Общая информация
Название [Tutorialsplanet.NET] Udemy - Linear Algebra and Geometry 1
Тип
Размер 23.03Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[Tutorialsplanet.NET].url 128б
[Tutorialsplanet.NET].url 128б
[Tutorialsplanet.NET].url 128б
[Tutorialsplanet.NET].url 128б
[Tutorialsplanet.NET].url 128б
001 Coordinate systems and coordinates in the plane and in the 3-space.en.srt 23.35Кб
001 Coordinate systems and coordinates in the plane and in the 3-space.mp4 122.57Мб
001 Different ways of looking at equations.en.srt 5.37Кб
001 Different ways of looking at equations.mp4 33.63Мб
001 Formally about the number of solutions to systems of linear equations.en.srt 23.41Кб
001 Formally about the number of solutions to systems of linear equations.mp4 348.60Мб
001 Introduction.en.srt 16.03Кб
001 Introduction.mp4 153.33Мб
001 Introduction to matrices.en.srt 11.20Кб
001 Introduction to matrices.mp4 55.11Мб
001 Inverse matrices, introduction to the algorithm.en.srt 17.47Кб
001 Inverse matrices, introduction to the algorithm.mp4 406.27Мб
001 Our earlier problem revisited; an algebraical solution.en.srt 10.25Кб
001 Our earlier problem revisited; an algebraical solution.mp4 182.33Мб
001 Outline_Linear_Algebra_and_Geometry_1.pdf 1.04Мб
001 Properties of matrix operations, an introduction.en.srt 5.57Кб
001 Properties of matrix operations, an introduction.mp4 41.73Мб
001 Slides Introduction to the course.pdf 34.78Мб
001 Solving systems of linear equations in Linear Algebra and Geometry.en.srt 8.47Кб
001 Solving systems of linear equations in Linear Algebra and Geometry.mp4 94.07Мб
001 Vectors, a repetition.en.srt 9.32Кб
001 Vectors, a repetition.mp4 55.29Мб
001 Why the determinants are important.en.srt 4.83Кб
001 Why the determinants are important.mp4 68.48Мб
002 2-by-2 determinants; notation for n-by-n determinants.en.srt 11.32Кб
002 2-by-2 determinants; notation for n-by-n determinants.mp4 47.88Мб
002 Algorithm for inverse matrices, an example.en.srt 10.38Кб
002 Algorithm for inverse matrices, an example.mp4 57.55Мб
002 Computation rules for vector addition and scaling.en.srt 12.80Кб
002 Computation rules for vector addition and scaling.mp4 108.46Мб
002 Different types of matrices.en.srt 11.08Кб
002 Different types of matrices.mp4 51.47Мб
002 Matrix addition has all the good properties.en.srt 8.02Кб
002 Matrix addition has all the good properties.mp4 32.07Мб
002 Slides Coordinate systems and coordinates.pdf 996.11Кб
002 Slope-intercept equations of straight lines in the plane.en.srt 11.44Кб
002 Slope-intercept equations of straight lines in the plane.mp4 70.38Мб
002 Solution set.en.srt 14.54Кб
002 Solution set.mp4 58.54Мб
002 Solving systems of linear equations (Calculus) Problem 1.en.srt 7.97Кб
002 Solving systems of linear equations (Calculus) Problem 1.mp4 143.97Мб
002 Three elementary operations.en.srt 10.45Кб
002 Three elementary operations.mp4 70.77Мб
002 Two more statements in our important theorem.en.srt 9.92Кб
002 Two more statements in our important theorem.mp4 136.69Мб
003 Computations with vectors, Problem 1.en.srt 8.56Кб
003 Computations with vectors, Problem 1.mp4 172.33Мб
003 Geometrical interpretations of determinants.en.srt 21.16Кб
003 Geometrical interpretations of determinants.mp4 104.80Мб
003 Linear and non-linear equations.en.srt 14.27Кб
003 Linear and non-linear equations.mp4 63.27Мб
003 Matrix addition and subtraction, Problem 1.en.srt 5.31Кб
003 Matrix addition and subtraction, Problem 1.mp4 27.23Мб
003 Matrix inverse, Problem 1.en.srt 16.33Кб
003 Matrix inverse, Problem 1.mp4 289.45Мб
003 Matrix multiplication has a neutral element for square matrices.en.srt 8.37Кб
003 Matrix multiplication has a neutral element for square matrices.mp4 119.76Мб
003 Normal equations of planes in the 3-space.en.srt 10.99Кб
003 Normal equations of planes in the 3-space.mp4 63.91Мб
003 Slides Slope intercept equations of lines in the plane.pdf 1.54Мб
003 Solution of a linear system using A inverse, Problem 1.en.srt 17.29Кб
003 Solution of a linear system using A inverse, Problem 1.mp4 334.86Мб
003 Solving systems of linear equations (Calculus) Problem 2.en.srt 10.19Кб
003 Solving systems of linear equations (Calculus) Problem 2.mp4 206.19Мб
003 What is Gauss—Jordan elimination and Gaussian elimination_.en.srt 8.60Кб
003 What is Gauss—Jordan elimination and Gaussian elimination_.mp4 47.87Мб
004 Computations with vectors, Problem 2.en.srt 7.49Кб
004 Computations with vectors, Problem 2.mp4 131.76Мб
004 Determining consistency by elimination, Problem 2.en.srt 23.37Кб
004 Determining consistency by elimination, Problem 2.mp4 465.18Мб
004 Gauss—Jordan elimination, a 2-by-2 system with unique solution.en.srt 9.61Кб
004 Gauss—Jordan elimination, a 2-by-2 system with unique solution.mp4 38.68Мб
004 Geometrically about the determinant of a product.en.srt 7.88Кб
004 Geometrically about the determinant of a product.mp4 68.66Мб
004 Matrix inverse, Problem 2.en.srt 11.25Кб
004 Matrix inverse, Problem 2.mp4 204.71Мб
004 Matrix multiplication is associative.en.srt 19.52Кб
004 Matrix multiplication is associative.mp4 282.36Мб
004 Matrix scaling, with geometrical interpretation.en.srt 6.42Кб
004 Matrix scaling, with geometrical interpretation.mp4 33.00Мб
004 Slides Normal equations of planes in the 3-space.pdf 641.93Кб
004 Solving systems of linear equations (Calculus) Problem 3.en.srt 25.02Кб
004 Solving systems of linear equations (Calculus) Problem 3.mp4 513.66Мб
004 Systems of linear equations.en.srt 4.80Кб
004 Systems of linear equations.mp4 26.96Мб
004 Vectors.en.srt 14.96Кб
004 Vectors.mp4 56.19Мб
005 Computations with vectors, Problem 3.en.srt 5.33Кб
005 Computations with vectors, Problem 3.mp4 105.22Мб
005 Definition of determinants.en.srt 16.10Кб
005 Definition of determinants.mp4 101.96Мб
005 Matrix equations, Problem 3.en.srt 13.48Кб
005 Matrix equations, Problem 3.en.srt 14.40Кб
005 Matrix equations, Problem 3.mp4 250.36Мб
005 Matrix equations, Problem 3.mp4 278.16Мб
005 Matrix multiplication is not commutative.en.srt 8.17Кб
005 Matrix multiplication is not commutative.mp4 43.95Мб
005 Matrix scaling, Problem 2.en.srt 3.41Кб
005 Matrix scaling, Problem 2.mp4 57.25Мб
005 Scalars.en.srt 2.33Кб
005 Scalars.mp4 48.22Мб
005 Slides Vectors.pdf 952.42Кб
005 Solution sets of systems of linear equations.en.srt 11.57Кб
005 Solution sets of systems of linear equations.mp4 54.16Мб
005 Solving systems of linear equations (Calculus) Problem 4.en.srt 27.98Кб
005 Solving systems of linear equations (Calculus) Problem 4.mp4 572.23Мб
005 The same example solved with Gaussian elimination and back-substitution.en.srt 3.87Кб
005 The same example solved with Gaussian elimination and back-substitution.mp4 30.12Мб
006 An example of a 2 × 2 system of linear equations, a graphical solution.en.srt 3.48Кб
006 An example of a 2 × 2 system of linear equations, a graphical solution.mp4 31.21Мб
006 Conclusion 1_ Determinant of matrices with interchanged columns.en.srt 11.58Кб
006 Conclusion 1_ Determinant of matrices with interchanged columns.mp4 54.76Мб
006 Matrix equations, Problem 4.en.srt 8.45Кб
006 Matrix equations, Problem 4.mp4 155.95Мб
006 Matrix multiplication, with geometrical interpretation.en.srt 19.40Кб
006 Matrix multiplication, with geometrical interpretation.mp4 110.63Мб
006 Parallel vectors, Problem 4.en.srt 7.10Кб
006 Parallel vectors, Problem 4.mp4 143.21Мб
006 Problem 5 (Chemistry).en.srt 16.68Кб
006 Problem 5 (Chemistry).mp4 277.27Мб
006 Sometimes commutativity happens, Problem 1.en.srt 14.13Кб
006 Sometimes commutativity happens, Problem 1.mp4 309.55Мб
006 The same example solved with matrix operations; coefficient matrix and augmented.en.srt 13.15Кб
006 The same example solved with matrix operations; coefficient matrix and augmented.mp4 66.82Мб
006 Vector addition and vector scaling.en.srt 11.64Кб
006 Vector addition and vector scaling.mp4 63.50Мб
007 Conclusion 2_ What happens when one column is a linear combination of others.en.srt 20.27Кб
007 Conclusion 2_ What happens when one column is a linear combination of others.mp4 248.51Мб
007 How to write the augmented matrix for a given system of equations, Problem 1.en.srt 12.85Кб
007 How to write the augmented matrix for a given system of equations, Problem 1.mp4 258.05Мб
007 Linear combinations.en.srt 24.66Кб
007 Linear combinations.mp4 165.54Мб
007 Matrix equations, Problem 5.en.srt 17.10Кб
007 Matrix equations, Problem 5.mp4 341.83Мб
007 Matrix multiplication, how to do.en.srt 6.13Кб
007 Matrix multiplication, how to do.mp4 41.55Мб
007 Parallel vectors, Problem 5.en.srt 8.88Кб
007 Parallel vectors, Problem 5.mp4 100.00Мб
007 Possible solution sets of 2 × 2 systems of linear equations.en.srt 5.09Кб
007 Possible solution sets of 2 × 2 systems of linear equations.mp4 42.65Мб
007 Problem 6 (Electrical circuits).en.srt 19.08Кб
007 Problem 6 (Electrical circuits).mp4 270.56Мб
007 Slides Vector addition and vector scaling.pdf 443.29Кб
007 Two distributive laws.en.srt 9.47Кб
007 Two distributive laws.mp4 163.69Мб
008 Conclusion 3_ About adding a multiple of a column to another column.en.srt 5.44Кб
008 Conclusion 3_ About adding a multiple of a column to another column.mp4 72.17Мб
008 How to write system of equations to a given augmented matrix, Problem 2.en.srt 7.10Кб
008 How to write system of equations to a given augmented matrix, Problem 2.mp4 148.11Мб
008 Matrices.en.srt 7.23Кб
008 Matrices.mp4 41.67Мб
008 Matrix equations, Problem 6.en.srt 21.34Кб
008 Matrix equations, Problem 6.mp4 437.57Мб
008 Matrix multiplication, Problem 3.en.srt 7.55Кб
008 Matrix multiplication, Problem 3.mp4 35.28Мб
008 Matrix multiplication does not have the zero-product property.en.srt 3.60Кб
008 Matrix multiplication does not have the zero-product property.mp4 17.53Мб
008 Notes Linear combinations.pdf 606.31Кб
008 Possible solution sets of 3 × 2 systems of linear equations.en.srt 8.68Кб
008 Possible solution sets of 3 × 2 systems of linear equations.mp4 37.62Мб
008 Slides Linear combinations.pdf 1.16Мб
009 Conclusion 4_ Determinant of kA for any k ∈ R.en.srt 8.57Кб
009 Conclusion 4_ Determinant of kA for any k ∈ R.mp4 43.03Мб
009 Gaussian elimination, Problem 3.en.srt 28.98Кб
009 Gaussian elimination, Problem 3.mp4 558.28Мб
009 Linear transformations.en.srt 26.76Кб
009 Linear transformations.mp4 123.63Мб
009 Matrix inverse, Problem 7.en.srt 18.32Кб
009 Matrix inverse, Problem 7.mp4 387.07Мб
009 Matrix multiplication and systems of equations, Problem 4.en.srt 11.00Кб
009 Matrix multiplication and systems of equations, Problem 4.mp4 49.96Мб
009 Possible solution sets of 3 × 3 systems of linear equations.en.srt 11.31Кб
009 Possible solution sets of 3 × 3 systems of linear equations.mp4 52.60Мб
009 Slides Matrices.pdf 4.80Мб
009 There is no cancellation law for matrix multiplication.en.srt 6.28Кб
009 There is no cancellation law for matrix multiplication.mp4 26.92Мб
010 Elementary column operations.en.srt 14.36Кб
010 Elementary column operations.mp4 208.11Мб
010 Elementary operations and elementary matrices.en.srt 12.61Кб
010 Elementary operations and elementary matrices.mp4 71.57Мб
010 Gaussian elimination, Problem 4.en.srt 18.03Кб
010 Gaussian elimination, Problem 4.mp4 376.41Мб
010 Inverse matrices; not all non-zero square matrices have an inverse.en.srt 11.32Кб
010 Inverse matrices; not all non-zero square matrices have an inverse.mp4 68.61Мб
010 Matrix—vector multiplication.en.srt 8.49Кб
010 Matrix—vector multiplication.mp4 60.13Мб
010 Possible solution sets of 2 × 3 systems of linear equations.en.srt 4.15Кб
010 Possible solution sets of 2 × 3 systems of linear equations.mp4 22.45Мб
010 Slides Linear transformations.pdf 2.16Мб
010 Transposed matrix, definition and some examples.en.srt 5.47Кб
010 Transposed matrix, definition and some examples.mp4 75.79Мб
011 Gaussian elimination, Problem 5.en.srt 16.04Кб
011 Gaussian elimination, Problem 5.mp4 312.42Мб
011 How to compute 2-by-2 determinants from the definition.en.srt 7.63Кб
011 How to compute 2-by-2 determinants from the definition.mp4 56.53Мб
011 Inverse elementary operations and their matrices.en.srt 6.81Кб
011 Inverse elementary operations and their matrices.mp4 35.05Мб
011 Inverse matrix for 2-by-2 matrices; non-zero determinant.en.srt 10.95Кб
011 Inverse matrix for 2-by-2 matrices; non-zero determinant.mp4 129.29Мб
011 Possible solution sets of m × n systems of linear equations.en.srt 6.29Кб
011 Possible solution sets of m × n systems of linear equations.mp4 40.92Мб
011 Rules for computations with real numbers.en.srt 11.41Кб
011 Rules for computations with real numbers.mp4 59.47Мб
011 Slides Matrix vector multiplication.pdf 1.19Мб
011 Trace of a matrix, definition and an example.en.srt 3.60Кб
011 Trace of a matrix, definition and an example.mp4 20.22Мб
012 A really important theorem.en.srt 5.91Кб
012 A really important theorem.mp4 67.09Мб
012 Gaussian elimination, Problem 6.en.srt 16.41Кб
012 Gaussian elimination, Problem 6.mp4 315.33Мб
012 How to compute 3-by-3 determinants from the definition.en.srt 15.51Кб
012 How to compute 3-by-3 determinants from the definition.mp4 82.36Мб
012 Pythagorean Theorem and distance between points.en.srt 16.92Кб
012 Pythagorean Theorem and distance between points.mp4 66.55Мб
012 Slides Rules for computations with real numbers.pdf 150.36Кб
012 Solving matrix equations, Problem 2.en.srt 18.88Кб
012 Solving matrix equations, Problem 2.mp4 343.30Мб
012 Various matrix operations, Problem 7.en.srt 13.36Кб
012 Various matrix operations, Problem 7.mp4 238.82Мб
013 Four equivalent statements.en.srt 16.62Кб
013 Four equivalent statements.mp4 148.25Мб
013 Powers of matrices; powers of diagonal matrices.en.srt 3.96Кб
013 Powers of matrices; powers of diagonal matrices.mp4 19.24Мб
013 Sarrus’ rule for 3-by-3 determinants.en.srt 23.05Кб
013 Sarrus’ rule for 3-by-3 determinants.mp4 338.86Мб
013 Sine, cosine, and pythagorean identity.en.srt 6.44Кб
013 Sine, cosine, and pythagorean identity.mp4 31.79Мб
013 Slides Pythagorean Theorem and distance between points.pdf 689.54Кб
013 Various matrix operations, Problem 8.en.srt 21.49Кб
013 Various matrix operations, Problem 8.mp4 287.18Мб
013 What happens if the system is inconsistent_.en.srt 4.72Кб
013 What happens if the system is inconsistent_.mp4 36.28Мб
014 Computation rules for transposed matrices.en.srt 11.08Кб
014 Computation rules for transposed matrices.mp4 139.38Мб
014 Cosine Rule.en.srt 12.35Кб
014 Cosine Rule.mp4 55.02Мб
014 Determinant of transposed matrix; row operations.en.srt 18.50Кб
014 Determinant of transposed matrix; row operations.mp4 76.32Мб
014 Gaussian elimination, Problem 7.en.srt 6.05Кб
014 Gaussian elimination, Problem 7.mp4 122.99Мб
014 Slides Sine cosine and pythagorean identity.pdf 632.83Кб
015 Evaluating determinants by cofactor expansion along rows or columns.en.srt 47.95Кб
015 Evaluating determinants by cofactor expansion along rows or columns.mp4 620.22Мб
015 Preparation to the general formulation of the algorithm; REF and RREF matrices.en.srt 17.44Кб
015 Preparation to the general formulation of the algorithm; REF and RREF matrices.mp4 178.11Мб
015 Slides Cosine Rule.pdf 684.77Кб
015 Supplement to Video 83; Inverse of a product.en.srt 11.61Кб
015 Supplement to Video 83; Inverse of a product.mp4 118.61Мб
016 Evaluating determinants by row or column reduction.en.srt 13.28Кб
016 Evaluating determinants by row or column reduction.mp4 156.51Мб
016 How to read solutions from REF and RREF matrices_.en.srt 28.80Кб
016 How to read solutions from REF and RREF matrices_.mp4 402.56Мб
016 Inverse of a transposed matrix.en.srt 5.03Кб
016 Inverse of a transposed matrix.mp4 26.83Мб
016 Slides Different ways of looking at equations.pdf 122.79Кб
017 Determinant of inverse.en.srt 6.80Кб
017 Determinant of inverse.mp4 31.70Мб
017 General formulation of the algorithm in Gauss–Jordan elimination.en.srt 28.32Кб
017 General formulation of the algorithm in Gauss–Jordan elimination.mp4 458.12Мб
017 Slides Solution set.pdf 2.49Мб
017 Various rules, Problem 3.en.srt 15.37Кб
017 Various rules, Problem 3.mp4 223.39Мб
018 Gauss–Jordan elimination, Problem 8.en.srt 18.72Кб
018 Gauss–Jordan elimination, Problem 8.mp4 312.68Мб
018 Properties of determinants, Problem 1.en.srt 5.82Кб
018 Properties of determinants, Problem 1.mp4 100.97Мб
018 Slides Linear and nonlinear equations.pdf 328.37Кб
019 Gauss–Jordan elimination, Problem 9.en.srt 9.23Кб
019 Gauss–Jordan elimination, Problem 9.mp4 191.99Мб
019 Properties of determinants, Problem 2.en.srt 7.26Кб
019 Properties of determinants, Problem 2.mp4 124.14Мб
019 Slides Systems of linear equations.pdf 2.12Мб
020 Gaussian elimination, Problem 10.en.srt 6.30Кб
020 Gaussian elimination, Problem 10.mp4 112.24Мб
020 Properties of determinants, Problem 3.en.srt 10.12Кб
020 Properties of determinants, Problem 3.mp4 190.43Мб
020 Slides Solution sets of systems of linear equations.pdf 1.32Мб
021 Determinant equations, Problem 4.en.srt 9.37Кб
021 Determinant equations, Problem 4.mp4 175.60Мб
021 Gauss–Jordan elimination, Problem 11.en.srt 19.41Кб
021 Gauss–Jordan elimination, Problem 11.mp4 406.45Мб
021 Slides An example of a 2 by 2 system of linear equations A graphical solution.pdf 486.16Кб
022 Determinant equations, Problem 5.en.srt 15.79Кб
022 Determinant equations, Problem 5.mp4 301.98Мб
022 Gauss–Jordan elimination, Problem 12.en.srt 26.02Кб
022 Gauss–Jordan elimination, Problem 12.mp4 520.49Мб
022 Slides Possible solution sets of 2 by 2 systems of linear equations.pdf 984.73Кб
023 Determinant equations, Problem 6.en.srt 7.58Кб
023 Determinant equations, Problem 6.mp4 36.97Мб
023 Gauss–Jordan elimination, Problem 13.en.srt 27.06Кб
023 Gauss–Jordan elimination, Problem 13.mp4 566.79Мб
023 Slides Possible solution sets of 3 by 2 systems of linear equations Overdetermined systems.pdf
024 Determinant equations, Problem 7.en.srt 9.42Кб
024 Determinant equations, Problem 7.mp4 29.85Мб
024 Slides Possible solution sets of 3 by 3 systems of linear equations.pdf 2.27Мб
025 Invertible matrices, determinant test with a proof, Problem 8.en.srt 26.17Кб
025 Invertible matrices, determinant test with a proof, Problem 8.mp4 331.85Мб
025 Slides Possible solution sets of 2 by 3 systems of linear equations Underdetermined systems.pdf
026 Cramer’s rule, a proof, an example, and a geometrical interpretation.en.srt 20.03Кб
026 Cramer’s rule, a proof, an example, and a geometrical interpretation.mp4 206.73Мб
026 Slides Possible solution sets of m by n systems of linear equations.pdf 1.03Мб
027 Cramer’s rule, Problem 9.en.srt 15.05Кб
027 Cramer’s rule, Problem 9.mp4 231.82Мб
027 Notes An example of a 2 by 2 system of linear equations An algebraical solution.pdf 747.17Кб
027 Slides An example of a 2 by 2 system of linear equations An algebraical solution.pdf 270.76Кб
028 Inverse matrix, an explicit formula.en.srt 28.35Кб
028 Inverse matrix, an explicit formula.mp4 199.93Мб
028 Slides Three elementary operations.pdf 910.61Кб
029 Invertible matrices, Problem 10.en.srt 15.35Кб
029 Invertible matrices, Problem 10.mp4 180.07Мб
029 Slides What is Gauss Jordan and Gaussian elimination.pdf 1.21Мб
030 Problem 11, a large determinant.en.srt 8.21Кб
030 Problem 11, a large determinant.mp4 43.08Мб
030 Slides Gauss Jordan elimination Example 2 by 2 unique solution.pdf 466.54Кб
031 Problem 12, another large determinant.en.srt 16.36Кб
031 Problem 12, another large determinant.mp4 267.97Мб
031 Slides The same example solved with Gaussian elimination and back-substitution.pdf 1.04Мб
032 Problem 13_ a trigonometric determinant.en.srt 9.75Кб
032 Problem 13_ a trigonometric determinant.mp4 203.05Мб
032 Slides The same example solved with matrix operations Coefficient matrix and augmented matrix.pdf 2.01Мб
033 Notes How to write the augmented matrix for a given system of equations Problem 1.pdf 776.28Кб
033 Problem 14_ Vandermonde determinant.en.srt 27.48Кб
033 Problem 14_ Vandermonde determinant.mp4 456.43Мб
033 Slides How to write the augmented matrix for a given system of equations Problem 1.pdf 166.95Кб
034 Notes How to write system of equations corresponding to a given augmented matrix Problem 2.pdf 536.88Кб
034 Slides How to write system of equations corresponding to a given augmented matrix Problem 2.pdf 170.09Кб
035 Notes Gaussian elimination Problem 3.pdf 2.11Мб
035 Slides Gaussian elimination Problem 3.pdf 169.10Кб
036 Notes Gaussian elimination Problem 4.pdf 1.87Мб
036 Slides Gaussian elimination Problem 4.pdf 167.57Кб
037 Notes Gaussian elimination Problem 5.pdf 1.35Мб
037 Slides Gaussian elimination Problem 5.pdf 168.26Кб
038 Notes Gaussian elimination Problem 6.pdf 1.23Мб
038 Slides Gaussian elimination Problem 6.pdf 141.72Кб
039 Slides What happens if the system is inconsistent.pdf 348.67Кб
040 Notes Gaussian elimination Problem 7.pdf 559.79Кб
040 Slides Gaussian elimination Problem 7.pdf 141.84Кб
041 Notes Preparation to the general formulation of the algorithm REF and RREF matrices.pdf 569.81Кб
041 Slides Preparation to the general formulation of the algorithm REF and RREF matrices.pdf 1.80Мб
042 Notes How to read solutions from REF and RREF matrices.pdf 1.70Мб
042 Slides How to read solutions from REF and RREF matrices.pdf 1.01Мб
043 Notes General formulation of the algorithm in Gauss Jordan elimination.pdf 1.88Мб
043 Slides General formulation of the algorithm in Gauss Jordan elimination.pdf 906.80Кб
044 Notes Gauss Jordan elimination Problem 8.pdf 1.47Мб
044 Slides Gauss Jordan elimination Problem 8.pdf 210.90Кб
045 Notes Gauss Jordan elimination Problem 9.pdf 1.02Мб
045 Slides Gauss Jordan elimination Problem 9.pdf 260.79Кб
046 Notes Gauss Jordan elimination Problem 10.pdf 537.05Кб
046 Slides Gauss Jordan elimination Problem 10.pdf 198.30Кб
047 Notes Gauss Jordan elimination Problem 11.pdf 2.11Мб
047 Slides Gauss Jordan elimination Problem 11.pdf 143.54Кб
048 Notes Gaussian elimination Problem 12.pdf 2.44Мб
048 Slides Gaussian elimination Problem 12.pdf 144.71Кб
049 Article-Solved-Problems-Systems-of-Equations.pdf 120.74Кб
049 Notes Gauss Jordan elimination Problem 13.pdf 2.21Мб
049 Slides Gauss Jordan elimination Problem 13.pdf 265.96Кб
050 Slides Solving systems of linear equations in Linear Algebra and Geometry.pdf 203.82Кб
051 Notes Problem 1 Calculus.pdf 668.44Кб
051 Slides Problem 1 Calculus.pdf 269.06Кб
052 Notes Problem 2 Calculus.pdf 1.13Мб
052 Slides Problem 2 Calculus.pdf 329.84Кб
053 Notes Problem 3 Calculus.pdf 2.13Мб
053 Slides Problem 3 Calculus.pdf 144.27Кб
054 Notes Problem 4 Calculus.pdf 2.54Мб
054 Slides Problem 4 Calculus.pdf 144.80Кб
055 Notes Problem 5 Chemistry.pdf 1.37Мб
055 Slides Problem 5 Chemistry.pdf 223.30Кб
056 Notes Problem 6 Electrical circuits.pdf 1.33Мб
056 Slides Problem 6 Electrical circuits.pdf 161.24Кб
057 Slides Introduction to matrices.pdf 1.69Мб
058 Slides Different types of matrices.pdf 308.25Кб
059 Slides Matrix addition and subtraction Problem 1.pdf 917.81Кб
060 Slides Matrix scaling with geometrical interpretation.pdf 1.15Мб
061 Notes Matrix scaling Problem 2.pdf 418.28Кб
061 Slides Matrix scaling Problem 2.pdf 496.69Кб
062 Slides Matrix multiplication with geometrical interpretation.pdf 2.47Мб
063 Slides Matrix multiplication how to do.pdf 1.87Мб
064 Slides Matrix multiplication Problem 3.pdf 2.08Мб
065 Slides Matrix multiplication and systems of equations Problem 4.pdf 1.25Мб
066 Notes Transposed matrix Definition and some examples.pdf 399.44Кб
066 Slides Transposed matrix Definition and some examples.pdf 744.38Кб
067 Slides Trace of a matrix Definition and an example.pdf 751.16Кб
068 Notes Various matrix operations Problem 7.pdf 900.55Кб
068 Slides Various matrix operations Problem 7.pdf 190.25Кб
069 Notes Various matrix operations Problem 8.pdf 1.29Мб
069 Slides Various matrix operations Problem 8.pdf 600.88Кб
070 Slides Properties of matrix operations An introduction.pdf 285.00Кб
071 Slides Matrix addition has all the good properties.pdf 711.47Кб
072 Notes Matrix multiplication has a neutral element for square matrices.pdf 587.20Кб
072 Slides Matrix multiplication has a neutral element for square matrices.pdf 158.13Кб
073 Notes Matrix multiplication is associative.pdf 1.07Мб
073 Slides Matrix multiplication is associative.pdf 1.72Мб
074 Slides Matrix multiplication is not commutative.pdf 1.58Мб
075 Notes Sometimes commutativity happens Problem 1.pdf 1.42Мб
075 Slides Sometimes commutativity happens Problem 1.pdf 263.58Кб
076 Notes Two distributive laws.pdf 632.07Кб
076 Slides Two distributive laws.pdf 280.48Кб
077 Slides Matrix multiplication does not have the zero-product property.pdf 168.74Кб
078 Slides There is no cancellation law for matrix multiplication.pdf 3.89Мб
079 Slides Inverse matrices Not all non-zero square matrices have an inverse.pdf 315.90Кб
080 Notes Inverse matrix for 2-by-2 matrices Non-zero determinant.pdf 465.75Кб
080 Slides Inverse matrix for 2-by-2 matrices Non-zero determinant.pdf 1.94Мб
081 Notes Solving matrix equations Problem 2.pdf 1.35Мб
081 Slides Solving matrix equations Problem 2.pdf 1.88Мб
082 Slides Powers of matrices Powers of diagonal matrices.pdf 668.32Кб
083 Notes Computation rules for transposed matrices.pdf 686.01Кб
083 Slides Computation rules for transposed matrices.pdf 293.06Кб
084 Notes Supplement to Video 83.pdf 488.42Кб
084 Slides Supplement to Video 83 Inverse of a product.pdf 572.49Кб
085 Slides Inverse of a transposed matrix.pdf 350.13Кб
086 Article-Solved-Problems-Matrix-Arithmetics.pdf 104.45Кб
086 Notes Various rules Problem 3.pdf 970.84Кб
086 Slides Various rules Problem 3.pdf 620.24Кб
087 Notes Inverse matrices Introduction to the algorithm.pdf 1.46Мб
087 Slides Inverse matrices Introduction to the algorithm.pdf 106.52Кб
088 Slides Algorithm for inverse matrices An example.pdf 3.28Мб
089 Notes Matrix inverse Problem 1.pdf 1.42Мб
089 Slides Matrix inverse Problem 1.pdf 193.01Кб
090 Notes Matrix inverse Problem 2.pdf 658.95Кб
090 Slides Matrix inverse Problem 2.pdf 184.61Кб
091 Notes Matrix equations Problem 3.pdf 1.15Мб
091 Slides Matrix equations Problem 3.pdf 1.81Мб
092 Notes Matrix equations Problem 4.pdf 744.74Кб
092 Slides Matrix equations Problem 4.pdf 1.81Мб
093 Notes Matrix equations Problem 5.pdf 1.23Мб
093 Slides Matrix equations Problem 5.pdf 171.74Кб
094 Notes Matrix equations Problem 6.pdf 1.83Мб
094 Slides Matrix equations Problem 6.pdf 171.74Кб
095 Notes Matrix inverse Problem 7.pdf 1.69Мб
095 Slides Matrix inverse Problem 7.pdf 292.74Кб
096 Slides Elementary operations and elementary matrices.pdf 1.46Мб
097 Slides Inverse elementary operations and their matrices.pdf 3.26Мб
098 Slides A really important theorem.pdf 648.58Кб
099 Article-Solved-Problems-Matrix-Inverse.pdf 166.58Кб
099 Notes Four equivalent statements.pdf 640.46Кб
099 Slides Four equivalent statements.pdf 1.98Мб
100 Notes Formally about the number of solutions to systems of linear equations.pdf 1.79Мб
100 Slides Formally about the number of solutions to systems of linear equations.pdf 720.42Кб
101 Notes Two more statements in our important theorem.pdf 715.80Кб
101 Slides Two more statements in our important theorem.pdf 708.47Кб
102 Notes Solution of a linear system using A inverse Problem 1.pdf 1.37Мб
102 Slides Solution of a linear system using A inverse Problem 1.pdf 825.54Кб
103 Notes Determining consistency by elimination Problem 2.pdf 2.25Мб
103 Slides Determining consistency by elimination Problem 2.pdf 721.27Кб
104 Notes Matrix equations Problem 3.pdf 949.43Кб
104 Slides Matrix equations Problem 3.pdf 293.91Кб
105 Slides Why the determinants are important.pdf 736.67Кб
106 Slides 2-by-2 determinants Notation for n by n determinants.pdf 562.87Кб
107 Slides Geometrical interpretations of determinants.pdf 3.44Мб
108 Slides Geometrically about the determinant of a product.pdf 2.08Мб
109 Slides Definition of determinants.pdf 5.19Мб
110 Slides Conclusion 1 Determinant of matrices with interchanged columns.pdf 2.86Мб
111 Notes Conclusion 2 What happens when one column is a linear combination of the other columns.pdf 1.33Мб
111 Slides Conclusion 2 What happens when one column is a linear combination of the other columns.pdf 3.83Мб
112 Notes Conclusion 3 About adding a multiple of a column to another column.pdf 546.39Кб
112 Slides Conclusion 3 About adding a multiple of a column to another column.pdf 733.65Кб
113 Slides Conclusion 4 Determinant of kA for any real k.pdf 1.82Мб
114 Notes Elementary column operations.pdf 888.15Кб
114 Slides Elementary column operations.pdf 793.98Кб
115 Slides How to compute 2 by 2 determinants from the definition.pdf 1.06Мб
116 Slides How to compute 3 by 3 determinants from the definition.pdf 2.17Мб
117 Notes Sarrus method for 3 by 3 determinants.pdf 848.04Кб
117 Slides Sarrus method for 3 by 3 determinants.pdf 742.23Кб
118 Slides Determinant of transposed matrix Row operations.pdf 1.67Мб
119 Notes Cofactor expansion along columns or rows.pdf 2.97Мб
119 Slides Cofactor expansion along columns or rows.pdf 2.67Мб
120 Notes Evaluating determinants by row or column reduction.pdf 960.03Кб
120 Slides Evaluating determinants by row or column reduction.pdf 1.37Мб
121 Slides Determinant of inverse.pdf 1.21Мб
122 Notes Properties of determinants Problem 1.pdf 650.74Кб
122 Slides Properties of determinants Problem 1.pdf 2.51Мб
123 Notes Properties of determinants Problem 2.pdf 795.35Кб
123 Slides Properties of determinants Problem 2.pdf 1.72Мб
124 Notes Properties of determinants Problem 3.pdf 794.44Кб
124 Slides Properties of determinants Problem 3.pdf 2.33Мб
125 Notes Determinant equations Problem 4.pdf 547.55Кб
125 Slides Determinant equations Problem 4.pdf 274.19Кб
126 Notes Determinant equations Problem 5.pdf 1.32Мб
126 Slides Determinant equations Problem 5.pdf 274.15Кб
127 Slides Determinant equations Problem 6.pdf 525.85Кб
128 Slides Determinant equations Problem 7.pdf 723.39Кб
129 Notes Invertible matrices Determinant test with a proof Problem 8.pdf 1.00Мб
129 Slides Invertible matrices Determinant test with a proof Problem 8.pdf 1.96Мб
130 Notes Cramers rule Proof Example Geometrical interpretation.pdf 791.82Кб
130 Slides Cramers rule Proof Example Geometrical interpretation.pdf 1.56Мб
131 Notes Cramers rule, Problem 9.pdf 1.20Мб
131 Slides Cramers rule, Problem 9.pdf 1.11Мб
132 Notes Inverse matrix An explicit formula.pdf 688.58Кб
132 Slides Inverse matrix An explicit formula.pdf 2.82Мб
133 Notes Inverse matrix An explicit formula Problem 10.pdf 1.02Мб
133 Slides Inverse matrix An explicit formula Problem 10.pdf 1007.75Кб
134 Slides Problem 11 A large determinant.pdf 1.18Мб
135 Notes Problem 12 Another large determinant.pdf 1.32Мб
135 Slides Problem 12 Another large determinant.pdf 206.43Кб
136 Notes Problem 13 A trigonometric determinant.pdf 1.21Мб
136 Slides Problem 13 A trigonometric determinant.pdf 221.88Кб
137 Article-Solved-Problems-Determinants.pdf 1.54Мб
137 Notes Problem 14 Vandermonde determinant.pdf 2.42Мб
137 Slides Problem 14 Vandermonde determinant.pdf 1.08Мб
Статистика распространения по странам
Марокко (MA) 1
Израиль (IL) 1
Нигерия (NG) 1
Австралия (AU) 1
Канада (CA) 1
Швеция (SE) 1
Всего 6
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент