermonde determinant.pdf |
2.42Мб |
| 137 Slides Problem 14 Vandermonde determinant.pdf |
1.08Мб |