Общая информация
Название [GigaCourse.Com] Udemy - Machine Learning & Deep Learning in Python & R
Тип
Размер 12.55Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
1.1 Classification preprocessed data Python.csv 40.97Кб
1.2 Classification preprocessed data R.csv 40.97Кб
1. ACF and PACF.mp4 41.23Мб
1. ACF and PACF.srt 8.92Кб
1. Basic Terminologies.mp4 40.42Мб
1. Basic Terminologies.srt 11.35Кб
1. Bonus Lecture.html 2.32Кб
1. Boosting.mp4 30.58Мб
1. Boosting.srt 9.58Кб
1. Classification tree.mp4 28.20Мб
1. Classification tree.srt 8.11Кб
1. CNN Introduction.mp4 56.75Мб
1. CNN Introduction.srt 8.33Кб
1. CNN model in Python - Preprocessing.mp4 40.63Мб
1. CNN model in Python - Preprocessing.srt 5.88Кб
1. CNN on MNIST Fashion Dataset - Model Architecture.mp4 7.35Мб
1. CNN on MNIST Fashion Dataset - Model Architecture.srt 2.47Кб
1. Data Loading in Python.mp4 108.86Мб
1. Data Loading in Python.srt 18.51Кб
1. Ensemble technique 1 - Bagging.mp4 28.14Мб
1. Ensemble technique 1 - Bagging.srt 7.58Кб
1. Ensemble technique 2 - Random Forests.mp4 18.20Мб
1. Ensemble technique 2 - Random Forests.srt 5.07Кб
1. Gathering Business Knowledge.mp4 14.52Мб
1. Gathering Business Knowledge.srt 3.80Кб
1. ILSVRC.mp4 20.92Мб
1. ILSVRC.srt 4.73Кб
1. Importing and preprocessing data in R.mp4 24.99Мб
1. Importing and preprocessing data in R.srt 2.81Кб
1. Installing Keras and Tensorflow.mp4 22.78Мб
1. Installing Keras and Tensorflow.srt 3.11Кб
1. Installing Python and Anaconda.mp4 16.27Мб
1. Installing Python and Anaconda.srt 2.67Кб
1. Installing R and R studio.mp4 35.71Мб
1. Installing R and R studio.srt 7.37Кб
1. Introduction.mp4 29.39Мб
1. Introduction.mp4 18.68Мб
1. Introduction.srt 4.64Кб
1. Introduction.srt 2.88Кб
1. Introduction to Decision trees.mp4 44.78Мб
1. Introduction to Decision trees.srt 4.74Кб
1. Introduction to Machine Learning.mp4 109.17Мб
1. Introduction to Machine Learning.srt 19.38Кб
1. Introduction to Neural Networks and Course flow.mp4 29.07Мб
1. Introduction to Neural Networks and Course flow.srt 4.96Кб
1. Introduction to SVM's.mp4 21.62Мб
1. Introduction to SVM's.srt 3.26Кб
1. Keras and Tensorflow.mp4 14.91Мб
1. Keras and Tensorflow.srt 3.89Кб
1. Kernel Based Support Vector Machines.mp4 40.12Мб
1. Kernel Based Support Vector Machines.srt 8.46Кб
1. Linear Discriminant Analysis.mp4 40.96Мб
1. Linear Discriminant Analysis.srt 12.29Кб
1. Logistic Regression.mp4 32.92Мб
1. Logistic Regression.srt 8.92Кб
1. Project - Data Augmentation Preprocessing.mp4 41.41Мб
1. Project - Data Augmentation Preprocessing.srt 7.53Кб
1. Project in R - Data Preprocessing.mp4 87.76Мб
1. Project in R - Data Preprocessing.srt 12.47Кб
1. Project - Introduction.mp4 49.39Мб
1. Project - Introduction.srt 7.75Кб
1. Project - Transfer Learning - VGG16 (Implementation).mp4 101.58Мб
1. Project - Transfer Learning - VGG16 (Implementation).srt 14.81Кб
1. Regression and Classification Models.mp4 4.03Мб
1. Regression and Classification Models.srt 817б
1. SARIMA model.mp4 39.02Мб
1. SARIMA model.srt 8.17Кб
1. Support Vector classifiers.mp4 56.16Мб
1. Support Vector classifiers.srt 12.46Кб
1. Test-Train Split.mp4 39.30Мб
1. Test-Train Split.srt 10.97Кб
1. Test Train Split in Python.mp4 57.41Мб
1. Test Train Split in Python.srt 12.33Кб
1. The Problem Statement.mp4 9.38Мб
1. The Problem Statement.srt 1.84Кб
1. Three classification models and Data set.mp4 52.27Мб
1. Three classification models and Data set.srt 6.93Кб
1. Types of Data.mp4 21.77Мб
1. Types of Data.srt 5.20Кб
1. Understanding the results of classification models.mp4 41.64Мб
1. Understanding the results of classification models.srt 7.80Кб
1. White Noise.mp4 11.37Мб
1. White Noise.srt 2.61Кб
10. Evaluating performance of model.mp4 35.16Мб
10. Evaluating performance of model.srt 9.67Кб
10. Exponential Smoothing.mp4 8.38Мб
10. Exponential Smoothing.srt 2.17Кб
10. Multiple Linear Regression in Python.mp4 69.73Мб
10. Multiple Linear Regression in Python.srt 14.42Кб
10. Outlier Treatment in Python.mp4 70.25Мб
10. Outlier Treatment in Python.srt 14.49Кб
10. Radial Kernel with Hyperparameter Tuning.mp4 37.21Мб
10. Radial Kernel with Hyperparameter Tuning.srt 7.23Кб
10. Test-Train split in Python.mp4 25.62Мб
10. Test-Train split in Python.srt 5.29Кб
10. Using Functional API for complex architectures.mp4 92.10Мб
10. Using Functional API for complex architectures.srt 13.37Кб
10. Working with Seaborn Library of Python.mp4 40.37Мб
10. Working with Seaborn Library of Python.srt 9.08Кб
11. Evaluating model performance in Python.mp4 9.01Мб
11. Evaluating model performance in Python.srt 2.62Кб
11. Multiple Linear Regression in R.mp4 62.37Мб
11. Multiple Linear Regression in R.srt 9.56Кб
11. Outlier Treatment in R.mp4 30.75Мб
11. Outlier Treatment in R.srt 4.91Кб
11. Saving - Restoring Models and Using Callbacks.mp4 151.58Мб
11. Saving - Restoring Models and Using Callbacks.srt 21.59Кб
11. Splitting Data into Test and Train Set in R.mp4 43.97Мб
11. Splitting Data into Test and Train Set in R.srt 7.29Кб
12. Creating Decision tree in Python.mp4 17.87Мб
12. Creating Decision tree in Python.srt 4.34Кб
12. Hyperparameter Tuning.mp4 60.63Мб
12. Hyperparameter Tuning.srt 10.17Кб
12. Missing Value Imputation.mp4 23.15Мб
12. Missing Value Imputation.srt 4.25Кб
12. Predicting probabilities, assigning classes and making Confusion Matrix in R.mp4 55.70Мб
12. Predicting probabilities, assigning classes and making Confusion Matrix in R.srt 7.65Кб
12. Test-train split.mp4 41.89Мб
12. Test-train split.srt 12.64Кб
13. Bias Variance trade-off.mp4 25.10Мб
13. Bias Variance trade-off.srt 8.20Кб
13. Building a Regression Tree in R.mp4 103.33Мб
13. Building a Regression Tree in R.srt 18.88Кб
13. Missing Value Imputation in Python.mp4 23.42Мб
13. Missing Value Imputation in Python.srt 4.73Кб
14. Evaluating model performance in Python.mp4 16.44Мб
14. Evaluating model performance in Python.srt 4.81Кб
14. Missing Value imputation in R.mp4 26.00Мб
14. Missing Value imputation in R.srt 4.11Кб
14. Test train split in Python.mp4 44.89Мб
14. Test train split in Python.srt 8.82Кб
15. Plotting decision tree in Python.mp4 21.48Мб
15. Plotting decision tree in Python.srt 5.48Кб
15. Seasonality in Data.mp4 17.02Мб
15. Seasonality in Data.srt 4.11Кб
15. Test-Train Split in R.mp4 75.60Мб
15. Test-Train Split in R.srt 9.61Кб
16. Bi-variate analysis and Variable transformation.mp4 100.39Мб
16. Bi-variate analysis and Variable transformation.srt 20.20Кб
16. Pruning a tree.mp4 18.46Мб
16. Pruning a tree.srt 5.42Кб
16. Regression models other than OLS.mp4 16.55Мб
16. Regression models other than OLS.srt 5.28Кб
17. Pruning a tree in Python.mp4 73.50Мб
17. Pruning a tree in Python.srt 11.06Кб
17. Subset selection techniques.mp4 79.06Мб
17. Subset selection techniques.srt 15.28Кб
17. Variable transformation and deletion in Python.mp4 44.11Мб
17. Variable transformation and deletion in Python.srt 9.32Кб
18. Pruning a Tree in R.mp4 82.09Мб
18. Pruning a Tree in R.srt 11.80Кб
18. Subset selection in R.mp4 63.54Мб
18. Subset selection in R.srt 8.37Кб
18. Variable transformation in R.mp4 55.42Мб
18. Variable transformation in R.srt 10.18Кб
19. Non-usable variables.mp4 20.24Мб
19. Non-usable variables.srt 6.27Кб
19. Shrinkage methods Ridge and Lasso.mp4 33.34Мб
19. Shrinkage methods Ridge and Lasso.srt 9.41Кб
2.1 Classification preprocessed data Python.csv 40.97Кб
2. ARIMA model - Basics.mp4 21.36Мб
2. ARIMA model - Basics.srt 5.25Кб
2. Basic Equations and Ordinary Least Squares (OLS) method.mp4 43.38Мб
2. Basic Equations and Ordinary Least Squares (OLS) method.srt 12.66Кб
2. Basics of Decision Trees.mp4 42.65Мб
2. Basics of Decision Trees.srt 13.19Кб
2. Basics of R and R studio.mp4 38.84Мб
2. Basics of R and R studio.srt 14.35Кб
2. Building a Machine Learning Model.mp4 39.48Мб
2. Building a Machine Learning Model.srt 10.22Кб
2. CNN model in Python - structure and Compile.mp4 43.26Мб
2. CNN model in Python - structure and Compile.srt 7.53Кб
2. CNN Project in R - Structure and Compile.mp4 46.11Мб
2. CNN Project in R - Structure and Compile.srt 5.82Кб
2. Course Resources.html 370б
2. Data Exploration.mp4 20.12Мб
2. Data Exploration.srt 3.82Кб
2. Data for the project.html 232б
2. Data Normalization and Test-Train Split.mp4 111.78Мб
2. Data Normalization and Test-Train Split.srt 13.36Кб
2. Data Preprocessing.mp4 67.02Мб
2. Data Preprocessing.srt 7.76Кб
2. Ensemble technique 1 - Bagging in Python.mp4 77.31Мб
2. Ensemble technique 1 - Bagging in Python.srt 12.61Кб
2. Ensemble technique 2 - Random Forests in Python.mp4 46.70Мб
2. Ensemble technique 2 - Random Forests in Python.srt 6.90Кб
2. Ensemble technique 3a - Boosting in Python.mp4 39.87Мб
2. Ensemble technique 3a - Boosting in Python.srt 5.61Кб
2. Gradient Descent.mp4 60.34Мб
2. Gradient Descent.srt 13.24Кб
2. Importing and preprocessing data in Python.mp4 26.45Мб
2. Importing and preprocessing data in Python.srt 4.51Кб
2. Importing the data into Python.mp4 6.86Мб
2. Importing the data into Python.srt 1.68Кб
2. Installing Tensorflow and Keras.mp4 20.06Мб
2. Installing Tensorflow and Keras.srt 4.28Кб
2. LDA in Python.mp4 11.40Мб
2. LDA in Python.srt 2.58Кб
2. LeNET.mp4 7.00Мб
2. LeNET.srt 1.91Кб
2. Limitations of Support Vector Classifiers.mp4 10.81Мб
2. Limitations of Support Vector Classifiers.srt 1.90Кб
2. More about test-train split.html 559б
2. Naive (Persistence) model in Python.mp4 43.37Мб
2. Naive (Persistence) model in Python.srt 8.33Кб
2. Perceptron.mp4 44.76Мб
2. Perceptron.srt 10.69Кб
2. Project - Data Augmentation Training and Results.mp4 53.05Мб
2. Project - Data Augmentation Training and Results.srt 6.99Кб
2. Project - Transfer Learning - VGG16 (Performance).mp4 64.12Мб
2. Project - Transfer Learning - VGG16 (Performance).srt 9.15Кб
2. Random Walk.mp4 21.16Мб
2. Random Walk.srt 4.77Кб
2. SARIMA model in Python.mp4 66.23Мб
2. SARIMA model in Python.srt 12.11Кб
2. Stride.mp4 16.59Мб
2. Stride.srt 3.11Кб
2. Summary of the three models.mp4 22.21Мб
2. Summary of the three models.srt 6.20Кб
2. Test-Train Split in Python.mp4 33.10Мб
2. Test-Train Split in Python.srt 7.60Кб
2. The Concept of a Hyperplane.mp4 29.42Мб
2. The Concept of a Hyperplane.srt 6.22Кб
2. The Data set for Classification problem.mp4 18.57Мб
2. The Data set for Classification problem.srt 2.36Кб
2. This is a milestone!.mp4 20.66Мб
2. This is a milestone!.srt 3.94Кб
2. Time Series Forecasting - Use cases.mp4 25.91Мб
2. Time Series Forecasting - Use cases.srt 2.59Кб
2. Time Series - Visualization Basics.mp4 63.72Мб
2. Time Series - Visualization Basics.srt 10.57Кб
2. Training a Simple Logistic Model in Python.mp4 47.87Мб
2. Training a Simple Logistic Model in Python.srt 10.76Кб
2. Types of Statistics.mp4 10.93Мб
2. Types of Statistics.srt 3.30Кб
20. Dummy variable creation Handling qualitative data.mp4 36.80Мб
20. Dummy variable creation Handling qualitative data.srt 5.53Кб
20. Ridge regression and Lasso in Python.mp4 128.84Мб
20. Ridge regression and Lasso in Python.srt 21.52Кб
21. Dummy variable creation in Python.mp4 26.53Мб
21. Dummy variable creation in Python.srt 6.45Кб
21. Ridge regression and Lasso in R.mp4 103.43Мб
21. Ridge regression and Lasso in R.srt 13.00Кб
22. Dummy variable creation in R.mp4 43.98Мб
22. Dummy variable creation in R.srt 6.33Кб
22. Heteroscedasticity.mp4 14.49Мб
22. Heteroscedasticity.srt 3.16Кб
23. Correlation Analysis.mp4 71.60Мб
23. Correlation Analysis.srt 11.83Кб
24. Correlation Analysis in Python.mp4 55.30Мб
24. Correlation Analysis in Python.srt 7.18Кб
25. Correlation Matrix in R.mp4 83.14Мб
25. Correlation Matrix in R.srt 10.01Кб
26. Quiz.html 170б
3.1 Classification preprocessed data R.csv 40.97Кб
3. Activation Functions.mp4 34.61Мб
3. Activation Functions.srt 8.51Кб
3. ARIMA model in Python.mp4 74.43Мб
3. ARIMA model in Python.srt 14.67Кб
3. Assessing accuracy of predicted coefficients.mp4 92.11Мб
3. Assessing accuracy of predicted coefficients.srt 19.92Кб
3. Auto Regression Model - Basics.mp4 16.89Мб
3. Auto Regression Model - Basics.srt 3.71Кб
3. Back Propagation.mp4 122.20Мб
3. Back Propagation.srt 25.88Кб
3. Bagging in R.mp4 58.96Мб
3. Bagging in R.srt 8.16Кб
3. Building,Compiling and Training.mp4 130.73Мб
3. Building,Compiling and Training.srt 16.92Кб
3. Classification SVM model using Linear Kernel.mp4 139.16Мб
3. Classification SVM model using Linear Kernel.srt 18.39Кб
3. Classification tree in Python Preprocessing.mp4 45.39Мб
3. Classification tree in Python Preprocessing.srt 9.15Кб
3. CNN model in Python - Training and results.mp4 55.15Мб
3. CNN model in Python - Training and results.srt 6.59Кб
3. Creating Model Architecture.mp4 71.60Мб
3. Creating Model Architecture.srt 6.55Кб
3. Dataset for classification.mp4 56.19Мб
3. Dataset for classification.srt 8.16Кб
3. Decomposing Time Series in Python.mp4 59.84Мб
3. Decomposing Time Series in Python.srt 10.69Кб
3. Describing data Graphically.mp4 65.39Мб
3. Describing data Graphically.srt 13.22Кб
3. Forecasting model creation - Steps.mp4 10.11Мб
3. Forecasting model creation - Steps.srt 3.01Кб
3. Gradient Boosting in R.mp4 69.09Мб
3. Gradient Boosting in R.srt 9.62Кб
3. Importing the data into R.mp4 8.82Мб
3. Importing the data into R.srt 1.45Кб
3. Linear Discriminant Analysis in R.mp4 74.35Мб
3. Linear Discriminant Analysis in R.srt 10.50Кб
3. Maximum Margin Classifier.mp4 22.49Мб
3. Maximum Margin Classifier.srt 4.41Кб
3. Opening Jupyter Notebook.mp4 65.19Мб
3. Opening Jupyter Notebook.srt 10.08Кб
3. Packages in R.mp4 82.94Мб
3. Packages in R.srt 14.60Кб
3. Padding.mp4 31.64Мб
3. Padding.srt 5.11Кб
3. Project - Data Preprocessing in Python.mp4 71.83Мб
3. Project - Data Preprocessing in Python.srt 9.44Кб
3. Project in R - Training.mp4 24.59Мб
3. Project in R - Training.srt 3.24Кб
3. Standardizing the data.mp4 38.41Мб
3. Standardizing the data.srt 6.69Кб
3. Stationary time Series.mp4 5.58Мб
3. Stationary time Series.srt 1.74Кб
3. Test-Train Split in R.mp4 74.23Мб
3. Test-Train Split in R.srt 10.27Кб
3. The Dataset and the Data Dictionary.mp4 69.28Мб
3. The Dataset and the Data Dictionary.srt 8.47Кб
3. Time Series - Visualization in Python.mp4 165.19Мб
3. Time Series - Visualization in Python.srt 30.37Кб
3. Training a Simple Logistic model in R.mp4 25.57Мб
3. Training a Simple Logistic model in R.srt 4.31Кб
3. Understanding a Regression Tree.mp4 43.73Мб
3. Understanding a Regression Tree.srt 13.97Кб
3. Using Grid Search in Python.mp4 80.66Мб
3. Using Grid Search in Python.srt 14.05Кб
3. VGG16NET.mp4 10.35Мб
3. VGG16NET.srt 2.02Кб
4. ARIMA model with Walk Forward Validation in Python.mp4 32.15Мб
4. ARIMA model with Walk Forward Validation in Python.srt 6.34Кб
4. Assessing Model Accuracy RSE and R squared.mp4 43.59Мб
4. Assessing Model Accuracy RSE and R squared.srt 9.80Кб
4. Auto Regression Model creation in Python.mp4 53.49Мб
4. Auto Regression Model creation in Python.srt 10.42Кб
4. Classification tree in Python Training.mp4 82.71Мб
4. Classification tree in Python Training.srt 14.88Кб
4. Comparison - Pooling vs Without Pooling in Python.mp4 57.97Мб
4. Comparison - Pooling vs Without Pooling in Python.srt 5.77Кб
4. Compiling and training.mp4 32.21Мб
4. Compiling and training.srt 3.27Кб
4. Differencing.mp4 32.35Мб
4. Differencing.srt 6.87Кб
4. Ensemble technique 3b - AdaBoost in Python.mp4 30.53Мб
4. Ensemble technique 3b - AdaBoost in Python.srt 4.55Кб
4. Evaluating and Predicting.mp4 99.28Мб
4. Evaluating and Predicting.srt 10.52Кб
4. Filters and Feature maps.mp4 52.71Мб
4. Filters and Feature maps.srt 7.87Кб
4. Forecasting model creation - Steps 1 (Goal).mp4 34.51Мб
4. Forecasting model creation - Steps 1 (Goal).srt 6.66Кб
4. GoogLeNet.mp4 21.37Мб
4. GoogLeNet.srt 3.35Кб
4. Hyperparameter Tuning for Linear Kernel.mp4 60.50Мб
4. Hyperparameter Tuning for Linear Kernel.srt 7.16Кб
4. Importing Data in Python.mp4 27.84Мб
4. Importing Data in Python.srt 6.61Кб
4. Inputting data part 1 Inbuilt datasets of R.mp4 40.74Мб
4. Inputting data part 1 Inbuilt datasets of R.srt 5.61Кб
4. Introduction to Jupyter.mp4 40.91Мб
4. Introduction to Jupyter.srt 15.54Кб
4. K-Nearest Neighbors classifier.mp4 75.42Мб
4. K-Nearest Neighbors classifier.srt 10.33Кб
4. Limitations of Maximum Margin Classifier.mp4 10.60Мб
4. Limitations of Maximum Margin Classifier.srt 3.12Кб
4. Measures of Centers.mp4 38.57Мб
4. Measures of Centers.srt 8.08Кб
4. Normalization and Test-Train split.mp4 44.20Мб
4. Normalization and Test-Train split.srt 6.32Кб
4. Project in R - Model Performance.mp4 23.18Мб
4. Project in R - Model Performance.srt 2.58Кб
4. Project - Training CNN model in Python.mp4 65.98Мб
4. Project - Training CNN model in Python.srt 9.39Кб
4. Python - Creating Perceptron model.mp4 86.56Мб
4. Python - Creating Perceptron model.srt 16.21Кб
4. Random Forest in R.mp4 30.72Мб
4. Random Forest in R.srt 5.58Кб
4. Result of Simple Logistic Regression.mp4 26.93Мб
4. Result of Simple Logistic Regression.srt 6.06Кб
4. Some Important Concepts.mp4 62.18Мб
4. Some Important Concepts.srt 14.23Кб
4. SVM based Regression Model in Python.mp4 67.63Мб
4. SVM based Regression Model in Python.srt 10.64Кб
4. The final milestone!.mp4 11.84Мб
4. The final milestone!.srt 1.79Кб
4. The problem statements.mp4 17.08Мб
4. The problem statements.srt 1.86Кб
4. The stopping criteria for controlling tree growth.mp4 13.97Мб
4. The stopping criteria for controlling tree growth.srt 4.29Кб
4. Time Series - Feature Engineering Basics.mp4 59.47Мб
4. Time Series - Feature Engineering Basics.srt 12.25Кб
5. AdaBoosting in R.mp4 88.68Мб
5. AdaBoosting in R.srt 12.24Кб
5. ANN with NeuralNets Package.mp4 84.42Мб
5. ANN with NeuralNets Package.srt 8.78Кб
5. Arithmetic operators in Python Python Basics.mp4 12.74Мб
5. Arithmetic operators in Python Python Basics.srt 4.62Кб
5. Auto Regression with Walk Forward validation in Python.mp4 49.59Мб
5. Auto Regression with Walk Forward validation in Python.srt 9.02Кб
5. Building a classification Tree in R.mp4 85.11Мб
5. Building a classification Tree in R.srt 11.88Кб
5. Channels.mp4 67.77Мб
5. Channels.srt 6.48Кб
5. Classification model - Preprocessing.mp4 45.37Мб
5. Classification model - Preprocessing.srt 9.17Кб
5. Differencing in Python.mp4 113.00Мб
5. Differencing in Python.srt 16.20Кб
5. Different ways to create ANN using Keras.mp4 10.81Мб
5. Different ways to create ANN using Keras.srt 2.02Кб
5. Hyperparameter.mp4 45.36Мб
5. Hyperparameter.srt 9.66Кб
5. Importing the Data set into Python.mp4 15.86Мб
5. Importing the Data set into Python.srt 3.12Кб
5. Importing the dataset into R.mp4 13.11Мб
5. Importing the dataset into R.srt 2.87Кб
5. Inputting data part 2 Manual data entry.mp4 25.52Мб
5. Inputting data part 2 Manual data entry.srt 3.68Кб
5. K-Nearest Neighbors in Python Part 1.mp4 37.23Мб
5. K-Nearest Neighbors in Python Part 1.srt 5.85Кб
5. Logistic with multiple predictors.mp4 8.54Мб
5. Logistic with multiple predictors.srt 3.08Кб
5. Measures of Dispersion.mp4 22.86Мб
5. Measures of Dispersion.srt 5.26Кб
5. Model Performance.mp4 68.08Мб
5. Model Performance.srt 6.83Кб
5. Polynomial Kernel with Hyperparameter Tuning.mp4 83.14Мб
5. Polynomial Kernel with Hyperparameter Tuning.srt 11.84Кб
5. Project in Python - model results.mp4 21.02Мб
5. Project in Python - model results.srt 2.95Кб
5. Project in R - Data Augmentation.mp4 56.38Мб
5. Project in R - Data Augmentation.srt 8.16Кб
5. Simple Linear Regression in Python.mp4 63.43Мб
5. Simple Linear Regression in Python.srt 13.42Кб
5. Time Series - Basic Notations.mp4 62.49Мб
5. Time Series - Basic Notations.srt 9.87Кб
5. Time Series - Feature Engineering in Python.mp4 112.69Мб
5. Time Series - Feature Engineering in Python.srt 20.17Кб
5. Transfer Learning.mp4 29.99Мб
5. Transfer Learning.srt 5.64Кб
5. Why can't we use Linear Regression.mp4 16.94Мб
5. Why can't we use Linear Regression.srt 5.69Кб
6. Advantages and Disadvantages of Decision Trees.mp4 6.86Мб
6. Advantages and Disadvantages of Decision Trees.srt 2.16Кб
6. Building Regression Model with Functional API.mp4 131.13Мб
6. Building Regression Model with Functional API.srt 14.16Кб
6. Building the Neural Network using Keras.mp4 79.11Мб
6. Building the Neural Network using Keras.srt 13.32Кб
6. Classification model - Standardizing the data.mp4 9.72Мб
6. Classification model - Standardizing the data.srt 1.94Кб
6. Comparison - Pooling vs Without Pooling in R.mp4 44.60Мб
6. Comparison - Pooling vs Without Pooling in R.srt 4.31Кб
6. Ensemble technique 3c - XGBoost in Python.mp4 75.00Мб
6. Ensemble technique 3c - XGBoost in Python.srt 11.63Кб
6. Importing the Data set into R.mp4 43.70Мб
6. Importing the Data set into R.srt 8.75Кб
6. Inputting data part 3 Importing from CSV or Text files.mp4 60.10Мб
6. Inputting data part 3 Importing from CSV or Text files.srt 8.38Кб
6. K-Nearest Neighbors in Python Part 2.mp4 42.36Мб
6. K-Nearest Neighbors in Python Part 2.srt 6.90Кб
6. Moving Average model -Basics.mp4 24.10Мб
6. Moving Average model -Basics.srt 5.20Кб
6. PoolingLayer.mp4 46.87Мб
6. PoolingLayer.srt 6.12Кб
6. Project in R - Validation Performance.mp4 23.69Мб
6. Project in R - Validation Performance.srt 2.66Кб
6. Project - Transfer Learning - VGG16.mp4 129.09Мб
6. Project - Transfer Learning - VGG16.srt 21.40Кб
6. Radial Kernel with Hyperparameter Tuning.mp4 56.68Мб
6. Radial Kernel with Hyperparameter Tuning.srt 7.36Кб
6. Simple Linear Regression in R.mp4 40.83Мб
6. Simple Linear Regression in R.srt 9.55Кб
6. Strings in Python Python Basics.mp4 64.43Мб
6. Strings in Python Python Basics.srt 18.58Кб
6. Time Series - Upsampling and Downsampling.mp4 16.95Мб
6. Time Series - Upsampling and Downsampling.srt 4.45Кб
6. Training multiple predictor Logistic model in Python.mp4 26.25Мб
6. Training multiple predictor Logistic model in Python.srt 6.25Кб
6. Univariate analysis and EDD.mp4 24.18Мб
6. Univariate analysis and EDD.srt 3.76Кб
7. Compiling and Training the Neural Network model.mp4 81.63Мб
7. Compiling and Training the Neural Network model.srt 10.37Кб
7. Complex Architectures using Functional API.mp4 79.57Мб
7. Complex Architectures using Functional API.srt 9.17Кб
7. Creating Barplots in R.mp4 96.73Мб
7. Creating Barplots in R.srt 18.34Кб
7. EDD in Python.mp4 61.80Мб
7. EDD in Python.srt 11.84Кб
7. K-Nearest Neighbors in R.mp4 64.85Мб
7. K-Nearest Neighbors in R.srt 9.36Кб
7. Lists, Tuples and Directories Python Basics.mp4 60.32Мб
7. Lists, Tuples and Directories Python Basics.srt 22.17Кб
7. Missing value treatment in Python.mp4 12.94Мб
7. Missing value treatment in Python.srt 2.32Кб
7. Moving Average model in Python.mp4 56.66Мб
7. Moving Average model in Python.srt 9.76Кб
7. Multiple Linear Regression.mp4 34.31Мб
7. Multiple Linear Regression.srt 7.38Кб
7. SVM Based classification model.mp4 64.13Мб
7. SVM Based classification model.srt 12.70Кб
7. SVM based Regression Model in R.mp4 106.13Мб
7. SVM based Regression Model in R.srt 12.51Кб
7. Time Series - Upsampling and Downsampling in Python.mp4 100.67Мб
7. Time Series - Upsampling and Downsampling in Python.srt 18.29Кб
7. Training multiple predictor Logistic model in R.mp4 15.78Мб
7. Training multiple predictor Logistic model in R.srt 2.08Кб
7. XGBoosting in R.mp4 161.30Мб
7. XGBoosting in R.srt 21.10Кб
8. Confusion Matrix.mp4 21.10Мб
8. Confusion Matrix.srt 5.17Кб
8. Creating Histograms in R.mp4 42.02Мб
8. Creating Histograms in R.srt 7.58Кб
8. Dummy Variable creation in Python.mp4 24.57Мб
8. Dummy Variable creation in Python.srt 4.49Кб
8. EDD in R.mp4 96.98Мб
8. EDD in R.srt 13.73Кб
8. Evaluating performance and Predicting using Keras.mp4 69.91Мб
8. Evaluating performance and Predicting using Keras.srt 10.11Кб
8. Hyper Parameter Tuning.mp4 57.74Мб
8. Hyper Parameter Tuning.srt 10.91Кб
8. Saving - Restoring Models and Using Callbacks.mp4 216.04Мб
8. Saving - Restoring Models and Using Callbacks.srt 22.28Кб
8. The F - statistic.mp4 55.98Мб
8. The F - statistic.srt 11.45Кб
8. Time Series - Power Transformation.mp4 14.85Мб
8. Time Series - Power Transformation.srt 2.77Кб
8. Working with Numpy Library of Python.mp4 43.87Мб
8. Working with Numpy Library of Python.srt 12.84Кб
9. Building Neural Network for Regression Problem.mp4 155.91Мб
9. Building Neural Network for Regression Problem.srt 24.71Кб
9. Creating Confusion Matrix in Python.mp4 51.25Мб
9. Creating Confusion Matrix in Python.srt 11.10Кб
9. Dependent- Independent Data split in Python.mp4 16.87Мб
9. Dependent- Independent Data split in Python.srt 3.82Кб
9. Interpreting results of Categorical variables.mp4 22.51Мб
9. Interpreting results of Categorical variables.srt 6.93Кб
9. Moving Average.mp4 38.70Мб
9. Moving Average.srt 8.10Кб
9. Outlier Treatment.mp4 27.26Мб
9. Outlier Treatment.srt 4.92Кб
9. Polynomial Kernel with Hyperparameter Tuning.mp4 22.92Мб
9. Polynomial Kernel with Hyperparameter Tuning.srt 4.39Кб
9. Working with Pandas Library of Python.mp4 46.88Мб
9. Working with Pandas Library of Python.srt 10.33Кб
Статистика распространения по странам
Италия (IT) 2
Чешская Республика (CZ) 1
Россия (RU) 1
США (US) 1
Всего 5
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент