Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
[CourseClub.ME].url |
122б |
[FCS Forum].url |
133б |
[FreeCourseSite.com].url |
127б |
[GigaCourse.Com].url |
49б |
001 Applying Traditional Data, Big Data, BI, Traditional Data Science and ML__en.srt |
9.14Кб |
001 Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4 |
21.73Мб |
001 A Practical Example_ What You Will Learn in This Course__en.srt |
6.41Кб |
001 A Practical Example_ What You Will Learn in This Course.mp4 |
13.08Мб |
001 Are You Sure You're All Set_.html |
513б |
001 Basic NN Example (Part 1)__en.srt |
4.52Кб |
001 Basic NN Example (Part 1).mp4 |
5.14Мб |
001 Bonus Lecture_ Next Steps.html |
2.84Кб |
001 Business Case_ Exploring the Dataset and Identifying Predictors__en.srt |
10.50Кб |
001 Business Case_ Exploring the Dataset and Identifying Predictors.mp4 |
51.38Мб |
001 Business Case_ Getting Acquainted with the Dataset__en.srt |
10.62Кб |
001 Business Case_ Getting Acquainted with the Dataset.mp4 |
60.26Мб |
001 Comparison Operators__en.srt |
2.50Кб |
001 Comparison Operators.mp4 |
3.12Мб |
001 Data Science and Business Buzzwords_ Why are there so Many___en.srt |
6.77Кб |
001 Data Science and Business Buzzwords_ Why are there so Many_.mp4 |
54.72Мб |
001 Debunking Common Misconceptions__en.srt |
5.43Кб |
001 Debunking Common Misconceptions.mp4 |
16.43Мб |
001 Defining a Function in Python__en.srt |
2.43Кб |
001 Defining a Function in Python.mp4 |
3.23Мб |
001 EXERCISE - Age vs Probability.html |
367б |
001 Exploring the Problem with a Machine Learning Mindset__en.srt |
4.63Кб |
001 Exploring the Problem with a Machine Learning Mindset.mp4 |
11.08Мб |
001 Finding the Job - What to Expect and What to Look for__en.srt |
4.34Кб |
001 Finding the Job - What to Expect and What to Look for.mp4 |
9.48Мб |
001 For Loops__en.srt |
6.69Кб |
001 For Loops.mp4 |
23.58Мб |
001 Fundamentals of Combinatorics__en.srt |
1.35Кб |
001 Fundamentals of Combinatorics.mp4 |
3.21Мб |
001 Fundamentals of Probability Distributions__en.srt |
7.92Кб |
001 Fundamentals of Probability Distributions.mp4 |
19.28Мб |
001 Game Plan for this Python, SQL, and Tableau Business Exercise__en.srt |
5.54Кб |
001 Game Plan for this Python, SQL, and Tableau Business Exercise.mp4 |
15.80Мб |
001 How to Install TensorFlow 2.0__en.srt |
6.52Кб |
001 How to Install TensorFlow 2.0.mp4 |
27.34Мб |
001 Introduction__en.srt |
1.63Кб |
001 Introduction.mp4 |
2.93Мб |
001 Introduction to Cluster Analysis__en.srt |
4.77Кб |
001 Introduction to Cluster Analysis.mp4 |
10.66Мб |
001 Introduction to Logistic Regression__en.srt |
1.71Кб |
001 Introduction to Logistic Regression.mp4 |
4.41Мб |
001 Introduction to Neural Networks__en.srt |
6.09Кб |
001 Introduction to Neural Networks.mp4 |
10.37Мб |
001 Introduction to pandas Series__en.srt |
10.67Кб |
001 Introduction to pandas Series.mp4 |
22.22Мб |
001 Introduction to Programming__en.srt |
6.93Кб |
001 Introduction to Programming.mp4 |
14.33Мб |
001 Introduction to Regression Analysis__en.srt |
2.22Кб |
001 Introduction to Regression Analysis.mp4 |
2.92Мб |
001 K-Means Clustering__en.srt |
6.48Кб |
001 K-Means Clustering.mp4 |
10.53Мб |
001 Lists__en.srt |
10.05Кб |
001 Lists.mp4 |
20.50Мб |
001 MNIST_ The Dataset__en.srt |
3.48Кб |
001 MNIST_ The Dataset.mp4 |
4.06Мб |
001 MNIST_ What is the MNIST Dataset___en.srt |
3.52Кб |
001 MNIST_ What is the MNIST Dataset_.mp4 |
4.23Мб |
001 Multiple Linear Regression__en.srt |
3.32Кб |
001 Multiple Linear Regression.mp4 |
5.54Мб |
001 Necessary Programming Languages and Software Used in Data Science__en.srt |
7.35Кб |
001 Necessary Programming Languages and Software Used in Data Science.mp4 |
19.54Мб |
001 Null vs Alternative Hypothesis__en.srt |
7.35Кб |
001 Null vs Alternative Hypothesis.mp4 |
80.83Мб |
001 Object Oriented Programming__en.srt |
6.10Кб |
001 Object Oriented Programming.mp4 |
8.42Мб |
001 Population and Sample__en.srt |
5.59Кб |
001 Population and Sample.mp4 |
10.89Мб |
001 Practical Example_ Descriptive Statistics__en.srt |
20.91Кб |
001 Practical Example_ Descriptive Statistics.mp4 |
37.17Мб |
001 Practical Example_ Hypothesis Testing__en.srt |
8.71Кб |
001 Practical Example_ Hypothesis Testing.mp4 |
16.30Мб |
001 Practical Example_ Inferential Statistics__en.srt |
13.73Кб |
001 Practical Example_ Inferential Statistics.mp4 |
22.10Мб |
001 Practical Example_ Linear Regression (Part 1)__en.srt |
14.94Кб |
001 Practical Example_ Linear Regression (Part 1).mp4 |
84.84Мб |
001 Preprocessing Introduction__en.srt |
3.81Кб |
001 Preprocessing Introduction.mp4 |
8.98Мб |
001 Probability in Finance__en.srt |
9.80Кб |
001 Probability in Finance.mp4 |
39.66Мб |
001 READ ME____.html |
564б |
001 Sets and Events__en.srt |
5.37Кб |
001 Sets and Events.mp4 |
17.44Мб |
001 Stochastic Gradient Descent__en.srt |
4.74Кб |
001 Stochastic Gradient Descent.mp4 |
7.62Мб |
001 Summary on What You've Learned__en.srt |
5.25Кб |
001 Summary on What You've Learned.mp4 |
9.66Мб |
001 Techniques for Working with Traditional Data__en.srt |
10.70Кб |
001 Techniques for Working with Traditional Data.mp4 |
105.52Мб |
001 The Basic Probability Formula__en.srt |
9.04Кб |
001 The Basic Probability Formula.mp4 |
29.13Мб |
001 The IF Statement__en.srt |
3.53Кб |
001 The IF Statement.mp4 |
5.33Мб |
001 The Linear Regression Model__en.srt |
6.83Кб |
001 The Linear Regression Model.mp4 |
13.16Мб |
001 The Reason Behind These Disciplines__en.srt |
6.56Кб |
001 The Reason Behind These Disciplines.mp4 |
12.41Мб |
001 Types of Clustering__en.srt |
4.74Кб |
001 Types of Clustering.mp4 |
7.57Мб |
001 Types of Data__en.srt |
6.14Кб |
001 Types of Data.mp4 |
42.47Мб |
001 Using Arithmetic Operators in Python__en.srt |
4.28Кб |
001 Using Arithmetic Operators in Python.mp4 |
7.28Мб |
001 Using the .format() Method__en.srt |
12.34Кб |
001 Using the .format() Method.mp4 |
21.67Мб |
001 Variables__en.srt |
4.53Кб |
001 Variables.mp4 |
8.93Мб |
001 What are Confidence Intervals___en.srt |
3.29Кб |
001 What are Confidence Intervals_.mp4 |
28.38Мб |
001 What are Data, Servers, Clients, Requests, and Responses__en.srt |
5.92Кб |
001 What are Data, Servers, Clients, Requests, and Responses.mp4 |
19.17Мб |
001 What is a Layer___en.srt |
2.44Кб |
001 What is a Layer_.mp4 |
3.47Мб |
001 What is a Matrix___en.srt |
4.42Кб |
001 What is a Matrix_.mp4 |
11.70Мб |
001 What is Initialization___en.srt |
3.60Кб |
001 What is Initialization_.mp4 |
17.42Мб |
001 What is Overfitting___en.srt |
5.73Кб |
001 What is Overfitting_.mp4 |
10.50Мб |
001 What is sklearn and How is it Different from Other Packages__en.srt |
3.38Кб |
001 What is sklearn and How is it Different from Other Packages.mp4 |
6.24Мб |
001 What to Expect from the Following Sections_.html |
2.43Кб |
001 What to Expect from this Part___en.srt |
4.61Кб |
001 What to Expect from this Part_.mp4 |
7.56Мб |
002 Adjusted R-Squared__en.srt |
7.57Кб |
002 Adjusted R-Squared.mp4 |
34.22Мб |
002 Analyzing Age vs Probability in Tableau__en.srt |
10.22Кб |
002 Analyzing Age vs Probability in Tableau.mp4 |
38.69Мб |
002 A Simple Example in Python__en.srt |
5.91Кб |
002 A Simple Example in Python.mp4 |
21.91Мб |
002 A Simple Example of Clustering__en.srt |
902б |
002 A Simple Example of Clustering_en.vtt |
8.25Кб |
002 A Simple Example of Clustering.mp4 |
26.08Мб |
002 Basic NN Example (Part 2)__en.srt |
6.90Кб |
002 Basic NN Example (Part 2).mp4 |
15.23Мб |
002 Business Case_ Outlining the Solution__en.srt |
1.93Кб |
002 Business Case_ Outlining the Solution__en.srt |
2.50Кб |
002 Business Case_ Outlining the Solution.mp4 |
2.21Мб |
002 Business Case_ Outlining the Solution.mp4 |
2.89Мб |
002 Computing Expected Values__en.srt |
6.71Кб |
002 Computing Expected Values.mp4 |
29.24Мб |
002 Confidence Intervals; Population Variance Known; Z-score__en.srt |
10.26Кб |
002 Confidence Intervals; Population Variance Known; Z-score.mp4 |
52.21Мб |
002 Correlation vs Regression__en.srt |
2.03Кб |
002 Correlation vs Regression.mp4 |
3.75Мб |
002 Creating the Targets for the Logistic Regression__en.srt |
8.56Кб |
002 Creating the Targets for the Logistic Regression.mp4 |
32.50Мб |
002 Dendrogram__en.srt |
7.28Кб |
002 Dendrogram.mp4 |
17.34Мб |
002 Deploying the 'absenteeism_module' - Part I__en.srt |
4.86Кб |
002 Deploying the 'absenteeism_module' - Part I.mp4 |
8.38Мб |
002 Further Reading on Null and Alternative Hypothesis.html |
2.23Кб |
002 How are we Going to Approach this Section___en.srt |
1.56Кб |
002 How are we Going to Approach this Section__en.vtt |
2.56Кб |
002 How are we Going to Approach this Section_.mp4 |
4.03Мб |
002 How to Create a Function with a Parameter__en.srt |
4.30Кб |
002 How to Create a Function with a Parameter.mp4 |
8.29Мб |
002 How to Install TensorFlow 1__en.srt |
2.70Кб |
002 How to Install TensorFlow 1_en.vtt |
2.91Кб |
002 How to Install TensorFlow 1.mp4 |
3.71Мб |
002 Importing the Absenteeism Data in Python__en.srt |
3.89Кб |
002 Importing the Absenteeism Data in Python.mp4 |
18.03Мб |
002 Iterating Over Range Objects__en.srt |
6.04Кб |
002 Iterating Over Range Objects.mp4 |
7.85Мб |
002 Levels of Measurement__en.srt |
4.72Кб |
002 Levels of Measurement.mp4 |
31.44Мб |
002 Logical and Identity Operators__en.srt |
5.94Кб |
002 Logical and Identity Operators.mp4 |
19.00Мб |
002 MNIST_ How to Tackle the MNIST__en.srt |
3.78Кб |
002 MNIST_ How to Tackle the MNIST__en.srt |
3.72Кб |
002 MNIST_ How to Tackle the MNIST.mp4 |
7.66Мб |
002 MNIST_ How to Tackle the MNIST.mp4 |
7.68Мб |
002 Modules and Packages__en.srt |
1.34Кб |
002 Modules and Packages.mp4 |
1.71Мб |
002 Numbers and Boolean Values in Python__en.srt |
3.62Кб |
002 Numbers and Boolean Values in Python.mp4 |
4.61Мб |
002 Permutations and How to Use Them__en.srt |
4.24Кб |
002 Permutations and How to Use Them.mp4 |
13.97Мб |
002 Practical Example_ Descriptive Statistics Exercise.html |
81б |
002 Practical Example_ Hypothesis Testing Exercise.html |
81б |
002 Practical Example_ Inferential Statistics Exercise.html |
81б |
002 Practical Example_ Linear Regression (Part 2)__en.srt |
5.00Кб |
002 Practical Example_ Linear Regression (Part 2)_en.vtt |
7.11Кб |
002 Practical Example_ Linear Regression (Part 2).mp4 |
31.90Мб |
002 Probability in Statistics__en.srt |
8.62Кб |
002 Probability in Statistics.mp4 |
14.26Мб |
002 Problems with Gradient Descent__en.srt |
2.92Кб |
002 Problems with Gradient Descent.mp4 |
3.51Мб |
002 Real Life Examples of Traditional Data__en.srt |
2.22Кб |
002 Real Life Examples of Traditional Data.mp4 |
13.92Мб |
002 Scalars and Vectors__en.srt |
3.83Кб |
002 Scalars and Vectors.mp4 |
8.39Мб |
002 Some Examples of Clusters__en.srt |
6.20Кб |
002 Some Examples of Clusters.mp4 |
35.12Мб |
002 TensorFlow Outline and Comparison with Other Libraries__en.srt |
1.50Кб |
002 TensorFlow Outline and Comparison with Other Libraries_en.vtt |
4.74Кб |
002 TensorFlow Outline and Comparison with Other Libraries.mp4 |
14.94Мб |
002 The Business Task__en.srt |
3.72Кб |
002 The Business Task.mp4 |
6.80Мб |
002 The Double Equality Sign__en.srt |
1.77Кб |
002 The Double Equality Sign.mp4 |
2.72Мб |
002 The ELSE Statement__en.srt |
3.11Кб |
002 The ELSE Statement.mp4 |
5.25Мб |
002 Training the Model__en.srt |
4.42Кб |
002 Training the Model.mp4 |
7.57Мб |
002 Types of Basic Preprocessing__en.srt |
1.72Кб |
002 Types of Basic Preprocessing.mp4 |
2.40Мб |
002 Types of Probability Distributions__en.srt |
9.72Кб |
002 Types of Probability Distributions.mp4 |
28.69Мб |
002 Types of Simple Initializations__en.srt |
3.82Кб |
002 Types of Simple Initializations.mp4 |
5.73Мб |
002 Underfitting and Overfitting for Classification__en.srt |
2.69Кб |
002 Underfitting and Overfitting for Classification.mp4 |
13.53Мб |
002 Using Methods__en.srt |
8.35Кб |
002 Using Methods.mp4 |
23.42Мб |
002 Ways Sets Can Interact__en.srt |
4.40Кб |
002 Ways Sets Can Interact.mp4 |
19.02Мб |
002 What's Further out there in terms of Machine Learning__en.srt |
2.64Кб |
002 What's Further out there in terms of Machine Learning.mp4 |
3.71Мб |
002 What are Data Connectivity, APIs, and Endpoints___en.srt |
8.51Кб |
002 What are Data Connectivity, APIs, and Endpoints_.mp4 |
58.83Мб |
002 What Does the Course Cover__en.srt |
5.10Кб |
002 What Does the Course Cover.mp4 |
49.69Мб |
002 What is a Deep Net___en.srt |
3.30Кб |
002 What is a Deep Net_.mp4 |
11.06Мб |
002 What is a Distribution__en.srt |
6.13Кб |
002 What is a Distribution.mp4 |
16.90Мб |
002 What is the difference between Analysis and Analytics__en.srt |
5.03Кб |
002 What is the difference between Analysis and Analytics.mp4 |
8.01Мб |
002 While Loops and Incrementing__en.srt |
6.18Кб |
002 While Loops and Incrementing.mp4 |
20.20Мб |
002 Why Python___en.srt |
6.85Кб |
002 Why Python_.mp4 |
11.77Мб |
002 Working with Methods in Python - Part I__en.srt |
6.92Кб |
002 Working with Methods in Python - Part I.mp4 |
16.80Мб |
003 A Note on Installing Packages in Anaconda.html |
2.28Кб |
003 A Note on Multicollinearity.html |
849б |
003 A Simple Example of Clustering - Exercise.html |
87б |
003 Basic NN Example (Part 3)__en.srt |
4.39Кб |
003 Basic NN Example (Part 3).mp4 |
15.68Мб |
003 Business Analytics, Data Analytics, and Data Science_ An Introduction__en.srt |
11.00Кб |
003 Business Analytics, Data Analytics, and Data Science_ An Introduction.mp4 |
49.96Мб |
003 Business Case_ Balancing the Dataset__en.srt |
4.72Кб |
003 Business Case_ Balancing the Dataset.mp4 |
26.19Мб |
003 Categorical Variables - Visualization Techniques__en.srt |
6.44Кб |
003 Categorical Variables - Visualization Techniques.mp4 |
36.65Мб |
003 Characteristics of Discrete Distributions__en.srt |
2.51Кб |
003 Characteristics of Discrete Distributions.mp4 |
9.25Мб |
003 Checking the Content of the Data Set__en.srt |
7.12Кб |
003 Checking the Content of the Data Set.mp4 |
54.27Мб |
003 Confidence Intervals; Population Variance Known; Z-score; Exercise.html |
81б |
003 DeepMind and Deep Learning.html |
1.04Кб |
003 Defining a Function in Python - Part II__en.srt |
2.88Кб |
003 Defining a Function in Python - Part II.mp4 |
6.45Мб |
003 Deploying the 'absenteeism_module' - Part II__en.srt |
429б |
003 Deploying the 'absenteeism_module' - Part II_en.vtt |
6.76Кб |
003 Deploying the 'absenteeism_module' - Part II.mp4 |
25.99Мб |
003 Difference between Classification and Clustering__en.srt |
3.34Кб |
003 Difference between Classification and Clustering.mp4 |
9.53Мб |
003 Digging into a Deep Net__en.srt |
6.73Кб |
003 Digging into a Deep Net.mp4 |
19.14Мб |
003 Download All Resources and Important FAQ.html |
21.36Кб |
003 EXERCISE - Reasons vs Probability.html |
385б |
003 Frequency__en.srt |
6.28Кб |
003 Frequency.mp4 |
36.39Мб |
003 Geometrical Representation of the Linear Regression Model__en.srt |
1.66Кб |
003 Geometrical Representation of the Linear Regression Model.mp4 |
1.75Мб |
003 Heatmaps__en.srt |
6.24Кб |
003 Heatmaps.mp4 |
25.71Мб |
003 How to Reassign Values__en.srt |
1.39Кб |
003 How to Reassign Values.mp4 |
1.86Мб |
003 Intersection of Sets__en.srt |
2.49Кб |
003 Intersection of Sets.mp4 |
8.78Мб |
003 Introducing the Data Set__en.srt |
4.13Кб |
003 Introducing the Data Set.mp4 |
15.29Мб |
003 Introduction to Nested For Loops__en.srt |
8.30Кб |
003 Introduction to Nested For Loops.mp4 |
12.26Мб |
003 Linear Algebra and Geometry__en.srt |
4.07Кб |
003 Linear Algebra and Geometry.mp4 |
13.56Мб |
003 List Slicing__en.srt |
5.22Кб |
003 List Slicing.mp4 |
19.17Мб |
003 Lists with the range() Function__en.srt |
8.03Кб |
003 Lists with the range() Function.mp4 |
14.50Мб |
003 Logistic vs Logit Function__en.srt |
4.89Кб |
003 Logistic vs Logit Function.mp4 |
43.96Мб |
003 MNIST_ Importing the Relevant Packages and Loading the Data__en.srt |
3.01Кб |
003 MNIST_ Importing the Relevant Packages and Loading the Data.mp4 |
12.24Мб |
003 MNIST_ Relevant Packages__en.srt |
2.25Кб |
003 MNIST_ Relevant Packages.mp4 |
7.88Мб |
003 Momentum__en.srt |
3.59Кб |
003 Momentum.mp4 |
5.01Мб |
003 Multiple Linear Regression Exercise.html |
76б |
003 Probability in Data Science__en.srt |
6.64Кб |
003 Probability in Data Science.mp4 |
23.94Мб |
003 Python Strings__en.srt |
7.10Кб |
003 Python Strings.mp4 |
19.74Мб |
003 Rejection Region and Significance Level__en.srt |
9.09Кб |
003 Rejection Region and Significance Level.mp4 |
38.20Мб |
003 Selecting the Inputs for the Logistic Regression__en.srt |
3.42Кб |
003 Selecting the Inputs for the Logistic Regression.mp4 |
4.64Мб |
003 Simple Linear Regression with sklearn__en.srt |
1.06Кб |
003 Simple Linear Regression with sklearn_en.vtt |
6.71Кб |
003 Simple Linear Regression with sklearn.mp4 |
31.65Мб |
003 Simple Operations with Factorials__en.srt |
3.56Кб |
003 Simple Operations with Factorials.mp4 |
13.98Мб |
003 Standardization__en.srt |
6.20Кб |
003 Standardization.mp4 |
11.95Мб |
003 State-of-the-Art Method - (Xavier) Glorot Initialization__en.srt |
3.67Кб |
003 State-of-the-Art Method - (Xavier) Glorot Initialization.mp4 |
4.18Мб |
003 Taking a Closer Look at APIs__en.srt |
10.60Кб |
003 Taking a Closer Look at APIs.mp4 |
65.29Мб |
003 Techniques for Working with Big Data__en.srt |
5.74Кб |
003 Techniques for Working with Big Data.mp4 |
60.48Мб |
003 TensorFlow 1 vs TensorFlow 2__en.srt |
3.76Кб |
003 TensorFlow 1 vs TensorFlow 2.mp4 |
14.95Мб |
003 The ELIF Statement__en.srt |
6.60Кб |
003 The ELIF Statement.mp4 |
14.25Мб |
003 The Importance of Working with a Balanced Dataset__en.srt |
4.72Кб |
003 The Importance of Working with a Balanced Dataset.mp4 |
21.60Мб |
003 The Normal Distribution__en.srt |
5.01Кб |
003 The Normal Distribution.mp4 |
16.16Мб |
003 Types of Machine Learning__en.srt |
5.31Кб |
003 Types of Machine Learning.mp4 |
9.81Мб |
003 What is the Standard Library___en.srt |
3.66Кб |
003 What is the Standard Library_.mp4 |
4.87Мб |
003 What is Validation___en.srt |
4.90Кб |
003 What is Validation_.mp4 |
8.14Мб |
003 Why Jupyter___en.srt |
4.63Кб |
003 Why Jupyter_.mp4 |
7.96Мб |
003 Working with Methods in Python - Part II__en.srt |
3.60Кб |
003 Working with Methods in Python - Part II.mp4 |
5.77Мб |
004 Add Comments__en.srt |
1.80Кб |
004 Add Comments.mp4 |
2.41Мб |
004 Analyzing Reasons vs Probability in Tableau__en.srt |
9.68Кб |
004 Analyzing Reasons vs Probability in Tableau.mp4 |
40.24Мб |
004 A Note on Boolean Values__en.srt |
2.91Кб |
004 A Note on Boolean Values.mp4 |
3.26Мб |
004 A Note on TensorFlow 2 Syntax__en.srt |
1.41Кб |
004 A Note on TensorFlow 2 Syntax.mp4 |
2.34Мб |
004 An overview of CNNs__en.srt |
6.71Кб |
004 An overview of CNNs.mp4 |
30.47Мб |
004 Arrays in Python - A Convenient Way To Represent Matrices__en.srt |
6.03Кб |
004 Arrays in Python - A Convenient Way To Represent Matrices.mp4 |
19.01Мб |
004 Basic NN Example (Part 4)__en.srt |
10.56Кб |
004 Basic NN Example (Part 4).mp4 |
30.06Мб |
004 Building a Logistic Regression__en.srt |
3.43Кб |
004 Building a Logistic Regression.mp4 |
8.61Мб |
004 Business Case_ Preprocessing__en.srt |
348б |
004 Business Case_ Preprocessing_en.vtt |
11.75Кб |
004 Business Case_ Preprocessing.mp4 |
74.39Мб |
004 Business Case_ Preprocessing the Data__en.srt |
348б |
004 Business Case_ Preprocessing the Data_en.vtt |
11.73Кб |
004 Business Case_ Preprocessing the Data.mp4 |
73.82Мб |
004 Categorical Variables Exercise.html |
81б |
004 Clustering Categorical Data__en.srt |
3.32Кб |
004 Clustering Categorical Data.mp4 |
10.35Мб |
004 Communication between Software Products through Text Files__en.srt |
5.51Кб |
004 Communication between Software Products through Text Files.mp4 |
9.28Мб |
004 Conditional Statements and Loops__en.srt |
7.67Кб |
004 Conditional Statements and Loops.mp4 |
21.94Мб |
004 Confidence Interval Clarifications__en.srt |
5.80Кб |
004 Confidence Interval Clarifications.mp4 |
18.56Мб |
004 Continuing with BI, ML, and AI__en.srt |
11.96Кб |
004 Continuing with BI, ML, and AI.mp4 |
35.94Мб |
004 Discrete Distributions_ The Uniform Distribution__en.srt |
2.84Кб |
004 Discrete Distributions_ The Uniform Distribution.mp4 |
10.08Мб |
004 Events and Their Complements__en.srt |
7.16Кб |
004 Events and Their Complements.mp4 |
11.40Мб |
004 Exporting the Obtained Data Set as a _.csv.html |
964б |
004 How to Use a Function within a Function__en.srt |
2.07Кб |
004 How to Use a Function within a Function.mp4 |
3.25Мб |
004 Importing Modules in Python__en.srt |
4.45Кб |
004 Importing Modules in Python.mp4 |
8.53Мб |
004 Installing Python and Jupyter__en.srt |
9.11Кб |
004 Installing Python and Jupyter.mp4 |
32.86Мб |
004 Introduction to Terms with Multiple Meanings__en.srt |
4.09Кб |
004 Introduction to Terms with Multiple Meanings.mp4 |
18.04Мб |
004 Learning Rate Schedules, or How to Choose the Optimal Learning Rate__en.srt |
6.12Кб |
004 Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4 |
12.03Мб |
004 Math Prerequisites__en.srt |
4.18Кб |
004 Math Prerequisites.mp4 |
4.47Мб |
004 MNIST_ Model Outline__en.srt |
8.95Кб |
004 MNIST_ Model Outline.mp4 |
34.69Мб |
004 MNIST_ Preprocess the Data - Create a Validation Set and Scale It__en.srt |
6.61Кб |
004 MNIST_ Preprocess the Data - Create a Validation Set and Scale It.mp4 |
22.93Мб |
004 Non-Linearities and their Purpose__en.srt |
3.80Кб |
004 Non-Linearities and their Purpose.mp4 |
9.74Мб |
004 Parameters and Arguments in pandas__en.srt |
5.50Кб |
004 Parameters and Arguments in pandas.mp4 |
15.45Мб |
004 Practical Example_ Linear Regression (Part 3)__en.srt |
4.19Кб |
004 Practical Example_ Linear Regression (Part 3).mp4 |
6.91Мб |
004 Preprocessing Categorical Data__en.srt |
2.86Кб |
004 Preprocessing Categorical Data.mp4 |
5.34Мб |
004 Python Packages Installation__en.srt |
4.57Кб |
004 Python Packages Installation_en.vtt |
4.74Кб |
004 Python Packages Installation.mp4 |
23.70Мб |
004 Real Life Examples of Big Data__en.srt |
1.90Кб |
004 Real Life Examples of Big Data.mp4 |
4.21Мб |
004 Simple Linear Regression with sklearn - A StatsModels-like Summary Table__en.srt |
0б |
004 Simple Linear Regression with sklearn - A StatsModels-like Summary Table_en.vtt |
6.08Кб |
004 Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4 |
28.88Мб |
004 Solving Variations with Repetition__en.srt |
3.64Кб |
004 Solving Variations with Repetition.mp4 |
13.75Мб |
004 Standardizing the Data__en.srt |
4.16Кб |
004 Standardizing the Data.mp4 |
15.14Мб |
004 TensorFlow Intro__en.srt |
1.37Кб |
004 TensorFlow Intro_en.vtt |
4.61Кб |
004 TensorFlow Intro.mp4 |
16.56Мб |
004 Test for Significance of the Model (F-Test)__en.srt |
2.57Кб |
004 Test for Significance of the Model (F-Test).mp4 |
5.90Мб |
004 The Linear Model (Linear Algebraic Version)__en.srt |
3.92Кб |
004 The Linear Model (Linear Algebraic Version).mp4 |
7.87Мб |
004 The Standard Normal Distribution__en.srt |
4.15Кб |
004 The Standard Normal Distribution.mp4 |
8.62Мб |
004 Training, Validation, and Test Datasets__en.srt |
3.41Кб |
004 Training, Validation, and Test Datasets.mp4 |
7.74Мб |
004 Triple Nested For Loops__en.srt |
8.00Кб |
004 Triple Nested For Loops.mp4 |
19.40Мб |
004 Tuples__en.srt |
7.24Кб |
004 Tuples.mp4 |
9.50Мб |
004 Type I Error and Type II Error__en.srt |
5.26Кб |
004 Type I Error and Type II Error.mp4 |
18.17Мб |
004 Union of Sets__en.srt |
6.08Кб |
004 Union of Sets.mp4 |
19.47Мб |
005 A Breakdown of our Data Science Infographic__en.srt |
5.21Кб |
005 A Breakdown of our Data Science Infographic.mp4 |
33.95Мб |
005 Activation Functions__en.srt |
5.33Кб |
005 Activation Functions.mp4 |
8.53Мб |
005 Actual Introduction to TensorFlow__en.srt |
2.29Кб |
005 Actual Introduction to TensorFlow.mp4 |
6.17Мб |
005 A Note on Normalization.html |
729б |
005 An Overview of RNNs__en.srt |
3.77Кб |
005 An Overview of RNNs.mp4 |
6.75Мб |
005 Basic NN Example Exercises.html |
1.65Кб |
005 Binary and One-Hot Encoding__en.srt |
4.78Кб |
005 Binary and One-Hot Encoding.mp4 |
8.36Мб |
005 Building a Logistic Regression - Exercise.html |
87б |
005 Business Case_ Preprocessing Exercise.html |
379б |
005 Business Case_ Preprocessing the Data - Exercise.html |
370б |
005 Business Intelligence (BI) Techniques__en.srt |
8.92Кб |
005 Business Intelligence (BI) Techniques.mp4 |
51.34Мб |
005 Clustering Categorical Data - Exercise.html |
87б |
005 Conditional Statements, Functions, and Loops__en.srt |
2.33Кб |
005 Conditional Statements, Functions, and Loops.mp4 |
2.91Мб |
005 Conditional Statements and Functions__en.srt |
3.62Кб |
005 Conditional Statements and Functions.mp4 |
6.04Мб |
005 Dictionaries__en.srt |
9.08Кб |
005 Dictionaries.mp4 |
24.91Мб |
005 Discrete Distributions_ The Bernoulli Distribution__en.srt |
4.29Кб |
005 Discrete Distributions_ The Bernoulli Distribution.mp4 |
14.76Мб |
005 Dummies and Variance Inflation Factor - Exercise.html |
76б |
005 EXERCISE - Transportation Expense vs Probability.html |
529б |
005 First Regression in Python__en.srt |
7.95Кб |
005 First Regression in Python.mp4 |
29.63Мб |
005 Learning Rate Schedules Visualized__en.srt |
2.14Кб |
005 Learning Rate Schedules Visualized.mp4 |
2.34Мб |
005 List Comprehensions__en.srt |
12.35Кб |
005 List Comprehensions.mp4 |
43.23Мб |
005 MNIST_ Loss and Optimization Algorithm__en.srt |
3.60Кб |
005 MNIST_ Loss and Optimization Algorithm.mp4 |
11.56Мб |
005 MNIST_ Preprocess the Data - Scale the Test Data - Exercise.html |
79б |
005 Mutually Exclusive Sets__en.srt |
2.65Кб |
005 Mutually Exclusive Sets.mp4 |
5.25Мб |
005 N-Fold Cross Validation__en.srt |
4.29Кб |
005 N-Fold Cross Validation.mp4 |
5.14Мб |
005 Numerical Variables - Frequency Distribution Table__en.srt |
4.39Кб |
005 Numerical Variables - Frequency Distribution Table.mp4 |
12.80Мб |
005 OLS Assumptions__en.srt |
2.96Кб |
005 OLS Assumptions.mp4 |
5.12Мб |
005 Software Integration - Explained__en.srt |
6.85Кб |
005 Software Integration - Explained.mp4 |
41.99Мб |
005 Solving Variations without Repetition__en.srt |
4.74Кб |
005 Solving Variations without Repetition.mp4 |
14.76Мб |
005 Splitting the Data for Training and Testing__en.srt |
8.47Кб |
005 Splitting the Data for Training and Testing.mp4 |
36.12Мб |
005 Student's T Distribution__en.srt |
4.24Кб |
005 Student's T Distribution.mp4 |
13.33Мб |
005 Test for the Mean. Population Variance Known__en.srt |
8.32Кб |
005 Test for the Mean. Population Variance Known.mp4 |
36.96Мб |
005 The Linear Model with Multiple Inputs__en.srt |
3.21Кб |
005 The Linear Model with Multiple Inputs.mp4 |
7.77Мб |
005 The Standard Normal Distribution Exercise.html |
81б |
005 Types of File Formats Supporting TensorFlow__en.srt |
3.56Кб |
005 Types of File Formats Supporting TensorFlow.mp4 |
7.25Мб |
005 Understanding Jupyter's Interface - the Notebook Dashboard__en.srt |
3.70Кб |
005 Understanding Jupyter's Interface - the Notebook Dashboard.mp4 |
4.39Мб |
005 Understanding Line Continuation__en.srt |
1.14Кб |
005 Understanding Line Continuation.mp4 |
1014.51Кб |
005 Using .unique() and .nunique()__en.srt |
5.58Кб |
005 Using .unique() and .nunique().mp4 |
26.33Мб |
005 What's Regression Analysis - a Quick Refresher.html |
2.80Кб |
005 What is a Tensor___en.srt |
3.69Кб |
005 What is a Tensor_.mp4 |
11.61Мб |
006 A1_ Linearity__en.srt |
2.38Кб |
006 A1_ Linearity.mp4 |
2.66Мб |
006 Activation Functions_ Softmax Activation__en.srt |
4.51Кб |
006 Activation Functions_ Softmax Activation.mp4 |
8.42Мб |
006 Adaptive Learning Rate Schedules (AdaGrad and RMSprop )__en.srt |
5.22Кб |
006 Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp4 |
8.24Мб |
006 Addition and Subtraction of Matrices__en.srt |
4.00Кб |
006 Addition and Subtraction of Matrices.mp4 |
22.08Мб |
006 Analyzing Transportation Expense vs Probability in Tableau__en.srt |
7.36Кб |
006 Analyzing Transportation Expense vs Probability in Tableau.mp4 |
10.87Мб |
006 An Invaluable Coding Tip__en.srt |
3.15Кб |
006 An Invaluable Coding Tip.mp4 |
16.77Мб |
006 Anonymous (Lambda) Functions__en.srt |
9.89Кб |
006 Anonymous (Lambda) Functions.mp4 |
33.71Мб |
006 An Overview of non-NN Approaches__en.srt |
5.28Кб |
006 An Overview of non-NN Approaches.mp4 |
15.65Мб |
006 Business Case_ Load the Preprocessed Data__en.srt |
4.83Кб |
006 Business Case_ Load the Preprocessed Data.mp4 |
13.80Мб |
006 Calculating the Accuracy of the Model__en.srt |
5.34Кб |
006 Calculating the Accuracy of the Model.mp4 |
16.64Мб |
006 Central Limit Theorem__en.srt |
5.68Кб |
006 Central Limit Theorem.mp4 |
22.86Мб |
006 Confidence Intervals; Population Variance Unknown; T-score__en.srt |
5.67Кб |
006 Confidence Intervals; Population Variance Unknown; T-score.mp4 |
11.58Мб |
006 Creating a Data Provider__en.srt |
7.77Кб |
006 Creating a Data Provider.mp4 |
56.23Мб |
006 Dependence and Independence of Sets__en.srt |
3.46Кб |
006 Dependence and Independence of Sets.mp4 |
11.98Мб |
006 Discrete Distributions_ The Binomial Distribution__en.srt |
8.68Кб |
006 Discrete Distributions_ The Binomial Distribution.mp4 |
24.94Мб |
006 Early Stopping or When to Stop Training__en.srt |
6.79Кб |
006 Early Stopping or When to Stop Training.mp4 |
8.50Мб |
006 First Regression in Python Exercise.html |
1.31Кб |
006 Fitting the Model and Assessing its Accuracy__en.srt |
1.36Кб |
006 Fitting the Model and Assessing its Accuracy_en.vtt |
6.35Кб |
006 Fitting the Model and Assessing its Accuracy.mp4 |
35.29Мб |
006 Functions Containing a Few Arguments__en.srt |
1.33Кб |
006 Functions Containing a Few Arguments.mp4 |
2.24Мб |
006 How to Choose the Number of Clusters__en.srt |
7.41Кб |
006 How to Choose the Number of Clusters.mp4 |
19.79Мб |
006 How to Iterate over Dictionaries__en.srt |
7.60Кб |
006 How to Iterate over Dictionaries.mp4 |
16.46Мб |
006 Indexing Elements__en.srt |
1.63Кб |
006 Indexing Elements.mp4 |
2.36Мб |
006 MNIST_ Preprocess the Data - Shuffle and Batch__en.srt |
9.49Кб |
006 MNIST_ Preprocess the Data - Shuffle and Batch.mp4 |
32.71Мб |
006 Numerical Variables Exercise.html |
81б |
006 Outlining the Model with TensorFlow 2__en.srt |
7.99Кб |
006 Outlining the Model with TensorFlow 2.mp4 |
26.99Мб |
006 Practical Example_ Linear Regression (Part 4)__en.srt |
11.75Кб |
006 Practical Example_ Linear Regression (Part 4).mp4 |
29.84Мб |
006 Prerequisites for Coding in the Jupyter Notebooks__en.srt |
7.66Кб |
006 Prerequisites for Coding in the Jupyter Notebooks.mp4 |
15.38Мб |
006 Real Life Examples of Business Intelligence (BI)__en.srt |
2.14Кб |
006 Real Life Examples of Business Intelligence (BI).mp4 |
19.35Мб |
006 Simple Linear Regression with sklearn - Exercise.html |
76б |
006 Solving Combinations__en.srt |
5.72Кб |
006 Solving Combinations.mp4 |
18.99Мб |
006 Test for the Mean. Population Variance Known Exercise.html |
81б |
006 The Linear model with Multiple Inputs and Multiple Outputs__en.srt |
5.42Кб |
006 The Linear model with Multiple Inputs and Multiple Outputs.mp4 |
16.23Мб |
006 Types of File Formats, supporting Tensors__en.srt |
3.30Кб |
006 Types of File Formats, supporting Tensors.mp4 |
8.90Мб |
006 Using .sort_values()__en.srt |
5.54Кб |
006 Using .sort_values().mp4 |
13.20Мб |
006 Using a Statistical Approach towards the Solution to the Exercise__en.srt |
2.93Кб |
006 Using a Statistical Approach towards the Solution to the Exercise.mp4 |
9.90Мб |
007 A2_ No Endogeneity__en.srt |
5.27Кб |
007 A2_ No Endogeneity.mp4 |
8.99Мб |
007 Adam (Adaptive Moment Estimation)__en.srt |
3.42Кб |
007 Adam (Adaptive Moment Estimation).mp4 |
6.88Мб |
007 Backpropagation__en.srt |
4.48Кб |
007 Backpropagation.mp4 |
19.49Мб |
007 Basic NN Example with TF_ Inputs, Outputs, Targets, Weights, Biases__en.srt |
7.56Кб |
007 Basic NN Example with TF_ Inputs, Outputs, Targets, Weights, Biases.mp4 |
28.00Мб |
007 Built-in Functions in Python__en.srt |
4.29Кб |
007 Built-in Functions in Python.mp4 |
8.50Мб |
007 Business Case_ Load the Preprocessed Data - Exercise.html |
79б |
007 Business Case_ Model Outline__en.srt |
7.09Кб |
007 Business Case_ Model Outline.mp4 |
42.48Мб |
007 Confidence Intervals; Population Variance Unknown; T-score; Exercise.html |
81б |
007 Creating a Summary Table with the Coefficients and Intercept__en.srt |
6.66Кб |
007 Creating a Summary Table with the Coefficients and Intercept.mp4 |
26.98Мб |
007 Discrete Distributions_ The Poisson Distribution__en.srt |
6.60Кб |
007 Discrete Distributions_ The Poisson Distribution.mp4 |
14.62Мб |
007 Dropping a Column from a DataFrame in Python__en.srt |
7.75Кб |
007 Dropping a Column from a DataFrame in Python.mp4 |
41.30Мб |
007 Dummy Variables - Exercise.html |
705б |
007 Errors when Adding Matrices__en.srt |
2.61Кб |
007 Errors when Adding Matrices.mp4 |
3.34Мб |
007 Graphical Representation of Simple Neural Networks__en.srt |
2.83Кб |
007 Graphical Representation of Simple Neural Networks.mp4 |
6.35Мб |
007 How to Choose the Number of Clusters - Exercise.html |
87б |
007 Interpreting the Result and Extracting the Weights and Bias__en.srt |
6.26Кб |
007 Interpreting the Result and Extracting the Weights and Bias.mp4 |
13.67Мб |
007 Introduction to pandas DataFrames - Part I__en.srt |
7.08Кб |
007 Introduction to pandas DataFrames - Part I.mp4 |
10.60Мб |
007 MNIST_ Batching and Early Stopping__en.srt |
2.83Кб |
007 MNIST_ Batching and Early Stopping.mp4 |
8.70Мб |
007 MNIST_ Preprocess the Data - Shuffle and Batch - Exercise.html |
79б |
007 Multiple Linear Regression with sklearn__en.srt |
1013б |
007 Multiple Linear Regression with sklearn_en.vtt |
3.80Кб |
007 Multiple Linear Regression with sklearn.mp4 |
9.81Мб |
007 p-value__en.srt |
5.37Кб |
007 p-value.mp4 |
33.08Мб |
007 Standard error__en.srt |
1.92Кб |
007 Standard error.mp4 |
13.33Мб |
007 Structuring with Indentation__en.srt |
2.18Кб |
007 Structuring with Indentation.mp4 |
2.80Мб |
007 Symmetry of Combinations__en.srt |
4.22Кб |
007 Symmetry of Combinations.mp4 |
13.51Мб |
007 Techniques for Working with Traditional Methods__en.srt |
11.32Кб |
007 Techniques for Working with Traditional Methods.mp4 |
74.75Мб |
007 The Conditional Probability Formula__en.srt |
5.27Кб |
007 The Conditional Probability Formula.mp4 |
16.33Мб |
007 The Histogram__en.srt |
3.12Кб |
007 The Histogram.mp4 |
3.85Мб |
007 Understanding Logistic Regression Tables__en.srt |
5.52Кб |
007 Understanding Logistic Regression Tables.mp4 |
12.89Мб |
007 Using Seaborn for Graphs__en.srt |
1.53Кб |
007 Using Seaborn for Graphs.mp4 |
7.37Мб |
008 A3_ Normality and Homoscedasticity__en.srt |
6.58Кб |
008 A3_ Normality and Homoscedasticity.mp4 |
27.39Мб |
008 Backpropagation Picture__en.srt |
4.27Кб |
008 Backpropagation Picture.mp4 |
7.68Мб |
008 Basic NN Example with TF_ Loss Function and Gradient Descent__en.srt |
4.77Кб |
008 Basic NN Example with TF_ Loss Function and Gradient Descent.mp4 |
15.72Мб |
008 Business Case_ Learning and Interpreting the Result__en.srt |
6.28Кб |
008 Business Case_ Learning and Interpreting the Result.mp4 |
27.77Мб |
008 Business Case_ Optimization__en.srt |
6.46Кб |
008 Business Case_ Optimization.mp4 |
26.95Мб |
008 Calculating the Adjusted R-Squared in sklearn__en.srt |
6.60Кб |
008 Calculating the Adjusted R-Squared in sklearn.mp4 |
16.92Мб |
008 Characteristics of Continuous Distributions__en.srt |
8.88Кб |
008 Characteristics of Continuous Distributions.mp4 |
28.87Мб |
008 Customizing a TensorFlow 2 Model__en.srt |
4.20Кб |
008 Customizing a TensorFlow 2 Model.mp4 |
16.78Мб |
008 Estimators and Estimates__en.srt |
3.89Кб |
008 Estimators and Estimates.mp4 |
16.13Мб |
008 EXERCISE - Dropping a Column from a DataFrame in Python.html |
864б |
008 Histogram Exercise.html |
81б |
008 How to Interpret the Regression Table__en.srt |
6.57Кб |
008 How to Interpret the Regression Table.mp4 |
28.72Мб |
008 Interpreting the Coefficients for Our Problem__en.srt |
8.04Кб |
008 Interpreting the Coefficients for Our Problem.mp4 |
34.41Мб |
008 Introduction to pandas DataFrames - Part II__en.srt |
7.61Кб |
008 Introduction to pandas DataFrames - Part II.mp4 |
17.83Мб |
008 Margin of Error__en.srt |
6.27Кб |
008 Margin of Error.mp4 |
22.66Мб |
008 MNIST_ Learning__en.srt |
9.95Кб |
008 MNIST_ Learning.mp4 |
31.88Мб |
008 MNIST_ Outline the Model__en.srt |
7.26Кб |
008 MNIST_ Outline the Model.mp4 |
22.09Мб |
008 Practical Example_ Linear Regression (Part 5)__en.srt |
10.44Кб |
008 Practical Example_ Linear Regression (Part 5).mp4 |
50.42Мб |
008 Pros and Cons of K-Means Clustering__en.srt |
2.62Кб |
008 Pros and Cons of K-Means Clustering_en.vtt |
4.07Кб |
008 Pros and Cons of K-Means Clustering.mp4 |
10.93Мб |
008 Real Life Examples of Traditional Methods__en.srt |
3.53Кб |
008 Real Life Examples of Traditional Methods.mp4 |
21.17Мб |
008 Solving Combinations with Separate Sample Spaces__en.srt |
3.81Кб |
008 Solving Combinations with Separate Sample Spaces.mp4 |
12.87Мб |
008 Test for the Mean. Population Variance Unknown__en.srt |
6.20Кб |
008 Test for the Mean. Population Variance Unknown.mp4 |
19.72Мб |
008 The Law of Total Probability__en.srt |
3.38Кб |
008 The Law of Total Probability.mp4 |
11.39Мб |
008 Transpose of a Matrix__en.srt |
5.71Кб |
008 Transpose of a Matrix.mp4 |
20.49Мб |
008 Understanding Logistic Regression Tables - Exercise.html |
87б |
008 What is the Objective Function___en.srt |
2.13Кб |
008 What is the Objective Function_.mp4 |
6.03Мб |
009 A4_ No Autocorrelation__en.srt |
4.82Кб |
009 A4_ No Autocorrelation.mp4 |
7.67Мб |
009 Backpropagation - A Peek into the Mathematics of Optimization.html |
539б |
009 Basic NN Example with TF_ Model Output__en.srt |
7.70Кб |
009 Basic NN Example with TF_ Model Output.mp4 |
17.09Мб |
009 Basic NN with TensorFlow_ Exercises.html |
1.28Кб |
009 Business Case_ Interpretation__en.srt |
2.91Кб |
009 Business Case_ Interpretation.mp4 |
18.59Мб |
009 Business Case_ Setting an Early Stopping Mechanism__en.srt |
7.93Кб |
009 Business Case_ Setting an Early Stopping Mechanism.mp4 |
43.81Мб |
009 Calculating the Adjusted R-Squared in sklearn - Exercise.html |
76б |
009 Combinatorics in Real-Life_ The Lottery__en.srt |
4.16Кб |
009 Combinatorics in Real-Life_ The Lottery.mp4 |
16.16Мб |
009 Common Objective Functions_ L2-norm Loss__en.srt |
2.76Кб |
009 Common Objective Functions_ L2-norm Loss.mp4 |
4.47Мб |
009 Confidence intervals. Two means. Dependent samples__en.srt |
8.18Кб |
009 Confidence intervals. Two means. Dependent samples.mp4 |
45.04Мб |
009 Continuous Distributions_ The Normal Distribution__en.srt |
4.92Кб |
009 Continuous Distributions_ The Normal Distribution.mp4 |
19.67Мб |
009 Cross Tables and Scatter Plots__en.srt |
6.70Кб |
009 Cross Tables and Scatter Plots.mp4 |
19.70Мб |
009 Decomposition of Variability__en.srt |
4.20Кб |
009 Decomposition of Variability.mp4 |
8.62Мб |
009 Dot Product__en.srt |
4.32Кб |
009 Dot Product.mp4 |
11.36Мб |
009 Linear Regression - Exercise.html |
497б |
009 Machine Learning (ML) Techniques__en.srt |
8.94Кб |
009 Machine Learning (ML) Techniques.mp4 |
47.78Мб |
009 MNIST_ Results and Testing__en.srt |
8.33Кб |
009 MNIST_ Results and Testing.mp4 |
38.19Мб |
009 MNIST_ Select the Loss and the Optimizer__en.srt |
3.18Кб |
009 MNIST_ Select the Loss and the Optimizer.mp4 |
10.65Мб |
009 pandas DataFrames - Common Attributes__en.srt |
6.25Кб |
009 pandas DataFrames - Common Attributes.mp4 |
29.80Мб |
009 SOLUTION - Dropping a Column from a DataFrame in Python.html |
114б |
009 Standardizing only the Numerical Variables (Creating a Custom Scaler)__en.srt |
4.98Кб |
009 Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4 |
28.02Мб |
009 Test for the Mean. Population Variance Unknown Exercise.html |
81б |
009 The Additive Rule__en.srt |
2.79Кб |
009 The Additive Rule.mp4 |
10.89Мб |
009 To Standardize or not to Standardize__en.srt |
6.08Кб |
009 To Standardize or not to Standardize.mp4 |
10.50Мб |
009 What do the Odds Actually Mean__en.srt |
5.08Кб |
009 What do the Odds Actually Mean.mp4 |
11.38Мб |
010 A5_ No Multicollinearity__en.srt |
4.69Кб |
010 A5_ No Multicollinearity.mp4 |
7.36Мб |
010 Analyzing the Reasons for Absence__en.srt |
6.18Кб |
010 Analyzing the Reasons for Absence.mp4 |
27.63Мб |
010 A Recap of Combinatorics__en.srt |
3.72Кб |
010 A Recap of Combinatorics.mp4 |
12.00Мб |
010 Basic NN Example with TF Exercises.html |
1.58Кб |
010 Binary Predictors in a Logistic Regression__en.srt |
5.70Кб |
010 Binary Predictors in a Logistic Regression.mp4 |
18.47Мб |
010 Business Case_ Testing the Model__en.srt |
2.70Кб |
010 Business Case_ Testing the Model.mp4 |
4.39Мб |
010 Common Objective Functions_ Cross-Entropy Loss__en.srt |
5.63Кб |
010 Common Objective Functions_ Cross-Entropy Loss.mp4 |
9.68Мб |
010 Confidence intervals. Two means. Dependent samples Exercise.html |
81б |
010 Continuous Distributions_ The Standard Normal Distribution__en.srt |
5.41Кб |
010 Continuous Distributions_ The Standard Normal Distribution.mp4 |
20.72Мб |
010 Cross Tables and Scatter Plots Exercise.html |
81б |
010 Data Selection in pandas DataFrames__en.srt |
10.04Кб |
010 Data Selection in pandas DataFrames.mp4 |
37.28Мб |
010 Dot Product of Matrices__en.srt |
9.57Кб |
010 Dot Product of Matrices.mp4 |
26.42Мб |
010 Feature Selection (F-regression)__en.srt |
6.73Кб |
010 Feature Selection (F-regression).mp4 |
15.68Мб |
010 Interpreting the Coefficients of the Logistic Regression__en.srt |
7.30Кб |
010 Interpreting the Coefficients of the Logistic Regression.mp4 |
15.22Мб |
010 MNIST_ Exercises.html |
2.16Кб |
010 MNIST_ Learning__en.srt |
7.87Кб |
010 MNIST_ Learning.mp4 |
31.03Мб |
010 Relationship between Clustering and Regression__en.srt |
2.25Кб |
010 Relationship between Clustering and Regression.mp4 |
2.42Мб |
010 Setting an Early Stopping Mechanism - Exercise.html |
192б |
010 Test for the Mean. Dependent Samples__en.srt |
6.78Кб |
010 Test for the Mean. Dependent Samples.mp4 |
32.80Мб |
010 The Multiplication Law__en.srt |
4.66Кб |
010 The Multiplication Law.mp4 |
19.80Мб |
010 Types of Machine Learning__en.srt |
10.46Кб |
010 Types of Machine Learning.mp4 |
61.78Мб |
010 What is the OLS___en.srt |
3.80Кб |
010 What is the OLS_.mp4 |
22.44Мб |
011 A Note on Calculation of P-values with sklearn.html |
370б |
011 A Practical Example of Combinatorics__en.srt |
14.09Кб |
011 A Practical Example of Combinatorics.mp4 |
42.24Мб |
011 Backward Elimination or How to Simplify Your Model__en.srt |
925б |
011 Backward Elimination or How to Simplify Your Model_en.vtt |
4.58Кб |
011 Backward Elimination or How to Simplify Your Model.mp4 |
31.96Мб |
011 Bayes' Law__en.srt |
7.55Кб |
011 Bayes' Law.mp4 |
20.94Мб |
011 Binary Predictors in a Logistic Regression - Exercise.html |
87б |
011 Business Case_ A Comment on the Homework__en.srt |
4.81Кб |
011 Business Case_ A Comment on the Homework_en.vtt |
4.64Кб |
011 Business Case_ A Comment on the Homework.mp4 |
19.64Мб |
011 Business Case_ Testing the Model__en.srt |
2.21Кб |
011 Business Case_ Testing the Model.mp4 |
8.19Мб |
011 Confidence intervals. Two means. Independent Samples (Part 1)__en.srt |
6.10Кб |
011 Confidence intervals. Two means. Independent Samples (Part 1).mp4 |
12.00Мб |
011 Continuous Distributions_ The Students' T Distribution__en.srt |
2.97Кб |
011 Continuous Distributions_ The Students' T Distribution.mp4 |
5.44Мб |
011 Dealing with Categorical Data - Dummy Variables__en.srt |
8.16Кб |
011 Dealing with Categorical Data - Dummy Variables.mp4 |
35.09Мб |
011 Market Segmentation with Cluster Analysis (Part 1)__en.srt |
7.32Кб |
011 Market Segmentation with Cluster Analysis (Part 1).mp4 |
21.16Мб |
011 Mean, median and mode__en.srt |
5.99Кб |
011 Mean, median and mode.mp4 |
17.53Мб |
011 MNIST_ Solutions.html |
2.22Кб |
011 MNIST - Exercises.html |
1.98Кб |
011 Obtaining Dummies from a Single Feature__en.srt |
10.28Кб |
011 Obtaining Dummies from a Single Feature.mp4 |
63.77Мб |
011 Optimization Algorithm_ 1-Parameter Gradient Descent__en.srt |
8.75Кб |
011 Optimization Algorithm_ 1-Parameter Gradient Descent.mp4 |
22.70Мб |
011 pandas DataFrames - Indexing with .iloc[]__en.srt |
8.07Кб |
011 pandas DataFrames - Indexing with .iloc[].mp4 |
23.54Мб |
011 Real Life Examples of Machine Learning (ML)__en.srt |
2.96Кб |
011 Real Life Examples of Machine Learning (ML).mp4 |
22.44Мб |
011 R-Squared__en.srt |
6.73Кб |
011 R-Squared.mp4 |
10.79Мб |
011 Test for the Mean. Dependent Samples Exercise.html |
81б |
011 Why is Linear Algebra Useful___en.srt |
12.42Кб |
011 Why is Linear Algebra Useful_.mp4 |
86.18Мб |
012 A Practical Example of Bayesian Inference__en.srt |
19.75Кб |
012 A Practical Example of Bayesian Inference.mp4 |
125.49Мб |
012 Business Case_ Final Exercise.html |
433б |
012 Business Case_ Final Exercise.html |
441б |
012 Calculating the Accuracy of the Model__en.srt |
4.41Кб |
012 Calculating the Accuracy of the Model.mp4 |
20.28Мб |
012 Confidence intervals. Two means. Independent Samples (Part 1). Exercise.html |
81б |
012 Continuous Distributions_ The Chi-Squared Distribution__en.srt |
2.90Кб |
012 Continuous Distributions_ The Chi-Squared Distribution.mp4 |
10.95Мб |
012 Creating a Summary Table with P-values__en.srt |
3.04Кб |
012 Creating a Summary Table with P-values.mp4 |
6.45Мб |
012 Dealing with Categorical Data - Dummy Variables.html |
76б |
012 EXERCISE - Obtaining Dummies from a Single Feature.html |
123б |
012 Market Segmentation with Cluster Analysis (Part 2)__en.srt |
9.28Кб |
012 Market Segmentation with Cluster Analysis (Part 2).mp4 |
34.08Мб |
012 Mean, Median and Mode Exercise.html |
81б |
012 MNIST_ Testing the Model__en.srt |
6.07Кб |
012 MNIST_ Testing the Model.mp4 |
22.64Мб |
012 Optimization Algorithm_ n-Parameter Gradient Descent__en.srt |
7.75Кб |
012 Optimization Algorithm_ n-Parameter Gradient Descent.mp4 |
16.35Мб |
012 pandas DataFrames - Indexing with .loc[]__en.srt |
5.51Кб |
012 pandas DataFrames - Indexing with .loc[].mp4 |
20.72Мб |
012 Test for the mean. Independent Samples (Part 1)__en.srt |
5.57Кб |
012 Test for the mean. Independent Samples (Part 1).mp4 |
7.57Мб |
012 Testing the Model We Created__en.srt |
6.51Кб |
012 Testing the Model We Created.mp4 |
31.63Мб |
013 Calculating the Accuracy of the Model.html |
87б |
013 Confidence intervals. Two means. Independent Samples (Part 2)__en.srt |
4.81Кб |
013 Confidence intervals. Two means. Independent Samples (Part 2).mp4 |
13.05Мб |
013 Continuous Distributions_ The Exponential Distribution__en.srt |
4.20Кб |
013 Continuous Distributions_ The Exponential Distribution.mp4 |
15.76Мб |
013 How is Clustering Useful___en.srt |
6.52Кб |
013 How is Clustering Useful_.mp4 |
36.49Мб |
013 Making Predictions with the Linear Regression__en.srt |
4.54Кб |
013 Making Predictions with the Linear Regression.mp4 |
16.36Мб |
013 Multiple Linear Regression - Exercise.html |
76б |
013 Saving the Model and Preparing it for Deployment__en.srt |
1.23Кб |
013 Saving the Model and Preparing it for Deployment_en.vtt |
4.96Кб |
013 Saving the Model and Preparing it for Deployment.mp4 |
25.52Мб |
013 Skewness__en.srt |
3.63Кб |
013 Skewness.mp4 |
9.92Мб |
013 SOLUTION - Obtaining Dummies from a Single Feature.html |
117б |
013 Test for the mean. Independent Samples (Part 1). Exercise.html |
81б |
014 ARTICLE - A Note on 'pickling'.html |
2.11Кб |
014 Confidence intervals. Two means. Independent Samples (Part 2). Exercise.html |
81б |
014 Continuous Distributions_ The Logistic Distribution__en.srt |
5.42Кб |
014 Continuous Distributions_ The Logistic Distribution.mp4 |
15.95Мб |
014 Dropping a Dummy Variable from the Data Set.html |
2.31Кб |
014 EXERCISE_ Species Segmentation with Cluster Analysis (Part 1).html |
87б |
014 Feature Scaling (Standardization)__en.srt |
7.79Кб |
014 Feature Scaling (Standardization).mp4 |
20.37Мб |
014 Skewness Exercise.html |
81б |
014 Test for the mean. Independent Samples (Part 2)__en.srt |
5.47Кб |
014 Test for the mean. Independent Samples (Part 2).mp4 |
24.47Мб |
014 Underfitting and Overfitting__en.srt |
4.88Кб |
014 Underfitting and Overfitting.mp4 |
7.25Мб |
015 A Practical Example of Probability Distributions__en.srt |
20.29Кб |
015 A Practical Example of Probability Distributions.mp4 |
138.31Мб |
015 Confidence intervals. Two means. Independent Samples (Part 3)__en.srt |
1.93Кб |
015 Confidence intervals. Two means. Independent Samples (Part 3).mp4 |
4.17Мб |
015 EXERCISE_ Species Segmentation with Cluster Analysis (Part 2).html |
87б |
015 EXERCISE - Saving the Model (and Scaler).html |
284б |
015 Feature Selection through Standardization of Weights__en.srt |
7.47Кб |
015 Feature Selection through Standardization of Weights.mp4 |
27.16Мб |
015 More on Dummy Variables_ A Statistical Perspective__en.srt |
1.74Кб |
015 More on Dummy Variables_ A Statistical Perspective.mp4 |
3.18Мб |
015 Test for the mean. Independent Samples (Part 2). Exercise.html |
81б |
015 Testing the Model__en.srt |
6.46Кб |
015 Testing the Model.mp4 |
21.60Мб |
015 Variance__en.srt |
7.87Кб |
015 Variance.mp4 |
20.21Мб |
016 Classifying the Various Reasons for Absence__en.srt |
10.05Кб |
016 Classifying the Various Reasons for Absence.mp4 |
51.32Мб |
016 Predicting with the Standardized Coefficients__en.srt |
5.81Кб |
016 Predicting with the Standardized Coefficients.mp4 |
18.34Мб |
016 Preparing the Deployment of the Model through a Module__en.srt |
5.51Кб |
016 Preparing the Deployment of the Model through a Module.mp4 |
28.57Мб |
016 Testing the Model - Exercise.html |
87б |
016 Variance Exercise.html |
522б |
017 Feature Scaling (Standardization) - Exercise.html |
76б |
017 Standard Deviation and Coefficient of Variation__en.srt |
6.62Кб |
017 Standard Deviation and Coefficient of Variation.mp4 |
20.14Мб |
017 Using .concat() in Python__en.srt |
5.23Кб |
017 Using .concat() in Python.mp4 |
19.77Мб |
018 EXERCISE - Using .concat() in Python.html |
189б |
018 Standard Deviation and Coefficient of Variation Exercise.html |
81б |
018 Underfitting and Overfitting__en.srt |
3.43Кб |
018 Underfitting and Overfitting.mp4 |
5.69Мб |
019 Covariance__en.srt |
4.97Кб |
019 Covariance.mp4 |
18.41Мб |
019 SOLUTION - Using .concat() in Python.html |
143б |
019 Train - Test Split Explained__en.srt |
9.82Кб |
019 Train - Test Split Explained.mp4 |
35.58Мб |
020 Covariance Exercise.html |
81б |
020 Reordering Columns in a Pandas DataFrame in Python__en.srt |
1.87Кб |
020 Reordering Columns in a Pandas DataFrame in Python.mp4 |
7.18Мб |
021 Correlation Coefficient__en.srt |
4.75Кб |
021 Correlation Coefficient.mp4 |
19.38Мб |
021 EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html |
161б |
022 Correlation Coefficient Exercise.html |
81б |
022 SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html |
478б |
023 Creating Checkpoints while Coding in Jupyter__en.srt |
3.72Кб |
023 Creating Checkpoints while Coding in Jupyter.mp4 |
17.34Мб |
024 EXERCISE - Creating Checkpoints while Coding in Jupyter.html |
137б |
025 SOLUTION - Creating Checkpoints while Coding in Jupyter.html |
118б |
026 Analyzing the Dates from the Initial Data Set__en.srt |
8.55Кб |
026 Analyzing the Dates from the Initial Data Set.mp4 |
40.13Мб |
027 Extracting the Month Value from the _Date_ Column__en.srt |
7.93Кб |
027 Extracting the Month Value from the _Date_ Column.mp4 |
38.91Мб |
028 Extracting the Day of the Week from the _Date_ Column__en.srt |
4.40Кб |
028 Extracting the Day of the Week from the _Date_ Column.mp4 |
9.12Мб |
029 EXERCISE - Removing the _Date_ Column.html |
1.14Кб |
030 Analyzing Several _Straightforward_ Columns for this Exercise__en.srt |
4.43Кб |
030 Analyzing Several _Straightforward_ Columns for this Exercise.mp4 |
12.23Мб |
031 Working on _Education_, _Children_, and _Pets___en.srt |
5.65Кб |
031 Working on _Education_, _Children_, and _Pets_.mp4 |
19.69Мб |
032 Final Remarks of this Section__en.srt |
2.52Кб |
032 Final Remarks of this Section.mp4 |
17.04Мб |
033 A Note on Exporting Your Data as a _.csv File.html |
880б |
13055412-2.3.Categorical-variables.Visualization-techniques-exercise.xlsx |
15.24Кб |
13055414-2 3 Categorical-variables Visualization-techniques-exercise-solution xlsx |
41.11Кб |
13055440-2.5.The-Histogram-lesson.xlsx |
18.63Кб |
13055456-2.6.Cross-table-and-scatter-plot.xlsx |
26.12Кб |
13055460-2.6.Cross-table-and-scatter-plot-exercise.xlsx |
16.28Кб |
13055464-2.6.Cross-table-and-scatter-plot-exercise-solution.xlsx |
40.44Кб |
13055474-2.7.Mean-median-and-mode-lesson.xlsx |
10.49Кб |
13055484-2.7.Mean-median-and-mode-exercise.xlsx |
10.87Кб |
13055486-2.7.Mean-median-and-mode-exercise-solution.xlsx |
11.35Кб |
13055492-2.8.Skewness-lesson.xlsx |
34.63Кб |
13055500-2.8.Skewness-exercise.xlsx |
9.49Кб |
13055502-2.8.Skewness-exercise-solution.xlsx |
19.78Кб |
13055510-2.9.Variance-lesson.xlsx |
10.08Кб |
13055516-2.9.Variance-exercise.xlsx |
10.83Кб |
13055520-2.9.Variance-exercise-solution.xlsx |
11.05Кб |
13055774-2.3.Categorical-variables.Visualization-techniques-lesson.xlsx |
30.77Кб |
13055786-2.5.The-Histogram-exercise.xlsx |
15.50Кб |
13055790-2.5.The-Histogram-exercise-solution.xlsx |
17.10Кб |
13055800-2.10.Standard-deviation-and-coefficient-of-variation-lesson.xlsx |
10.97Кб |
13055814-2.11.Covariance-lesson.xlsx |
24.92Кб |
13055822-2.11.Covariance-exercise.xlsx |
20.23Кб |
13055824-2.11.Covariance-exercise-solution.xlsx |
29.51Кб |
13055834-2.12.Correlation-exercise.xlsx |
29.30Кб |
13055838-2.12.Correlation-exercise-solution.xlsx |
29.48Кб |
13055898-3.2.What-is-a-distribution-lesson.xlsx |
19.46Кб |
13055942-3.4.Standard-normal-distribution-lesson.xlsx |
10.38Кб |
13056180-3.9.Population-variance-known-z-score-lesson.xlsx |
11.21Кб |
13056196-3.9.Population-variance-known-z-score-exercise.xlsx |
10.83Кб |
13056200-3.9.Population-variance-known-z-score-exercise-solution.xlsx |
11.16Кб |
13056212-3.11.Population-variance-unknown-t-score-lesson.xlsx |
10.78Кб |
13056216-3.11.The-t-table.xlsx |
15.85Кб |
13056226-3.11.Population-variance-unknown-t-score-exercise.xlsx |
10.62Кб |
13056228-3.11.Population-variance-unknown-t-score-exercise-solution.xlsx |
11.10Кб |
13056236-3.13.Confidence-intervals.Two-means.Dependent-samples-lesson.xlsx |
10.47Кб |
13056246-3 13 Confidence-intervals Two-means Dependent-samples-exercise xlsx |
13.74Кб |
13056252-3 13 Confidence-intervals Two-means Dependent-samples-exercise-solution xlsx |
14.24Кб |
13056280-3 14 Confidence-intervals Two-means Independent-samples-Part-1-lesson xlsx |
9.83Кб |
13056290-3 14 Confidence-intervals Two-means Independent-samples-Part-1-exercise xlsx |
9.83Кб |
13056292-3 14 Confidence-intervals Two-means Independent-samples-Part-1-exercise-solution xlsx |
10.12Кб |
13056308-3 15 Confidence-intervals Two-means Independent-samples-Part-2-lesson xlsx |
9.52Кб |
13056316-3 15 Confidence-intervals Two-means Independent-samples-Part-2-exercise xlsx |
9.17Кб |
13056318-3 15 Confidence-intervals Two-means Independent-samples-Part-2-exercise-solution xlsx |
9.79Кб |
13056326-3.17.Practical-example.Confidence-intervals-lesson.xlsx |
1.74Мб |
13056520-4.4.Test-for-the-mean.Population-variance-known-lesson.xlsx |
10.96Кб |
13056684-4.4.Test-for-the-mean.Population-variance-known-exercise.xlsx |
11.03Кб |
13056688-4 4 Test-for-the-mean Population-variance-known-exercise-solution xlsx |
11.22Кб |
13056708-4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx |
11.34Кб |
13056712-4.7.Test-for-the-mean.Dependent-samples-lesson.xlsx |
9.79Кб |
13056716-4.7.Test-for-the-mean.Dependent-samples-exercise.xlsx |
12.80Кб |
13056718-4.7.Test-for-the-mean.Dependent-samples-exercise-solution.xlsx |
14.40Кб |
13056720-4.8.Test-for-the-mean.Independent-samples-Part-1-lesson.xlsx |
9.63Кб |
13056726-4.9.Test-for-the-mean.Independent-samples-Part-2-lesson.xlsx |
9.31Кб |
13070016-Course-Notes-Section-6.pdf |
936.42Кб |
13070018-Course-Notes-Section-6.pdf |
936.42Кб |
13070602-Shortcuts-for-Jupyter.pdf |
619.17Кб |
13070604-Shortcuts-for-Jupyter.pdf |
619.17Кб |
13070608-Shortcuts-for-Jupyter.pdf |
619.17Кб |
13070978-Audiobooks-data.csv |
710.77Кб |
13075156-365-DataScience-Diagram.pdf |
323.08Кб |
13075162-365-DataScience-Diagram.pdf |
323.08Кб |
13075166-365-DataScience.png |
6.92Мб |
13075168-365-DataScience.png |
6.92Мб |
13129220-2.13.Practical-example.Descriptive-statistics-lesson.xlsx |
146.51Кб |
13737052-4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx |
14.54Кб |
13831264-Course-notes-inferential-statistics.pdf |
382.32Кб |
13831266-Course-notes-inferential-statistics.pdf |
382.32Кб |
14171114-3.4.Standard-normal-distribution-exercise.xlsx |
11.99Кб |
14171118-3.4.Standard-normal-distribution-exercise-solution.xlsx |
24.04Кб |
14679830-2.4.Numerical-variables.Frequency-distribution-table-lesson.xlsx |
11.44Кб |
14812652-Course-notes-descriptive-statistics.pdf |
482.21Кб |
14812660-Course-notes-descriptive-statistics.pdf |
482.21Кб |
15271310-Absenteeism-data.csv |
32.05Кб |
15271322-data-preprocessing-homework.pdf |
134.47Кб |
15271330-df-preprocessed.csv |
29.11Кб |
15364076-Absenteeism-preprocessed.csv |
29.13Кб |
15451783-Example-bank-data.csv |
6.21Кб |
15451889-Bank-data.csv |
19.55Кб |
15451939-Bank-data.csv |
19.55Кб |
15451967-Bank-data.csv |
19.55Кб |
15452033-Bank-data.csv |
19.55Кб |
15452035-Bank-data-testing.csv |
8.30Кб |
15452987-Categorical.csv |
10.34Кб |
15453017-Countries-exercise.csv |
8.27Кб |
15453029-iris-dataset.csv |
2.40Кб |
15453055-iris-dataset.csv |
2.40Кб |
15453059-iris-with-answers.csv |
3.63Кб |
15762096-Statistics-Glossary.xlsx |
20.26Кб |
15870664-Python-Introduction-Course-Notes.pdf |
2.03Мб |
16190540-4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx |
10.54Кб |
16190542-4 9 Test-for-the-mean Independent-samples-Part-2-exercise-2-solution xlsx |
11.39Кб |
16200120-4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx |
10.77Кб |
16413674-3.9.The-z-table.xlsx |
25.58Кб |
16413678-3.9.The-z-table.xlsx |
25.58Кб |
16507136-FAQ-The-Data-Science-Course.pdf |
306.10Кб |
16752952-Course-Notes-Section-2.pdf |
578.08Кб |
16752958-Course-Notes-Section-2.pdf |
578.08Кб |
16753580-Online-p-value-calculator.pdf |
1.15Мб |
16753694-Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly pdf |
289.12Кб |
16753696-Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly pdf |
289.12Кб |
17187788-GD-function-example.xlsx |
42.33Кб |
17431614-Course-Notes-Basic-Probability.pdf |
371.05Кб |
17431618-Course-Notes-Combinatorics.pdf |
226.12Кб |
17431622-Course-Notes-Bayesian-Inference.pdf |
386.01Кб |
17431624-Symmetry-Explained.pdf |
85.04Кб |
17431628-Solving-Integrals.pdf |
343.85Кб |
17550252-Normal-Distribution-Exp-and-Var.pdf |
144.08Кб |
17550452-Combinations-With-Repetition.pdf |
207.41Кб |
17710210-4 6 Test-for-the-mean Population-variance-unknown-exercise-solution xlsx |
12.63Кб |
17756226-Additional-Exercises-Combinatorics.pdf |
106.58Кб |
17862366-Poisson-Expected-Value-and-Variance.pdf |
145.99Кб |
17959056-3.17.Practical-example.Confidence-intervals-exercise.xlsx |
1.73Мб |
17959058-3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx |
1.82Мб |
17970686-CDS-2017-2018-Hamilton.pdf |
845.31Кб |
17971238-FIFA19.csv |
8.64Мб |
17971248-FIFA19-post.csv |
8.64Мб |
17971258-Daily-Views.xlsx |
9.53Кб |
17971260-Daily-Views-post.xlsx |
20.21Кб |
17971264-Customers-Membership.xlsx |
9.69Кб |
17971268-Customers-Membership-post.xlsx |
15.62Кб |
18029224-Glossary.xlsx |
19.97Кб |
18041220-4 8 Test-for-the-mean Independent-samples-Part-1-exercise-solution xlsx |
11.25Кб |
18886388-Bayesian-Homework.pdf |
27.26Кб |
18886392-Bayesian-Homework-Solutions.pdf |
30.35Кб |
19327638-Probability-in-Finance-Homework.pdf |
110.68Кб |
19327648-Probability-in-Finance-Solutions.pdf |
184.46Кб |
19527574-2.13.Practical-example.Descriptive-statistics-exercise.xlsx |
120.27Кб |
19527576-2 13 Practical-example Descriptive-statistics-exercise-solution xlsx |
146.38Кб |
19540858-Additional-Exercises-Combinatorics-Solutions.pdf |
245.67Кб |
19664156-Audiobooks-data.csv |
710.77Кб |
19880121-2.10.Standard-deviation-and-coefficient-of-variation-exercise.xlsx |
11.61Кб |
19880123-2 10 Standard-deviation-and-coefficient-of-variation-exercise-solution xlsx |
12.60Кб |
20945990-Course-Notes-Probability-Distributions.pdf |
463.95Кб |
21198408-3.11.The-t-table.xlsx |
15.85Кб |
21993772-Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf |
182.38Кб |
22431075-Course-notes-hypothesis-testing.pdf |
656.44Кб |
22431079-Course-notes-hypothesis-testing.pdf |
656.44Кб |
22685780-Course-notes-regression-analysis.pdf |
312.18Кб |
22685784-Course-notes-regression-analysis.pdf |
312.18Кб |
23038654-2 4 Numerical-variables Frequency-distribution-table-exercise-solution xlsx |
13.15Кб |
23224540-Probability-Cheat-Sheet.pdf |
320.28Кб |
23412976-Course-Notes-Logistic-Regression.pdf |
335.17Кб |
23413016-Course-Notes-Logistic-Regression.pdf |
335.17Кб |
23413656-Course-Notes-Cluster-Analysis.pdf |
208.65Кб |
23413662-Course-Notes-Cluster-Analysis.pdf |
208.65Кб |
24453624-Absenteeism-predictions.csv |
2.10Кб |
27047254-4.10.Hypothesis-testing-section-practical-example.xlsx |
51.90Кб |
27047330-4.10.Hypothesis-testing-section-practical-example-exercise.xlsx |
43.69Кб |
27047334-4 10 Hypothesis-testing-section-practical-example-exercise-solution xlsx |
44.27Кб |
29535536-Additional-Python-Tools-Lectures.ipynb |
13.47Кб |
29535540-Additional-Python-Tools-Exercises.ipynb |
11.37Кб |
29535546-Additional-Python-Tools-Solutions.ipynb |
25.49Кб |
29535548-Additional-Python-Tools-Lectures.ipynb |
13.47Кб |
29535552-Additional-Python-Tools-Exercises.ipynb |
11.37Кб |
29535554-Additional-Python-Tools-Solutions.ipynb |
25.49Кб |
29544526-Variables-Lecture-Py3.ipynb |
3.61Кб |
29544572-Numbers-and-Boolean-Values-Lecture-Py3.ipynb |
3.36Кб |
29544578-Strings-Lecture-Py3.ipynb |
7.56Кб |
29544582-Strings-Exercise-Py3.ipynb |
2.61Кб |
29544586-Strings-Solution-Py3.ipynb |
5.45Кб |
29544590-Numbers-and-Boolean-Values-Exercise-Py3.ipynb |
2.29Кб |
29544594-Numbers-and-Boolean-Values-Solution-Py3.ipynb |
3.23Кб |
29544602-Variables-Exercise-Py3.ipynb |
2.23Кб |
29544612-Variables-Solution-Py3.ipynb |
3.79Кб |
29544616-Arithmetic-Operators-Lecture-Py3.ipynb |
3.53Кб |
29544618-Arithmetic-Operators-Exercise-Py3.ipynb |
2.62Кб |
29544620-Arithmetic-Operators-Solution-Py3.ipynb |
4.24Кб |
29544624-The-Double-Equality-Sign-Lecture-Py3.ipynb |
1.45Кб |
29544630-The-Double-Equality-Sign-Exercise-Py3.ipynb |
838б |
29544632-The-Double-Equality-Sign-Solution-Py3.ipynb |
1.14Кб |
29544648-Reassign-Values-Lecture-Py3.ipynb |
3.08Кб |
29544656-Reassign-Values-Exercise-Py3.ipynb |
1.67Кб |
29544658-Reassign-Values-Solution-Py3.ipynb |
2.12Кб |
29544678-Add-Comments-Lecture-Py3.ipynb |
1.03Кб |
29544682-Indexing-Elements-Lecture-Py3.ipynb |
1.32Кб |
29544684-Indexing-Elements-Exercise-Py3.ipynb |
1.35Кб |
29544694-Indexing-Elements-Solution-Py3.ipynb |
2.17Кб |
29544712-Line-Continuation-Lecture-Py3.ipynb |
779б |
29544714-Line-Continuation-Exercise-Py3.ipynb |
1.14Кб |
29544716-Line-Continuation-Solution-Py3.ipynb |
1.50Кб |
29544720-Structure-Your-Code-with-Indentation-Lecture-Py3.ipynb |
958б |
29544724-Structure-Your-Code-with-Indentation-Exercise-Py3.ipynb |
956б |
29544728-Structure-Your-Code-with-Indentation-Solution-Py3.ipynb |
1.50Кб |
29544734-Comparison-Operators-Lecture-Py3.ipynb |
2.53Кб |
29544738-Comparison-Operators-Exercise-Py3.ipynb |
1.61Кб |
29544744-Comparison-Operators-Solution-Py3.ipynb |
2.41Кб |
29544754-Logical-and-Identity-Operators-Lecture-Py3.ipynb |
5.86Кб |
29544770-Logical-and-Identity-Operators-Lecture-Py3.ipynb |
5.86Кб |
29544776-Logical-and-Identity-Operators-Solution-Py3.ipynb |
3.43Кб |
29544784-Introduction-to-the-If-Statement-Lecture-Py3.ipynb |
1.14Кб |
29544788-Introduction-to-the-If-Statement-Exercise-Py3.ipynb |
1.53Кб |
29544792-Introduction-to-the-If-Statement-Solution-Py3.ipynb |
2.19Кб |
29544796-Add-an-Else-Statement-Lecture-Py3.ipynb |
1.76Кб |
29544802-Add-an-Else-Statement-Exercise-Py3.ipynb |
1.02Кб |
29544804-Add-an-Else-Statement-Solution-Py3.ipynb |
1.40Кб |
29544814-Else-If-for-Brief-Elif-Lecture-Py3.ipynb |
3.24Кб |
29544818-Else-If-for-Brief-Elif-Exercise-Py3.ipynb |
1.75Кб |
29544822-Else-If-for-Brief-Elif-Solution-Py3.ipynb |
2.40Кб |
29544828-A-Note-on-Boolean-Values-Lecture-Py3.ipynb |
791б |
29544842-Defining-a-Function-in-Python-Lecture-Py3.ipynb |
868б |
29544846-Creating-a-Function-with-a-Parameter-Lecture-Py3.ipynb |
1.59Кб |
29544848-Creating-a-Function-with-a-Parameter-Exercise-Py3.ipynb |
1.16Кб |
29544850-Creating-a-Function-with-a-Parameter-Solution-Py3.ipynb |
1.79Кб |
29544866-Another-Way-to-Define-a-Function-Lecture-Py3.ipynb |
3.29Кб |
29544868-Another-Way-to-Define-a-Function-Exercise-Py3.ipynb |
1.24Кб |
29544874-Another-Way-to-Define-a-Function-Solution-Py3.ipynb |
1.98Кб |
29544880-0.6.4-Using-a-Function-in-another-Function-Lecture-Py3.ipynb |
1015б |
29544888-0.6.4-Using-a-Function-in-another-Function-Exercise-Py3.ipynb |
1.04Кб |
29544890-0.6.4-Using-a-Function-in-another-Function-Solution-Py3.ipynb |
1.60Кб |
29544904-Combining-Conditional-Statements-and-Functions-Lecture-Py3.ipynb |
1.29Кб |
29544906-Combining-Conditional-Statements-and-Functions-Exercise-Py3.ipynb |
1.06Кб |
29544910-Combining-Conditional-Statements-and-Functions-Solution-Py3.ipynb |
1.65Кб |
29544920-Creating-Functions-Containing-a-Few-Arguments-Lecture-Py3.ipynb |
1.72Кб |
29544922-Notable-Built-In-Functions-in-Python-Lecture-Py3.ipynb |
4.51Кб |
29544924-Notable-Built-In-Functions-in-Python-Exercise-Py3.ipynb |
3.66Кб |
29544926-Notable-Built-In-Functions-in-Python-Solution-Py3.ipynb |
5.52Кб |
29544928-Lists-Lecture-Py3.ipynb |
2.70Кб |
29544930-Lists-Exercise-Py3.ipynb |
2.14Кб |
29544932-Lists-Solution-Py3.ipynb |
3.18Кб |
29544938-Help-Yourself-with-Methods-Lecture-Py3.ipynb |
4.39Кб |
29544942-Help-Yourself-with-Methods-Exercise-Py3.ipynb |
1.91Кб |
29544946-Help-Yourself-with-Methods-Solution-Py3.ipynb |
2.83Кб |
29544952-List-Slicing-Lecture-Py3.ipynb |
5.02Кб |
29544956-List-Slicing-Exercise-Py3.ipynb |
2.79Кб |
29544960-List-Slicing-Solution-Py3.ipynb |
4.26Кб |
29544972-Tuples-Lecture-Py3.ipynb |
2.91Кб |
29544976-Tuples-Exercise-Py3.ipynb |
2.07Кб |
29544978-Tuples-Solution-Py3.ipynb |
4.61Кб |
29544988-Dictionaries-Lecture-Py3.ipynb |
4.35Кб |
29544992-Dictionaries-Exercise-Py3.ipynb |
2.92Кб |
29544994-Dictionaries-Solution-Py3.ipynb |
6.16Кб |
29545008-For-Loops-Lecture-Py3.ipynb |
1.26Кб |
29545010-For-Loops-Exercise-Py3.ipynb |
1.28Кб |
29545018-For-Loops-Solution-Py3.ipynb |
1.80Кб |
29545028-While-Loops-and-Incrementing-Lecture-Py3.ipynb |
1.08Кб |
29545030-While-Loops-and-Incrementing-Exercise-Py3.ipynb |
1.12Кб |
29545032-While-Loops-and-Incrementing-Solution-Py3.ipynb |
1.75Кб |
29545042-Create-Lists-with-the-range-Function-Lecture-Py3.ipynb |
1.34Кб |
29545046-Create-Lists-with-the-range-Function-Exercise-Py3.ipynb |
1.45Кб |
29545048-Create-Lists-with-the-range-Function-Solution-Py3.ipynb |
2.25Кб |
29545058-Use-Conditional-Statements-and-Loops-Together-Lecture-Py3.ipynb |
1.95Кб |
29545070-Use-Conditional-Statements-and-Loops-Together-Exercise-Py3.ipynb |
2.10Кб |
29545074-Use-Conditional-Statements-and-Loops-Together-Solution-Py3.ipynb |
2.96Кб |
29545092-All-In-Lecture-Py3.ipynb |
1.62Кб |
29545100-All-In-Exercise-Py3.ipynb |
1.30Кб |
29545102-All-In-Solution-Py3.ipynb |
1.90Кб |
29545116-Iterating-over-Dictionaries-Lecture-Py3.ipynb |
1.08Кб |
29545118-Iterating-over-Dictionaries-Exercise-Py3.ipynb |
2.19Кб |
29545120-Iterating-over-Dictionaries-Solution-Py3.ipynb |
2.87Кб |
29545266-Absenteeism-predictions.csv |
2.10Кб |
29545298-Absenteeism-Exercise-Preprocessing-df-reason-mod.ipynb |
4.82Кб |
29545314-Absenteeism-Exercise-Preprocessing-ChP-df-date-reason-mod.ipynb |
7.33Кб |
29545316-Absenteeism-Exercise-Removing-the-Date-Column-SOLUTION.ipynb |
8.33Кб |
29545318-Absenteeism-Exercise-Preprocessing-LECTURES.ipynb |
7.60Мб |
29545334-Absenteeism-Exercise-Preprocessing-df-preprocessed.ipynb |
8.51Кб |
29545338-Absenteeism-Exercise-EXERCISES-and-SOLUTIONS.ipynb |
4.13Кб |
29545348-Absenteeism-Exercise-Deploying-the-absenteeism-module.ipynb |
973б |
29545372-Absenteeism-Exercise-Integration.ipynb |
62.35Кб |
29545374-absenteeism-module.py |
6.62Кб |
29545382-Absenteeism-new-data.csv |
1.87Кб |
29545384-model |
1.01Кб |
29545388-scaler |
1.86Кб |
29587970-1.01.Simple-linear-regression.csv |
922б |
29587976-Simple-linear-regression.ipynb |
3.79Кб |
29588016-Simple-linear-regression-with-comments.ipynb |
4.06Кб |
29588022-real-estate-price-size.csv |
1.86Кб |
29588024-Simple-Linear-Regression-Exercise-Solution.ipynb |
3.57Кб |
29588026-Simple-Linear-Regression-Exercise.ipynb |
2.78Кб |
29588058-1.02.Multiple-linear-regression.csv |
1.09Кб |
29588064-Multiple-linear-regression-and-Adjusted-R-squared.ipynb |
2.15Кб |
29588066-Multiple-linear-regression-and-Adjusted-R-squared-with-comments ipynb |
2.80Кб |
29588068-Multiple-Linear-Regression-Exercise-Solution.ipynb |
13.39Кб |
29588072-Multiple-Linear-Regression-Exercise.ipynb |
2.45Кб |
29588076-real-estate-price-size-year.csv |
2.35Кб |
29588090-1.03.Dummies.csv |
1.19Кб |
29588094-Dummy-Variables.ipynb |
4.62Кб |
29588120-Dummy-variables-with-comments.ipynb |
7.09Кб |
29588124-Multiple-Linear-Regression-with-Dummies-Exercise-Solution.ipynb |
18.00Кб |
29588128-Multiple-Linear-Regression-with-Dummies-Exercise.ipynb |
3.01Кб |
29588130-real-estate-price-size-year-view.csv |
3.39Кб |
29588138-Making-predictions.ipynb |
5.77Кб |
29588142-Making-predictions-with-comments.ipynb |
9.41Кб |
29588160-1.01.Simple-linear-regression.csv |
922б |
29588164-sklearn-Simple-Linear-Regression.ipynb |
4.92Кб |
29588166-sklearn-Simple-Linear-Regression-with-comments.ipynb |
6.06Кб |
29588200-1.01.Simple-linear-regression.csv |
922б |
29588206-sklearn-Simple-Linear-Regression.ipynb |
26.07Кб |
29588208-sklearn-Simple-Linear-Regression-with-comments.ipynb |
28.35Кб |
29588240-1.02.Multiple-linear-regression.csv |
1.07Кб |
29588244-sklearn-Multiple-Linear-Regression.ipynb |
7.79Кб |
29588246-sklearn-Multiple-Linear-Regression-with-comments.ipynb |
8.65Кб |
29588306-1.02.Multiple-linear-regression.csv |
1.07Кб |
29588310-sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared.ipynb |
9.11Кб |
29588312-sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-with-comments ipynb |
10.41Кб |
29588320-1.02.Multiple-linear-regression.csv |
1.07Кб |
29588324-sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise-Solution ipynb |
10.31Кб |
29588328-sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise ipynb |
9.83Кб |
29588334-1.02.Multiple-linear-regression.csv |
1.07Кб |
29588340-sklearn-Feature-Selection-with-F-regression.ipynb |
10.44Кб |
29588342-sklearn-Feature-Selection-with-F-regression-with-comments.ipynb |
12.99Кб |
29588350-1.02.Multiple-linear-regression.csv |
1.07Кб |
29588358-sklearn-How-to-properly-include-p-values.ipynb |
12.71Кб |
29588366-1.02.Multiple-linear-regression.csv |
1.07Кб |
29588370-sklearn-Multiple-Linear-Regression-Summary-Table.ipynb |
13.71Кб |
29588372-sklearn-Multiple-Linear-Regression-Summary-Table-with-comments ipynb |
16.63Кб |
29588378-real-estate-price-size-year.csv |
2.35Кб |
29588380-sklearn-Multiple-Linear-Regression-Exercise-Solution.ipynb |
15.44Кб |
29588382-sklearn-Multiple-Linear-Regression-Exercise.ipynb |
5.67Кб |
29588388-1.02.Multiple-linear-regression.csv |
1.07Кб |
29588392-sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-1 ipynb |
11.73Кб |
29588394-SKLEAR-1.IPY |
12.87Кб |
29588398-1.02.Multiple-linear-regression.csv |
1.07Кб |
29588400-sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-2 ipynb |
14.89Кб |
29588412-SKLEAR-1.IPY |
16.79Кб |
29588414-1.02.Multiple-linear-regression.csv |
1.07Кб |
29588416-sklearn-Making-Predictions-with-the-Standardized-Coefficients ipynb |
29.75Кб |
29588422-sklearn-Making-Predictions-with-the-Standardized-Coefficients-with-comments ipynb |
22.03Кб |
29588430-real-estate-price-size-year.csv |
2.35Кб |
29588432-sklearn-Feature-Scaling-Exercise-Solution.ipynb |
16.28Кб |
29588434-sklearn-Feature-Scaling-Exercise.ipynb |
6.07Кб |
29588436-sklearn-Train-Test-Split.ipynb |
7.23Кб |
29588440-sklearn-Train-Test-Split-with-comments.ipynb |
9.05Кб |
29588446-1.04.Real-life-example.csv |
219.83Кб |
29588452-sklearn-Linear-Regression-Practical-Example-Part-1.ipynb |
166.91Кб |
29588454-sklearn-Linear-Regression-Practical-Example-Part-1-with-comments ipynb |
171.38Кб |
29588460-1.04.Real-life-example.csv |
219.83Кб |
29588462-sklearn-Linear-Regression-Practical-Example-Part-2.ipynb |
328.74Кб |
29588466-sklearn-Linear-Regression-Practical-Example-Part-2-with-comments ipynb |
335.63Кб |
29588552-sklearn-Linear-Regression-Practical-Example-Part-3.ipynb |
343.58Кб |
29588558-sklearn-Linear-Regression-Practical-Example-Part-3-with-comments ipynb |
351.47Кб |
29588598-1.04.Real-life-example.csv |
219.83Кб |
29588602-sklearn-Dummies-and-VIF-Exercise-Solution.ipynb |
370.22Кб |
29588604-sklearn-Dummies-and-VIF-Exercise.ipynb |
344.62Кб |
29588606-1.04.Real-life-example.csv |
219.83Кб |
29588612-sklearn-Linear-Regression-Practical-Example-Part-4.ipynb |
397.23Кб |
29588618-sklearn-Linear-Regression-Practical-Example-Part-4-with-comments ipynb |
407.59Кб |
29588624-1.04.Real-life-example.csv |
219.83Кб |
29588626-sklearn-Linear-Regression-Practical-Example-Part-5.ipynb |
698.36Кб |
29588630-sklearn-Linear-Regression-Practical-Example-Part-5-with-comments ipynb |
711.05Кб |
29588638-2.01.Admittance.csv |
1.58Кб |
29588642-Admittance.ipynb |
3.54Кб |
29588644-Admittance-with-comments.ipynb |
5.32Кб |
29588660-Admittance-regression-tables-fixed-error.ipynb |
4.11Кб |
29588666-Admittance-regression.ipynb |
2.09Кб |
29588668-Admittance-regression-summary-error.ipynb |
2.48Кб |
29588676-Building-a-Logistic-Regression-Exercise.ipynb |
2.92Кб |
29588678-Building-a-Logistic-Regression-Solution.ipynb |
4.44Кб |
29588694-Understanding-Logistic-Regression-Tables-Exercise.ipynb |
3.16Кб |
29588700-Understanding-Logistic-Regression-Tables-Solution.ipynb |
4.79Кб |
29588712-2.02.Binary-predictors.csv |
2.56Кб |
29588716-Binary-predictors.ipynb |
2.41Кб |
29588826-Binary-Predictors-in-a-Logistic-Regression-Exercise.ipynb |
2.54Кб |
29588832-Binary-Predictors-in-a-Logistic-Regression-Solution.ipynb |
4.51Кб |
29588838-Accuracy.ipynb |
3.63Кб |
29588842-Accuracy-with-comments.ipynb |
11.67Кб |
29588854-Calculating-the-Accuracy-of-the-Model-Exercise.ipynb |
5.39Кб |
29588856-Calculating-the-Accuracy-of-the-Model-Solution.ipynb |
81.21Кб |
29588864-Testing-the-model.ipynb |
5.77Кб |
29588872-2.03.Test-dataset.csv |
322б |
29588876-Testing-the-model-with-comments.ipynb |
7.56Кб |
29588894-Testing-the-Model-Exercise.ipynb |
6.79Кб |
29588898-Testing-the-Model-Solution.ipynb |
111.10Кб |
29588934-3.01.Country-clusters.csv |
200б |
29588936-Country-clusters.ipynb |
3.31Кб |
29588940-Country-clusters-with-comments.ipynb |
5.80Кб |
29588950-Countries-exercise.csv |
8.27Кб |
29588952-A-Simple-Example-of-Clustering-Exercise.ipynb |
3.62Кб |
29588954-A-Simple-Example-of-Clustering-Solution.ipynb |
4.65Кб |
29588960-Categorical-data.ipynb |
3.35Кб |
29588968-Categorical-data-with-comments.ipynb |
5.62Кб |
29588982-Clustering-Categorical-Data-Exercise.ipynb |
3.78Кб |
29588986-Clustering-Categorical-Data-Solution.ipynb |
4.90Кб |
29588998-Selecting-the-number-of-clusters.ipynb |
4.53Кб |
29589000-Selecting-the-number-of-clusters-with-comments.ipynb |
7.48Кб |
29589006-How-to-Choose-the-Number-of-Clusters-Exercise.ipynb |
5.55Кб |
29589008-How-to-Choose-the-Number-of-Clusters-Solution.ipynb |
8.49Кб |
29589020-Market-segmentation-example.ipynb |
3.80Кб |
29589022-Market-segmentation-example-with-comments.ipynb |
5.90Кб |
29589028-3.12.Example.csv |
283б |
29589036-Market-segmentation-example-Part2.ipynb |
4.68Кб |
29589038-Market-segmentation-example-Part2-with-comments.ipynb |
6.81Кб |
29589044-Species-Segmentation-with-Cluster-Analysis-Part-1-Exercise.ipynb |
4.46Кб |
29589048-Species-Segmentation-with-Cluster-Analysis-Part-1-Solution.ipynb |
7.35Кб |
29589052-Species-Segmentation-with-Cluster-Analysis-Part-2-Exercise.ipynb |
10.74Кб |
29589056-Species-Segmentation-with-Cluster-Analysis-Part-2-Solution.ipynb |
15.30Кб |
29589066-Heatmaps.ipynb |
1.82Кб |
29589070-Heatmaps-with-comments.ipynb |
17.66Кб |
29589074-Country-clusters-standardized.csv |
244б |
29589122-Scalars-Vectors-and-Matrices.ipynb |
4.55Кб |
29589126-Tensors.ipynb |
2.08Кб |
29589134-Adding-and-subtracting-matrices.ipynb |
3.22Кб |
29589174-Errors-when-adding-scalars-vectors-and-matrices-in-Python.ipynb |
3.17Кб |
29589180-Tranpose-of-a-matrix.ipynb |
2.89Кб |
29589188-Dot-product.ipynb |
2.13Кб |
29589194-Dot-product-Part-2.ipynb |
3.60Кб |
29589208-Minimal-example-Part-1.ipynb |
1.19Кб |
29589218-Minimal-example-Part-2.ipynb |
3.65Кб |
29589230-Minimal-example-Part-3.ipynb |
6.79Кб |
29589236-Minimal-example-Part-4-Complete.ipynb |
11.41Кб |
29589260-Minimal-example-All-Exercises.ipynb |
12.89Кб |
29589266-Minimal-example-Exercise-1-Solution.ipynb |
69.00Кб |
29589272-Minimal-example-Exercise-2-Solution.ipynb |
61.41Кб |
29589274-Minimal-example-Exercise-3.a.Solution.ipynb |
67.89Кб |
29589278-Minimal-example-Exercise-3.b.Solution.ipynb |
67.72Кб |
29589280-Minimal-example-Exercise-3.c.Solution.ipynb |
70.13Кб |
29589288-Minimal-example-Exercise-3.d.Solution.ipynb |
84.13Кб |
29589294-Minimal-example-Exercise-4-Solution.ipynb |
66.52Кб |
29589298-Minimal-example-Exercise-5-Solution.ipynb |
68.88Кб |
29589302-Minimal-example-Exercise-6.ipynb |
61.76Кб |
29589304-Minimal-example-Exercise-6-Solution.ipynb |
61.76Кб |
29589774-TensorFlow-Minimal-example-Part1.ipynb |
1.66Кб |
29589782-TensorFlow-Minimal-example-Part2.ipynb |
9.06Кб |
29589788-TensorFlow-Minimal-example-Part3.ipynb |
76.52Кб |
29589804-TensorFlow-Minimal-example-complete.ipynb |
76.85Кб |
29589808-TensorFlow-Minimal-example-complete-with-comments.ipynb |
82.29Кб |
29589822-TensorFlow-Minimal-example-All-exercises.ipynb |
83.62Кб |
29589824-TensorFlow-Minimal-example-Exercise-1-Solution.ipynb |
27.96Кб |
29589828-TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb |
83.68Кб |
29589834-TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb |
77.52Кб |
29589836-TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb |
84.44Кб |
29589868-TensorFlow-MNIST-Part1-with-comments.ipynb |
3.97Кб |
29589876-TensorFlow-MNIST-Part2-with-comments.ipynb |
6.39Кб |
29589878-TensorFlow-MNIST-Part3-with-comments.ipynb |
8.61Кб |
29589884-TensorFlow-MNIST-Part4-with-comments.ipynb |
10.49Кб |
29589888-TensorFlow-MNIST-Part5-with-comments.ipynb |
10.99Кб |
29589892-TensorFlow-MNIST-Part6-with-comments.ipynb |
12.54Кб |
29589896-1.TensorFlow-MNIST-Width-Solution.ipynb |
14.84Кб |
29589904-2.TensorFlow-MNIST-Depth-Solution.ipynb |
15.31Кб |
29589908-3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb |
15.30Кб |
29589912-4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb |
15.11Кб |
29589920-5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb |
14.74Кб |
29589928-6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb |
15.12Кб |
29589932-7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb |
15.18Кб |
29589934-8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb |
20.58Кб |
29589940-9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb |
15.80Кб |
29589948-TensorFlow-MNIST-All-Exercises.ipynb |
16.65Кб |
29589952-TensorFlow-MNIST-around-98-percent-accuracy.ipynb |
15.02Кб |
29589956-TensorFlow-MNIST-complete.ipynb |
6.78Кб |
29589960-TensorFlow-MNIST-complete-with-comments.ipynb |
14.51Кб |
29589970-TensorFlow-Audiobooks-Preprocessing.ipynb |
5.58Кб |
29589978-TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb |
11.19Кб |
29589984-TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb |
8.60Кб |
29589992-TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb |
10.04Кб |
29590000-TensorFlow-Audiobooks-Machine-Learning-Part1-with-comments.ipynb |
4.61Кб |
29590002-TensorFlow-Audiobooks-Machine-Learning-Part2-with-comments.ipynb |
19.69Кб |
29590006-TensorFlow-Audiobooks-Machine-Learning-Part3-with-comments.ipynb |
10.06Кб |
29590012-TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb |
11.95Кб |
29590020-TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb |
11.95Кб |
29590038-5.3.TensorFlow-Minimal-example-Part-1.ipynb |
3.36Кб |
29590046-5.4.TensorFlow-Minimal-example-Part-2.ipynb |
6.17Кб |
29591380-5.5.TensorFlow-Minimal-example-Part-3.ipynb |
8.65Кб |
29591408-5.6.TensorFlow-Minimal-example-complete.ipynb |
12.15Кб |
29591428-TensorFlow-Minimal-Example-All-Exercises.ipynb |
13.97Кб |
29591432-TensorFlow-Minimal-Example-Exercise-1-Solution.ipynb |
23.63Кб |
29591442-TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb |
25.54Кб |
29591444-TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb |
25.51Кб |
29591454-TensorFlow-Minimal-Example-Exercise-2-3-Solution.ipynb |
49.96Кб |
29591458-TensorFlow-Minimal-Example-Exercise-2-4-Solution.ipynb |
21.75Кб |
29591464-TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb |
26.71Кб |
29591468-TensorFlow-Minimal-Example-Exercise-4-Solution.ipynb |
26.98Кб |
29591484-12.3.TensorFlow-MNIST-with-comments-Part-1.ipynb |
3.89Кб |
29591494-12.4.TensorFlow-MNIST-with-comments-Part-2.ipynb |
6.10Кб |
29591504-12.5.TensorFlow-MNIST-with-comments-Part-3.ipynb |
7.31Кб |
29591514-12.6.TensorFlow-MNIST-with-comments-Part-4.ipynb |
7.90Кб |
29591520-12.7.TensorFlow-MNIST-with-comments-Part-5.ipynb |
8.53Кб |
29591538-12.8.TensorFlow-MNIST-with-comments-Part-6.ipynb |
11.50Кб |
29591550-12.9.TensorFlow-MNIST-with-comments.ipynb |
13.03Кб |
29591622-TensorFlow-MNIST-Exercises-All.ipynb |
15.47Кб |
29591632-0.TensorFlow-MNIST-take-note-of-time-Solution.ipynb |
14.00Кб |
29591642-1.TensorFlow-MNIST-Width-Solution.ipynb |
14.01Кб |
29591650-2.TensorFlow-MNIST-Depth-Solution.ipynb |
14.87Кб |
29591654-3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb |
16.81Кб |
29591658-4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb |
14.35Кб |
29591660-5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb |
13.93Кб |
29591668-6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb |
14.26Кб |
29591682-7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb |
14.16Кб |
29591686-8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb |
14.07Кб |
29591690-9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb |
15.21Кб |
29591694-TensorFlow-MNIST-around-98-percent-accuracy.ipynb |
17.66Кб |
29591716-Audiobooks-data.csv |
710.77Кб |
29591732-Audiobooks-data.csv |
710.77Кб |
29591734-TensorFlow-Audiobooks-Preprocessing.ipynb |
5.58Кб |
29591738-TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb |
11.19Кб |
29591808-Audiobooks-data.csv |
710.77Кб |
29591812-TensorFlow-Audiobooks-Machine-learning-Homework.ipynb |
14.40Кб |
29591820-TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb |
11.19Кб |
29591842-Audiobooks-data.csv |
710.77Кб |
29591844-TensorFlow-Audiobooks-Machine-learning-Homework.ipynb |
14.40Кб |
29591846-TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb |
11.19Кб |
29591888-TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb |
10.64Кб |
29591892-TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb |
12.73Кб |
29591894-TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb |
10.64Кб |
29591900-TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb |
12.73Кб |
29591906-TensorFlow-Audiobooks-Outlining-the-model.ipynb |
9.36Кб |
29591910-TensorFlow-Audiobooks-Outlining-the-model-with-comments.ipynb |
10.34Кб |
29591940-Audiobooks-data.csv |
710.77Кб |
29591944-TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb |
8.60Кб |
29591948-TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb |
10.03Кб |
33130180-real-estate-price-size.csv |
1.86Кб |
33130182-Simple-Linear-Regression-with-sklearn-Exercise.ipynb |
4.08Кб |
33130186-Simple-Linear-Regression-with-sklearn-Exercise-Solution.ipynb |
26.61Кб |
35215106-365-Data-Science-Data-Science-Interview-Questions-Guide.pdf |
15.56Мб |
external-assets-links.txt |
101б |
external-assets-links.txt |
130б |
external-assets-links.txt |
774б |