Общая информация
Название [FreeCourseSite.com] Udemy - The Data Science Course 2022 Complete Data Science Bootcamp
Тип
Размер 7.79Гб
Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[CourseClub.ME].url 122б
[FCS Forum].url 133б
[FreeCourseSite.com].url 127б
[GigaCourse.Com].url 49б
001 Applying Traditional Data, Big Data, BI, Traditional Data Science and ML__en.srt 9.14Кб
001 Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4 21.73Мб
001 A Practical Example_ What You Will Learn in This Course__en.srt 6.41Кб
001 A Practical Example_ What You Will Learn in This Course.mp4 13.08Мб
001 Are You Sure You're All Set_.html 513б
001 Basic NN Example (Part 1)__en.srt 4.52Кб
001 Basic NN Example (Part 1).mp4 5.14Мб
001 Bonus Lecture_ Next Steps.html 2.84Кб
001 Business Case_ Exploring the Dataset and Identifying Predictors__en.srt 10.50Кб
001 Business Case_ Exploring the Dataset and Identifying Predictors.mp4 51.38Мб
001 Business Case_ Getting Acquainted with the Dataset__en.srt 10.62Кб
001 Business Case_ Getting Acquainted with the Dataset.mp4 60.26Мб
001 Comparison Operators__en.srt 2.50Кб
001 Comparison Operators.mp4 3.12Мб
001 Data Science and Business Buzzwords_ Why are there so Many___en.srt 6.77Кб
001 Data Science and Business Buzzwords_ Why are there so Many_.mp4 54.72Мб
001 Debunking Common Misconceptions__en.srt 5.43Кб
001 Debunking Common Misconceptions.mp4 16.43Мб
001 Defining a Function in Python__en.srt 2.43Кб
001 Defining a Function in Python.mp4 3.23Мб
001 EXERCISE - Age vs Probability.html 367б
001 Exploring the Problem with a Machine Learning Mindset__en.srt 4.63Кб
001 Exploring the Problem with a Machine Learning Mindset.mp4 11.08Мб
001 Finding the Job - What to Expect and What to Look for__en.srt 4.34Кб
001 Finding the Job - What to Expect and What to Look for.mp4 9.48Мб
001 For Loops__en.srt 6.69Кб
001 For Loops.mp4 23.58Мб
001 Fundamentals of Combinatorics__en.srt 1.35Кб
001 Fundamentals of Combinatorics.mp4 3.21Мб
001 Fundamentals of Probability Distributions__en.srt 7.92Кб
001 Fundamentals of Probability Distributions.mp4 19.28Мб
001 Game Plan for this Python, SQL, and Tableau Business Exercise__en.srt 5.54Кб
001 Game Plan for this Python, SQL, and Tableau Business Exercise.mp4 15.80Мб
001 How to Install TensorFlow 2.0__en.srt 6.52Кб
001 How to Install TensorFlow 2.0.mp4 27.34Мб
001 Introduction__en.srt 1.63Кб
001 Introduction.mp4 2.93Мб
001 Introduction to Cluster Analysis__en.srt 4.77Кб
001 Introduction to Cluster Analysis.mp4 10.66Мб
001 Introduction to Logistic Regression__en.srt 1.71Кб
001 Introduction to Logistic Regression.mp4 4.41Мб
001 Introduction to Neural Networks__en.srt 6.09Кб
001 Introduction to Neural Networks.mp4 10.37Мб
001 Introduction to pandas Series__en.srt 10.67Кб
001 Introduction to pandas Series.mp4 22.22Мб
001 Introduction to Programming__en.srt 6.93Кб
001 Introduction to Programming.mp4 14.33Мб
001 Introduction to Regression Analysis__en.srt 2.22Кб
001 Introduction to Regression Analysis.mp4 2.92Мб
001 K-Means Clustering__en.srt 6.48Кб
001 K-Means Clustering.mp4 10.53Мб
001 Lists__en.srt 10.05Кб
001 Lists.mp4 20.50Мб
001 MNIST_ The Dataset__en.srt 3.48Кб
001 MNIST_ The Dataset.mp4 4.06Мб
001 MNIST_ What is the MNIST Dataset___en.srt 3.52Кб
001 MNIST_ What is the MNIST Dataset_.mp4 4.23Мб
001 Multiple Linear Regression__en.srt 3.32Кб
001 Multiple Linear Regression.mp4 5.54Мб
001 Necessary Programming Languages and Software Used in Data Science__en.srt 7.35Кб
001 Necessary Programming Languages and Software Used in Data Science.mp4 19.54Мб
001 Null vs Alternative Hypothesis__en.srt 7.35Кб
001 Null vs Alternative Hypothesis.mp4 80.83Мб
001 Object Oriented Programming__en.srt 6.10Кб
001 Object Oriented Programming.mp4 8.42Мб
001 Population and Sample__en.srt 5.59Кб
001 Population and Sample.mp4 10.89Мб
001 Practical Example_ Descriptive Statistics__en.srt 20.91Кб
001 Practical Example_ Descriptive Statistics.mp4 37.17Мб
001 Practical Example_ Hypothesis Testing__en.srt 8.71Кб
001 Practical Example_ Hypothesis Testing.mp4 16.30Мб
001 Practical Example_ Inferential Statistics__en.srt 13.73Кб
001 Practical Example_ Inferential Statistics.mp4 22.10Мб
001 Practical Example_ Linear Regression (Part 1)__en.srt 14.94Кб
001 Practical Example_ Linear Regression (Part 1).mp4 84.84Мб
001 Preprocessing Introduction__en.srt 3.81Кб
001 Preprocessing Introduction.mp4 8.98Мб
001 Probability in Finance__en.srt 9.80Кб
001 Probability in Finance.mp4 39.66Мб
001 READ ME____.html 564б
001 Sets and Events__en.srt 5.37Кб
001 Sets and Events.mp4 17.44Мб
001 Stochastic Gradient Descent__en.srt 4.74Кб
001 Stochastic Gradient Descent.mp4 7.62Мб
001 Summary on What You've Learned__en.srt 5.25Кб
001 Summary on What You've Learned.mp4 9.66Мб
001 Techniques for Working with Traditional Data__en.srt 10.70Кб
001 Techniques for Working with Traditional Data.mp4 105.52Мб
001 The Basic Probability Formula__en.srt 9.04Кб
001 The Basic Probability Formula.mp4 29.13Мб
001 The IF Statement__en.srt 3.53Кб
001 The IF Statement.mp4 5.33Мб
001 The Linear Regression Model__en.srt 6.83Кб
001 The Linear Regression Model.mp4 13.16Мб
001 The Reason Behind These Disciplines__en.srt 6.56Кб
001 The Reason Behind These Disciplines.mp4 12.41Мб
001 Types of Clustering__en.srt 4.74Кб
001 Types of Clustering.mp4 7.57Мб
001 Types of Data__en.srt 6.14Кб
001 Types of Data.mp4 42.47Мб
001 Using Arithmetic Operators in Python__en.srt 4.28Кб
001 Using Arithmetic Operators in Python.mp4 7.28Мб
001 Using the .format() Method__en.srt 12.34Кб
001 Using the .format() Method.mp4 21.67Мб
001 Variables__en.srt 4.53Кб
001 Variables.mp4 8.93Мб
001 What are Confidence Intervals___en.srt 3.29Кб
001 What are Confidence Intervals_.mp4 28.38Мб
001 What are Data, Servers, Clients, Requests, and Responses__en.srt 5.92Кб
001 What are Data, Servers, Clients, Requests, and Responses.mp4 19.17Мб
001 What is a Layer___en.srt 2.44Кб
001 What is a Layer_.mp4 3.47Мб
001 What is a Matrix___en.srt 4.42Кб
001 What is a Matrix_.mp4 11.70Мб
001 What is Initialization___en.srt 3.60Кб
001 What is Initialization_.mp4 17.42Мб
001 What is Overfitting___en.srt 5.73Кб
001 What is Overfitting_.mp4 10.50Мб
001 What is sklearn and How is it Different from Other Packages__en.srt 3.38Кб
001 What is sklearn and How is it Different from Other Packages.mp4 6.24Мб
001 What to Expect from the Following Sections_.html 2.43Кб
001 What to Expect from this Part___en.srt 4.61Кб
001 What to Expect from this Part_.mp4 7.56Мб
002 Adjusted R-Squared__en.srt 7.57Кб
002 Adjusted R-Squared.mp4 34.22Мб
002 Analyzing Age vs Probability in Tableau__en.srt 10.22Кб
002 Analyzing Age vs Probability in Tableau.mp4 38.69Мб
002 A Simple Example in Python__en.srt 5.91Кб
002 A Simple Example in Python.mp4 21.91Мб
002 A Simple Example of Clustering__en.srt 902б
002 A Simple Example of Clustering_en.vtt 8.25Кб
002 A Simple Example of Clustering.mp4 26.08Мб
002 Basic NN Example (Part 2)__en.srt 6.90Кб
002 Basic NN Example (Part 2).mp4 15.23Мб
002 Business Case_ Outlining the Solution__en.srt 1.93Кб
002 Business Case_ Outlining the Solution__en.srt 2.50Кб
002 Business Case_ Outlining the Solution.mp4 2.21Мб
002 Business Case_ Outlining the Solution.mp4 2.89Мб
002 Computing Expected Values__en.srt 6.71Кб
002 Computing Expected Values.mp4 29.24Мб
002 Confidence Intervals; Population Variance Known; Z-score__en.srt 10.26Кб
002 Confidence Intervals; Population Variance Known; Z-score.mp4 52.21Мб
002 Correlation vs Regression__en.srt 2.03Кб
002 Correlation vs Regression.mp4 3.75Мб
002 Creating the Targets for the Logistic Regression__en.srt 8.56Кб
002 Creating the Targets for the Logistic Regression.mp4 32.50Мб
002 Dendrogram__en.srt 7.28Кб
002 Dendrogram.mp4 17.34Мб
002 Deploying the 'absenteeism_module' - Part I__en.srt 4.86Кб
002 Deploying the 'absenteeism_module' - Part I.mp4 8.38Мб
002 Further Reading on Null and Alternative Hypothesis.html 2.23Кб
002 How are we Going to Approach this Section___en.srt 1.56Кб
002 How are we Going to Approach this Section__en.vtt 2.56Кб
002 How are we Going to Approach this Section_.mp4 4.03Мб
002 How to Create a Function with a Parameter__en.srt 4.30Кб
002 How to Create a Function with a Parameter.mp4 8.29Мб
002 How to Install TensorFlow 1__en.srt 2.70Кб
002 How to Install TensorFlow 1_en.vtt 2.91Кб
002 How to Install TensorFlow 1.mp4 3.71Мб
002 Importing the Absenteeism Data in Python__en.srt 3.89Кб
002 Importing the Absenteeism Data in Python.mp4 18.03Мб
002 Iterating Over Range Objects__en.srt 6.04Кб
002 Iterating Over Range Objects.mp4 7.85Мб
002 Levels of Measurement__en.srt 4.72Кб
002 Levels of Measurement.mp4 31.44Мб
002 Logical and Identity Operators__en.srt 5.94Кб
002 Logical and Identity Operators.mp4 19.00Мб
002 MNIST_ How to Tackle the MNIST__en.srt 3.78Кб
002 MNIST_ How to Tackle the MNIST__en.srt 3.72Кб
002 MNIST_ How to Tackle the MNIST.mp4 7.66Мб
002 MNIST_ How to Tackle the MNIST.mp4 7.68Мб
002 Modules and Packages__en.srt 1.34Кб
002 Modules and Packages.mp4 1.71Мб
002 Numbers and Boolean Values in Python__en.srt 3.62Кб
002 Numbers and Boolean Values in Python.mp4 4.61Мб
002 Permutations and How to Use Them__en.srt 4.24Кб
002 Permutations and How to Use Them.mp4 13.97Мб
002 Practical Example_ Descriptive Statistics Exercise.html 81б
002 Practical Example_ Hypothesis Testing Exercise.html 81б
002 Practical Example_ Inferential Statistics Exercise.html 81б
002 Practical Example_ Linear Regression (Part 2)__en.srt 5.00Кб
002 Practical Example_ Linear Regression (Part 2)_en.vtt 7.11Кб
002 Practical Example_ Linear Regression (Part 2).mp4 31.90Мб
002 Probability in Statistics__en.srt 8.62Кб
002 Probability in Statistics.mp4 14.26Мб
002 Problems with Gradient Descent__en.srt 2.92Кб
002 Problems with Gradient Descent.mp4 3.51Мб
002 Real Life Examples of Traditional Data__en.srt 2.22Кб
002 Real Life Examples of Traditional Data.mp4 13.92Мб
002 Scalars and Vectors__en.srt 3.83Кб
002 Scalars and Vectors.mp4 8.39Мб
002 Some Examples of Clusters__en.srt 6.20Кб
002 Some Examples of Clusters.mp4 35.12Мб
002 TensorFlow Outline and Comparison with Other Libraries__en.srt 1.50Кб
002 TensorFlow Outline and Comparison with Other Libraries_en.vtt 4.74Кб
002 TensorFlow Outline and Comparison with Other Libraries.mp4 14.94Мб
002 The Business Task__en.srt 3.72Кб
002 The Business Task.mp4 6.80Мб
002 The Double Equality Sign__en.srt 1.77Кб
002 The Double Equality Sign.mp4 2.72Мб
002 The ELSE Statement__en.srt 3.11Кб
002 The ELSE Statement.mp4 5.25Мб
002 Training the Model__en.srt 4.42Кб
002 Training the Model.mp4 7.57Мб
002 Types of Basic Preprocessing__en.srt 1.72Кб
002 Types of Basic Preprocessing.mp4 2.40Мб
002 Types of Probability Distributions__en.srt 9.72Кб
002 Types of Probability Distributions.mp4 28.69Мб
002 Types of Simple Initializations__en.srt 3.82Кб
002 Types of Simple Initializations.mp4 5.73Мб
002 Underfitting and Overfitting for Classification__en.srt 2.69Кб
002 Underfitting and Overfitting for Classification.mp4 13.53Мб
002 Using Methods__en.srt 8.35Кб
002 Using Methods.mp4 23.42Мб
002 Ways Sets Can Interact__en.srt 4.40Кб
002 Ways Sets Can Interact.mp4 19.02Мб
002 What's Further out there in terms of Machine Learning__en.srt 2.64Кб
002 What's Further out there in terms of Machine Learning.mp4 3.71Мб
002 What are Data Connectivity, APIs, and Endpoints___en.srt 8.51Кб
002 What are Data Connectivity, APIs, and Endpoints_.mp4 58.83Мб
002 What Does the Course Cover__en.srt 5.10Кб
002 What Does the Course Cover.mp4 49.69Мб
002 What is a Deep Net___en.srt 3.30Кб
002 What is a Deep Net_.mp4 11.06Мб
002 What is a Distribution__en.srt 6.13Кб
002 What is a Distribution.mp4 16.90Мб
002 What is the difference between Analysis and Analytics__en.srt 5.03Кб
002 What is the difference between Analysis and Analytics.mp4 8.01Мб
002 While Loops and Incrementing__en.srt 6.18Кб
002 While Loops and Incrementing.mp4 20.20Мб
002 Why Python___en.srt 6.85Кб
002 Why Python_.mp4 11.77Мб
002 Working with Methods in Python - Part I__en.srt 6.92Кб
002 Working with Methods in Python - Part I.mp4 16.80Мб
003 A Note on Installing Packages in Anaconda.html 2.28Кб
003 A Note on Multicollinearity.html 849б
003 A Simple Example of Clustering - Exercise.html 87б
003 Basic NN Example (Part 3)__en.srt 4.39Кб
003 Basic NN Example (Part 3).mp4 15.68Мб
003 Business Analytics, Data Analytics, and Data Science_ An Introduction__en.srt 11.00Кб
003 Business Analytics, Data Analytics, and Data Science_ An Introduction.mp4 49.96Мб
003 Business Case_ Balancing the Dataset__en.srt 4.72Кб
003 Business Case_ Balancing the Dataset.mp4 26.19Мб
003 Categorical Variables - Visualization Techniques__en.srt 6.44Кб
003 Categorical Variables - Visualization Techniques.mp4 36.65Мб
003 Characteristics of Discrete Distributions__en.srt 2.51Кб
003 Characteristics of Discrete Distributions.mp4 9.25Мб
003 Checking the Content of the Data Set__en.srt 7.12Кб
003 Checking the Content of the Data Set.mp4 54.27Мб
003 Confidence Intervals; Population Variance Known; Z-score; Exercise.html 81б
003 DeepMind and Deep Learning.html 1.04Кб
003 Defining a Function in Python - Part II__en.srt 2.88Кб
003 Defining a Function in Python - Part II.mp4 6.45Мб
003 Deploying the 'absenteeism_module' - Part II__en.srt 429б
003 Deploying the 'absenteeism_module' - Part II_en.vtt 6.76Кб
003 Deploying the 'absenteeism_module' - Part II.mp4 25.99Мб
003 Difference between Classification and Clustering__en.srt 3.34Кб
003 Difference between Classification and Clustering.mp4 9.53Мб
003 Digging into a Deep Net__en.srt 6.73Кб
003 Digging into a Deep Net.mp4 19.14Мб
003 Download All Resources and Important FAQ.html 21.36Кб
003 EXERCISE - Reasons vs Probability.html 385б
003 Frequency__en.srt 6.28Кб
003 Frequency.mp4 36.39Мб
003 Geometrical Representation of the Linear Regression Model__en.srt 1.66Кб
003 Geometrical Representation of the Linear Regression Model.mp4 1.75Мб
003 Heatmaps__en.srt 6.24Кб
003 Heatmaps.mp4 25.71Мб
003 How to Reassign Values__en.srt 1.39Кб
003 How to Reassign Values.mp4 1.86Мб
003 Intersection of Sets__en.srt 2.49Кб
003 Intersection of Sets.mp4 8.78Мб
003 Introducing the Data Set__en.srt 4.13Кб
003 Introducing the Data Set.mp4 15.29Мб
003 Introduction to Nested For Loops__en.srt 8.30Кб
003 Introduction to Nested For Loops.mp4 12.26Мб
003 Linear Algebra and Geometry__en.srt 4.07Кб
003 Linear Algebra and Geometry.mp4 13.56Мб
003 List Slicing__en.srt 5.22Кб
003 List Slicing.mp4 19.17Мб
003 Lists with the range() Function__en.srt 8.03Кб
003 Lists with the range() Function.mp4 14.50Мб
003 Logistic vs Logit Function__en.srt 4.89Кб
003 Logistic vs Logit Function.mp4 43.96Мб
003 MNIST_ Importing the Relevant Packages and Loading the Data__en.srt 3.01Кб
003 MNIST_ Importing the Relevant Packages and Loading the Data.mp4 12.24Мб
003 MNIST_ Relevant Packages__en.srt 2.25Кб
003 MNIST_ Relevant Packages.mp4 7.88Мб
003 Momentum__en.srt 3.59Кб
003 Momentum.mp4 5.01Мб
003 Multiple Linear Regression Exercise.html 76б
003 Probability in Data Science__en.srt 6.64Кб
003 Probability in Data Science.mp4 23.94Мб
003 Python Strings__en.srt 7.10Кб
003 Python Strings.mp4 19.74Мб
003 Rejection Region and Significance Level__en.srt 9.09Кб
003 Rejection Region and Significance Level.mp4 38.20Мб
003 Selecting the Inputs for the Logistic Regression__en.srt 3.42Кб
003 Selecting the Inputs for the Logistic Regression.mp4 4.64Мб
003 Simple Linear Regression with sklearn__en.srt 1.06Кб
003 Simple Linear Regression with sklearn_en.vtt 6.71Кб
003 Simple Linear Regression with sklearn.mp4 31.65Мб
003 Simple Operations with Factorials__en.srt 3.56Кб
003 Simple Operations with Factorials.mp4 13.98Мб
003 Standardization__en.srt 6.20Кб
003 Standardization.mp4 11.95Мб
003 State-of-the-Art Method - (Xavier) Glorot Initialization__en.srt 3.67Кб
003 State-of-the-Art Method - (Xavier) Glorot Initialization.mp4 4.18Мб
003 Taking a Closer Look at APIs__en.srt 10.60Кб
003 Taking a Closer Look at APIs.mp4 65.29Мб
003 Techniques for Working with Big Data__en.srt 5.74Кб
003 Techniques for Working with Big Data.mp4 60.48Мб
003 TensorFlow 1 vs TensorFlow 2__en.srt 3.76Кб
003 TensorFlow 1 vs TensorFlow 2.mp4 14.95Мб
003 The ELIF Statement__en.srt 6.60Кб
003 The ELIF Statement.mp4 14.25Мб
003 The Importance of Working with a Balanced Dataset__en.srt 4.72Кб
003 The Importance of Working with a Balanced Dataset.mp4 21.60Мб
003 The Normal Distribution__en.srt 5.01Кб
003 The Normal Distribution.mp4 16.16Мб
003 Types of Machine Learning__en.srt 5.31Кб
003 Types of Machine Learning.mp4 9.81Мб
003 What is the Standard Library___en.srt 3.66Кб
003 What is the Standard Library_.mp4 4.87Мб
003 What is Validation___en.srt 4.90Кб
003 What is Validation_.mp4 8.14Мб
003 Why Jupyter___en.srt 4.63Кб
003 Why Jupyter_.mp4 7.96Мб
003 Working with Methods in Python - Part II__en.srt 3.60Кб
003 Working with Methods in Python - Part II.mp4 5.77Мб
004 Add Comments__en.srt 1.80Кб
004 Add Comments.mp4 2.41Мб
004 Analyzing Reasons vs Probability in Tableau__en.srt 9.68Кб
004 Analyzing Reasons vs Probability in Tableau.mp4 40.24Мб
004 A Note on Boolean Values__en.srt 2.91Кб
004 A Note on Boolean Values.mp4 3.26Мб
004 A Note on TensorFlow 2 Syntax__en.srt 1.41Кб
004 A Note on TensorFlow 2 Syntax.mp4 2.34Мб
004 An overview of CNNs__en.srt 6.71Кб
004 An overview of CNNs.mp4 30.47Мб
004 Arrays in Python - A Convenient Way To Represent Matrices__en.srt 6.03Кб
004 Arrays in Python - A Convenient Way To Represent Matrices.mp4 19.01Мб
004 Basic NN Example (Part 4)__en.srt 10.56Кб
004 Basic NN Example (Part 4).mp4 30.06Мб
004 Building a Logistic Regression__en.srt 3.43Кб
004 Building a Logistic Regression.mp4 8.61Мб
004 Business Case_ Preprocessing__en.srt 348б
004 Business Case_ Preprocessing_en.vtt 11.75Кб
004 Business Case_ Preprocessing.mp4 74.39Мб
004 Business Case_ Preprocessing the Data__en.srt 348б
004 Business Case_ Preprocessing the Data_en.vtt 11.73Кб
004 Business Case_ Preprocessing the Data.mp4 73.82Мб
004 Categorical Variables Exercise.html 81б
004 Clustering Categorical Data__en.srt 3.32Кб
004 Clustering Categorical Data.mp4 10.35Мб
004 Communication between Software Products through Text Files__en.srt 5.51Кб
004 Communication between Software Products through Text Files.mp4 9.28Мб
004 Conditional Statements and Loops__en.srt 7.67Кб
004 Conditional Statements and Loops.mp4 21.94Мб
004 Confidence Interval Clarifications__en.srt 5.80Кб
004 Confidence Interval Clarifications.mp4 18.56Мб
004 Continuing with BI, ML, and AI__en.srt 11.96Кб
004 Continuing with BI, ML, and AI.mp4 35.94Мб
004 Discrete Distributions_ The Uniform Distribution__en.srt 2.84Кб
004 Discrete Distributions_ The Uniform Distribution.mp4 10.08Мб
004 Events and Their Complements__en.srt 7.16Кб
004 Events and Their Complements.mp4 11.40Мб
004 Exporting the Obtained Data Set as a _.csv.html 964б
004 How to Use a Function within a Function__en.srt 2.07Кб
004 How to Use a Function within a Function.mp4 3.25Мб
004 Importing Modules in Python__en.srt 4.45Кб
004 Importing Modules in Python.mp4 8.53Мб
004 Installing Python and Jupyter__en.srt 9.11Кб
004 Installing Python and Jupyter.mp4 32.86Мб
004 Introduction to Terms with Multiple Meanings__en.srt 4.09Кб
004 Introduction to Terms with Multiple Meanings.mp4 18.04Мб
004 Learning Rate Schedules, or How to Choose the Optimal Learning Rate__en.srt 6.12Кб
004 Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4 12.03Мб
004 Math Prerequisites__en.srt 4.18Кб
004 Math Prerequisites.mp4 4.47Мб
004 MNIST_ Model Outline__en.srt 8.95Кб
004 MNIST_ Model Outline.mp4 34.69Мб
004 MNIST_ Preprocess the Data - Create a Validation Set and Scale It__en.srt 6.61Кб
004 MNIST_ Preprocess the Data - Create a Validation Set and Scale It.mp4 22.93Мб
004 Non-Linearities and their Purpose__en.srt 3.80Кб
004 Non-Linearities and their Purpose.mp4 9.74Мб
004 Parameters and Arguments in pandas__en.srt 5.50Кб
004 Parameters and Arguments in pandas.mp4 15.45Мб
004 Practical Example_ Linear Regression (Part 3)__en.srt 4.19Кб
004 Practical Example_ Linear Regression (Part 3).mp4 6.91Мб
004 Preprocessing Categorical Data__en.srt 2.86Кб
004 Preprocessing Categorical Data.mp4 5.34Мб
004 Python Packages Installation__en.srt 4.57Кб
004 Python Packages Installation_en.vtt 4.74Кб
004 Python Packages Installation.mp4 23.70Мб
004 Real Life Examples of Big Data__en.srt 1.90Кб
004 Real Life Examples of Big Data.mp4 4.21Мб
004 Simple Linear Regression with sklearn - A StatsModels-like Summary Table__en.srt
004 Simple Linear Regression with sklearn - A StatsModels-like Summary Table_en.vtt 6.08Кб
004 Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4 28.88Мб
004 Solving Variations with Repetition__en.srt 3.64Кб
004 Solving Variations with Repetition.mp4 13.75Мб
004 Standardizing the Data__en.srt 4.16Кб
004 Standardizing the Data.mp4 15.14Мб
004 TensorFlow Intro__en.srt 1.37Кб
004 TensorFlow Intro_en.vtt 4.61Кб
004 TensorFlow Intro.mp4 16.56Мб
004 Test for Significance of the Model (F-Test)__en.srt 2.57Кб
004 Test for Significance of the Model (F-Test).mp4 5.90Мб
004 The Linear Model (Linear Algebraic Version)__en.srt 3.92Кб
004 The Linear Model (Linear Algebraic Version).mp4 7.87Мб
004 The Standard Normal Distribution__en.srt 4.15Кб
004 The Standard Normal Distribution.mp4 8.62Мб
004 Training, Validation, and Test Datasets__en.srt 3.41Кб
004 Training, Validation, and Test Datasets.mp4 7.74Мб
004 Triple Nested For Loops__en.srt 8.00Кб
004 Triple Nested For Loops.mp4 19.40Мб
004 Tuples__en.srt 7.24Кб
004 Tuples.mp4 9.50Мб
004 Type I Error and Type II Error__en.srt 5.26Кб
004 Type I Error and Type II Error.mp4 18.17Мб
004 Union of Sets__en.srt 6.08Кб
004 Union of Sets.mp4 19.47Мб
005 A Breakdown of our Data Science Infographic__en.srt 5.21Кб
005 A Breakdown of our Data Science Infographic.mp4 33.95Мб
005 Activation Functions__en.srt 5.33Кб
005 Activation Functions.mp4 8.53Мб
005 Actual Introduction to TensorFlow__en.srt 2.29Кб
005 Actual Introduction to TensorFlow.mp4 6.17Мб
005 A Note on Normalization.html 729б
005 An Overview of RNNs__en.srt 3.77Кб
005 An Overview of RNNs.mp4 6.75Мб
005 Basic NN Example Exercises.html 1.65Кб
005 Binary and One-Hot Encoding__en.srt 4.78Кб
005 Binary and One-Hot Encoding.mp4 8.36Мб
005 Building a Logistic Regression - Exercise.html 87б
005 Business Case_ Preprocessing Exercise.html 379б
005 Business Case_ Preprocessing the Data - Exercise.html 370б
005 Business Intelligence (BI) Techniques__en.srt 8.92Кб
005 Business Intelligence (BI) Techniques.mp4 51.34Мб
005 Clustering Categorical Data - Exercise.html 87б
005 Conditional Statements, Functions, and Loops__en.srt 2.33Кб
005 Conditional Statements, Functions, and Loops.mp4 2.91Мб
005 Conditional Statements and Functions__en.srt 3.62Кб
005 Conditional Statements and Functions.mp4 6.04Мб
005 Dictionaries__en.srt 9.08Кб
005 Dictionaries.mp4 24.91Мб
005 Discrete Distributions_ The Bernoulli Distribution__en.srt 4.29Кб
005 Discrete Distributions_ The Bernoulli Distribution.mp4 14.76Мб
005 Dummies and Variance Inflation Factor - Exercise.html 76б
005 EXERCISE - Transportation Expense vs Probability.html 529б
005 First Regression in Python__en.srt 7.95Кб
005 First Regression in Python.mp4 29.63Мб
005 Learning Rate Schedules Visualized__en.srt 2.14Кб
005 Learning Rate Schedules Visualized.mp4 2.34Мб
005 List Comprehensions__en.srt 12.35Кб
005 List Comprehensions.mp4 43.23Мб
005 MNIST_ Loss and Optimization Algorithm__en.srt 3.60Кб
005 MNIST_ Loss and Optimization Algorithm.mp4 11.56Мб
005 MNIST_ Preprocess the Data - Scale the Test Data - Exercise.html 79б
005 Mutually Exclusive Sets__en.srt 2.65Кб
005 Mutually Exclusive Sets.mp4 5.25Мб
005 N-Fold Cross Validation__en.srt 4.29Кб
005 N-Fold Cross Validation.mp4 5.14Мб
005 Numerical Variables - Frequency Distribution Table__en.srt 4.39Кб
005 Numerical Variables - Frequency Distribution Table.mp4 12.80Мб
005 OLS Assumptions__en.srt 2.96Кб
005 OLS Assumptions.mp4 5.12Мб
005 Software Integration - Explained__en.srt 6.85Кб
005 Software Integration - Explained.mp4 41.99Мб
005 Solving Variations without Repetition__en.srt 4.74Кб
005 Solving Variations without Repetition.mp4 14.76Мб
005 Splitting the Data for Training and Testing__en.srt 8.47Кб
005 Splitting the Data for Training and Testing.mp4 36.12Мб
005 Student's T Distribution__en.srt 4.24Кб
005 Student's T Distribution.mp4 13.33Мб
005 Test for the Mean. Population Variance Known__en.srt 8.32Кб
005 Test for the Mean. Population Variance Known.mp4 36.96Мб
005 The Linear Model with Multiple Inputs__en.srt 3.21Кб
005 The Linear Model with Multiple Inputs.mp4 7.77Мб
005 The Standard Normal Distribution Exercise.html 81б
005 Types of File Formats Supporting TensorFlow__en.srt 3.56Кб
005 Types of File Formats Supporting TensorFlow.mp4 7.25Мб
005 Understanding Jupyter's Interface - the Notebook Dashboard__en.srt 3.70Кб
005 Understanding Jupyter's Interface - the Notebook Dashboard.mp4 4.39Мб
005 Understanding Line Continuation__en.srt 1.14Кб
005 Understanding Line Continuation.mp4 1014.51Кб
005 Using .unique() and .nunique()__en.srt 5.58Кб
005 Using .unique() and .nunique().mp4 26.33Мб
005 What's Regression Analysis - a Quick Refresher.html 2.80Кб
005 What is a Tensor___en.srt 3.69Кб
005 What is a Tensor_.mp4 11.61Мб
006 A1_ Linearity__en.srt 2.38Кб
006 A1_ Linearity.mp4 2.66Мб
006 Activation Functions_ Softmax Activation__en.srt 4.51Кб
006 Activation Functions_ Softmax Activation.mp4 8.42Мб
006 Adaptive Learning Rate Schedules (AdaGrad and RMSprop )__en.srt 5.22Кб
006 Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp4 8.24Мб
006 Addition and Subtraction of Matrices__en.srt 4.00Кб
006 Addition and Subtraction of Matrices.mp4 22.08Мб
006 Analyzing Transportation Expense vs Probability in Tableau__en.srt 7.36Кб
006 Analyzing Transportation Expense vs Probability in Tableau.mp4 10.87Мб
006 An Invaluable Coding Tip__en.srt 3.15Кб
006 An Invaluable Coding Tip.mp4 16.77Мб
006 Anonymous (Lambda) Functions__en.srt 9.89Кб
006 Anonymous (Lambda) Functions.mp4 33.71Мб
006 An Overview of non-NN Approaches__en.srt 5.28Кб
006 An Overview of non-NN Approaches.mp4 15.65Мб
006 Business Case_ Load the Preprocessed Data__en.srt 4.83Кб
006 Business Case_ Load the Preprocessed Data.mp4 13.80Мб
006 Calculating the Accuracy of the Model__en.srt 5.34Кб
006 Calculating the Accuracy of the Model.mp4 16.64Мб
006 Central Limit Theorem__en.srt 5.68Кб
006 Central Limit Theorem.mp4 22.86Мб
006 Confidence Intervals; Population Variance Unknown; T-score__en.srt 5.67Кб
006 Confidence Intervals; Population Variance Unknown; T-score.mp4 11.58Мб
006 Creating a Data Provider__en.srt 7.77Кб
006 Creating a Data Provider.mp4 56.23Мб
006 Dependence and Independence of Sets__en.srt 3.46Кб
006 Dependence and Independence of Sets.mp4 11.98Мб
006 Discrete Distributions_ The Binomial Distribution__en.srt 8.68Кб
006 Discrete Distributions_ The Binomial Distribution.mp4 24.94Мб
006 Early Stopping or When to Stop Training__en.srt 6.79Кб
006 Early Stopping or When to Stop Training.mp4 8.50Мб
006 First Regression in Python Exercise.html 1.31Кб
006 Fitting the Model and Assessing its Accuracy__en.srt 1.36Кб
006 Fitting the Model and Assessing its Accuracy_en.vtt 6.35Кб
006 Fitting the Model and Assessing its Accuracy.mp4 35.29Мб
006 Functions Containing a Few Arguments__en.srt 1.33Кб
006 Functions Containing a Few Arguments.mp4 2.24Мб
006 How to Choose the Number of Clusters__en.srt 7.41Кб
006 How to Choose the Number of Clusters.mp4 19.79Мб
006 How to Iterate over Dictionaries__en.srt 7.60Кб
006 How to Iterate over Dictionaries.mp4 16.46Мб
006 Indexing Elements__en.srt 1.63Кб
006 Indexing Elements.mp4 2.36Мб
006 MNIST_ Preprocess the Data - Shuffle and Batch__en.srt 9.49Кб
006 MNIST_ Preprocess the Data - Shuffle and Batch.mp4 32.71Мб
006 Numerical Variables Exercise.html 81б
006 Outlining the Model with TensorFlow 2__en.srt 7.99Кб
006 Outlining the Model with TensorFlow 2.mp4 26.99Мб
006 Practical Example_ Linear Regression (Part 4)__en.srt 11.75Кб
006 Practical Example_ Linear Regression (Part 4).mp4 29.84Мб
006 Prerequisites for Coding in the Jupyter Notebooks__en.srt 7.66Кб
006 Prerequisites for Coding in the Jupyter Notebooks.mp4 15.38Мб
006 Real Life Examples of Business Intelligence (BI)__en.srt 2.14Кб
006 Real Life Examples of Business Intelligence (BI).mp4 19.35Мб
006 Simple Linear Regression with sklearn - Exercise.html 76б
006 Solving Combinations__en.srt 5.72Кб
006 Solving Combinations.mp4 18.99Мб
006 Test for the Mean. Population Variance Known Exercise.html 81б
006 The Linear model with Multiple Inputs and Multiple Outputs__en.srt 5.42Кб
006 The Linear model with Multiple Inputs and Multiple Outputs.mp4 16.23Мб
006 Types of File Formats, supporting Tensors__en.srt 3.30Кб
006 Types of File Formats, supporting Tensors.mp4 8.90Мб
006 Using .sort_values()__en.srt 5.54Кб
006 Using .sort_values().mp4 13.20Мб
006 Using a Statistical Approach towards the Solution to the Exercise__en.srt 2.93Кб
006 Using a Statistical Approach towards the Solution to the Exercise.mp4 9.90Мб
007 A2_ No Endogeneity__en.srt 5.27Кб
007 A2_ No Endogeneity.mp4 8.99Мб
007 Adam (Adaptive Moment Estimation)__en.srt 3.42Кб
007 Adam (Adaptive Moment Estimation).mp4 6.88Мб
007 Backpropagation__en.srt 4.48Кб
007 Backpropagation.mp4 19.49Мб
007 Basic NN Example with TF_ Inputs, Outputs, Targets, Weights, Biases__en.srt 7.56Кб
007 Basic NN Example with TF_ Inputs, Outputs, Targets, Weights, Biases.mp4 28.00Мб
007 Built-in Functions in Python__en.srt 4.29Кб
007 Built-in Functions in Python.mp4 8.50Мб
007 Business Case_ Load the Preprocessed Data - Exercise.html 79б
007 Business Case_ Model Outline__en.srt 7.09Кб
007 Business Case_ Model Outline.mp4 42.48Мб
007 Confidence Intervals; Population Variance Unknown; T-score; Exercise.html 81б
007 Creating a Summary Table with the Coefficients and Intercept__en.srt 6.66Кб
007 Creating a Summary Table with the Coefficients and Intercept.mp4 26.98Мб
007 Discrete Distributions_ The Poisson Distribution__en.srt 6.60Кб
007 Discrete Distributions_ The Poisson Distribution.mp4 14.62Мб
007 Dropping a Column from a DataFrame in Python__en.srt 7.75Кб
007 Dropping a Column from a DataFrame in Python.mp4 41.30Мб
007 Dummy Variables - Exercise.html 705б
007 Errors when Adding Matrices__en.srt 2.61Кб
007 Errors when Adding Matrices.mp4 3.34Мб
007 Graphical Representation of Simple Neural Networks__en.srt 2.83Кб
007 Graphical Representation of Simple Neural Networks.mp4 6.35Мб
007 How to Choose the Number of Clusters - Exercise.html 87б
007 Interpreting the Result and Extracting the Weights and Bias__en.srt 6.26Кб
007 Interpreting the Result and Extracting the Weights and Bias.mp4 13.67Мб
007 Introduction to pandas DataFrames - Part I__en.srt 7.08Кб
007 Introduction to pandas DataFrames - Part I.mp4 10.60Мб
007 MNIST_ Batching and Early Stopping__en.srt 2.83Кб
007 MNIST_ Batching and Early Stopping.mp4 8.70Мб
007 MNIST_ Preprocess the Data - Shuffle and Batch - Exercise.html 79б
007 Multiple Linear Regression with sklearn__en.srt 1013б
007 Multiple Linear Regression with sklearn_en.vtt 3.80Кб
007 Multiple Linear Regression with sklearn.mp4 9.81Мб
007 p-value__en.srt 5.37Кб
007 p-value.mp4 33.08Мб
007 Standard error__en.srt 1.92Кб
007 Standard error.mp4 13.33Мб
007 Structuring with Indentation__en.srt 2.18Кб
007 Structuring with Indentation.mp4 2.80Мб
007 Symmetry of Combinations__en.srt 4.22Кб
007 Symmetry of Combinations.mp4 13.51Мб
007 Techniques for Working with Traditional Methods__en.srt 11.32Кб
007 Techniques for Working with Traditional Methods.mp4 74.75Мб
007 The Conditional Probability Formula__en.srt 5.27Кб
007 The Conditional Probability Formula.mp4 16.33Мб
007 The Histogram__en.srt 3.12Кб
007 The Histogram.mp4 3.85Мб
007 Understanding Logistic Regression Tables__en.srt 5.52Кб
007 Understanding Logistic Regression Tables.mp4 12.89Мб
007 Using Seaborn for Graphs__en.srt 1.53Кб
007 Using Seaborn for Graphs.mp4 7.37Мб
008 A3_ Normality and Homoscedasticity__en.srt 6.58Кб
008 A3_ Normality and Homoscedasticity.mp4 27.39Мб
008 Backpropagation Picture__en.srt 4.27Кб
008 Backpropagation Picture.mp4 7.68Мб
008 Basic NN Example with TF_ Loss Function and Gradient Descent__en.srt 4.77Кб
008 Basic NN Example with TF_ Loss Function and Gradient Descent.mp4 15.72Мб
008 Business Case_ Learning and Interpreting the Result__en.srt 6.28Кб
008 Business Case_ Learning and Interpreting the Result.mp4 27.77Мб
008 Business Case_ Optimization__en.srt 6.46Кб
008 Business Case_ Optimization.mp4 26.95Мб
008 Calculating the Adjusted R-Squared in sklearn__en.srt 6.60Кб
008 Calculating the Adjusted R-Squared in sklearn.mp4 16.92Мб
008 Characteristics of Continuous Distributions__en.srt 8.88Кб
008 Characteristics of Continuous Distributions.mp4 28.87Мб
008 Customizing a TensorFlow 2 Model__en.srt 4.20Кб
008 Customizing a TensorFlow 2 Model.mp4 16.78Мб
008 Estimators and Estimates__en.srt 3.89Кб
008 Estimators and Estimates.mp4 16.13Мб
008 EXERCISE - Dropping a Column from a DataFrame in Python.html 864б
008 Histogram Exercise.html 81б
008 How to Interpret the Regression Table__en.srt 6.57Кб
008 How to Interpret the Regression Table.mp4 28.72Мб
008 Interpreting the Coefficients for Our Problem__en.srt 8.04Кб
008 Interpreting the Coefficients for Our Problem.mp4 34.41Мб
008 Introduction to pandas DataFrames - Part II__en.srt 7.61Кб
008 Introduction to pandas DataFrames - Part II.mp4 17.83Мб
008 Margin of Error__en.srt 6.27Кб
008 Margin of Error.mp4 22.66Мб
008 MNIST_ Learning__en.srt 9.95Кб
008 MNIST_ Learning.mp4 31.88Мб
008 MNIST_ Outline the Model__en.srt 7.26Кб
008 MNIST_ Outline the Model.mp4 22.09Мб
008 Practical Example_ Linear Regression (Part 5)__en.srt 10.44Кб
008 Practical Example_ Linear Regression (Part 5).mp4 50.42Мб
008 Pros and Cons of K-Means Clustering__en.srt 2.62Кб
008 Pros and Cons of K-Means Clustering_en.vtt 4.07Кб
008 Pros and Cons of K-Means Clustering.mp4 10.93Мб
008 Real Life Examples of Traditional Methods__en.srt 3.53Кб
008 Real Life Examples of Traditional Methods.mp4 21.17Мб
008 Solving Combinations with Separate Sample Spaces__en.srt 3.81Кб
008 Solving Combinations with Separate Sample Spaces.mp4 12.87Мб
008 Test for the Mean. Population Variance Unknown__en.srt 6.20Кб
008 Test for the Mean. Population Variance Unknown.mp4 19.72Мб
008 The Law of Total Probability__en.srt 3.38Кб
008 The Law of Total Probability.mp4 11.39Мб
008 Transpose of a Matrix__en.srt 5.71Кб
008 Transpose of a Matrix.mp4 20.49Мб
008 Understanding Logistic Regression Tables - Exercise.html 87б
008 What is the Objective Function___en.srt 2.13Кб
008 What is the Objective Function_.mp4 6.03Мб
009 A4_ No Autocorrelation__en.srt 4.82Кб
009 A4_ No Autocorrelation.mp4 7.67Мб
009 Backpropagation - A Peek into the Mathematics of Optimization.html 539б
009 Basic NN Example with TF_ Model Output__en.srt 7.70Кб
009 Basic NN Example with TF_ Model Output.mp4 17.09Мб
009 Basic NN with TensorFlow_ Exercises.html 1.28Кб
009 Business Case_ Interpretation__en.srt 2.91Кб
009 Business Case_ Interpretation.mp4 18.59Мб
009 Business Case_ Setting an Early Stopping Mechanism__en.srt 7.93Кб
009 Business Case_ Setting an Early Stopping Mechanism.mp4 43.81Мб
009 Calculating the Adjusted R-Squared in sklearn - Exercise.html 76б
009 Combinatorics in Real-Life_ The Lottery__en.srt 4.16Кб
009 Combinatorics in Real-Life_ The Lottery.mp4 16.16Мб
009 Common Objective Functions_ L2-norm Loss__en.srt 2.76Кб
009 Common Objective Functions_ L2-norm Loss.mp4 4.47Мб
009 Confidence intervals. Two means. Dependent samples__en.srt 8.18Кб
009 Confidence intervals. Two means. Dependent samples.mp4 45.04Мб
009 Continuous Distributions_ The Normal Distribution__en.srt 4.92Кб
009 Continuous Distributions_ The Normal Distribution.mp4 19.67Мб
009 Cross Tables and Scatter Plots__en.srt 6.70Кб
009 Cross Tables and Scatter Plots.mp4 19.70Мб
009 Decomposition of Variability__en.srt 4.20Кб
009 Decomposition of Variability.mp4 8.62Мб
009 Dot Product__en.srt 4.32Кб
009 Dot Product.mp4 11.36Мб
009 Linear Regression - Exercise.html 497б
009 Machine Learning (ML) Techniques__en.srt 8.94Кб
009 Machine Learning (ML) Techniques.mp4 47.78Мб
009 MNIST_ Results and Testing__en.srt 8.33Кб
009 MNIST_ Results and Testing.mp4 38.19Мб
009 MNIST_ Select the Loss and the Optimizer__en.srt 3.18Кб
009 MNIST_ Select the Loss and the Optimizer.mp4 10.65Мб
009 pandas DataFrames - Common Attributes__en.srt 6.25Кб
009 pandas DataFrames - Common Attributes.mp4 29.80Мб
009 SOLUTION - Dropping a Column from a DataFrame in Python.html 114б
009 Standardizing only the Numerical Variables (Creating a Custom Scaler)__en.srt 4.98Кб
009 Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4 28.02Мб
009 Test for the Mean. Population Variance Unknown Exercise.html 81б
009 The Additive Rule__en.srt 2.79Кб
009 The Additive Rule.mp4 10.89Мб
009 To Standardize or not to Standardize__en.srt 6.08Кб
009 To Standardize or not to Standardize.mp4 10.50Мб
009 What do the Odds Actually Mean__en.srt 5.08Кб
009 What do the Odds Actually Mean.mp4 11.38Мб
010 A5_ No Multicollinearity__en.srt 4.69Кб
010 A5_ No Multicollinearity.mp4 7.36Мб
010 Analyzing the Reasons for Absence__en.srt 6.18Кб
010 Analyzing the Reasons for Absence.mp4 27.63Мб
010 A Recap of Combinatorics__en.srt 3.72Кб
010 A Recap of Combinatorics.mp4 12.00Мб
010 Basic NN Example with TF Exercises.html 1.58Кб
010 Binary Predictors in a Logistic Regression__en.srt 5.70Кб
010 Binary Predictors in a Logistic Regression.mp4 18.47Мб
010 Business Case_ Testing the Model__en.srt 2.70Кб
010 Business Case_ Testing the Model.mp4 4.39Мб
010 Common Objective Functions_ Cross-Entropy Loss__en.srt 5.63Кб
010 Common Objective Functions_ Cross-Entropy Loss.mp4 9.68Мб
010 Confidence intervals. Two means. Dependent samples Exercise.html 81б
010 Continuous Distributions_ The Standard Normal Distribution__en.srt 5.41Кб
010 Continuous Distributions_ The Standard Normal Distribution.mp4 20.72Мб
010 Cross Tables and Scatter Plots Exercise.html 81б
010 Data Selection in pandas DataFrames__en.srt 10.04Кб
010 Data Selection in pandas DataFrames.mp4 37.28Мб
010 Dot Product of Matrices__en.srt 9.57Кб
010 Dot Product of Matrices.mp4 26.42Мб
010 Feature Selection (F-regression)__en.srt 6.73Кб
010 Feature Selection (F-regression).mp4 15.68Мб
010 Interpreting the Coefficients of the Logistic Regression__en.srt 7.30Кб
010 Interpreting the Coefficients of the Logistic Regression.mp4 15.22Мб
010 MNIST_ Exercises.html 2.16Кб
010 MNIST_ Learning__en.srt 7.87Кб
010 MNIST_ Learning.mp4 31.03Мб
010 Relationship between Clustering and Regression__en.srt 2.25Кб
010 Relationship between Clustering and Regression.mp4 2.42Мб
010 Setting an Early Stopping Mechanism - Exercise.html 192б
010 Test for the Mean. Dependent Samples__en.srt 6.78Кб
010 Test for the Mean. Dependent Samples.mp4 32.80Мб
010 The Multiplication Law__en.srt 4.66Кб
010 The Multiplication Law.mp4 19.80Мб
010 Types of Machine Learning__en.srt 10.46Кб
010 Types of Machine Learning.mp4 61.78Мб
010 What is the OLS___en.srt 3.80Кб
010 What is the OLS_.mp4 22.44Мб
011 A Note on Calculation of P-values with sklearn.html 370б
011 A Practical Example of Combinatorics__en.srt 14.09Кб
011 A Practical Example of Combinatorics.mp4 42.24Мб
011 Backward Elimination or How to Simplify Your Model__en.srt 925б
011 Backward Elimination or How to Simplify Your Model_en.vtt 4.58Кб
011 Backward Elimination or How to Simplify Your Model.mp4 31.96Мб
011 Bayes' Law__en.srt 7.55Кб
011 Bayes' Law.mp4 20.94Мб
011 Binary Predictors in a Logistic Regression - Exercise.html 87б
011 Business Case_ A Comment on the Homework__en.srt 4.81Кб
011 Business Case_ A Comment on the Homework_en.vtt 4.64Кб
011 Business Case_ A Comment on the Homework.mp4 19.64Мб
011 Business Case_ Testing the Model__en.srt 2.21Кб
011 Business Case_ Testing the Model.mp4 8.19Мб
011 Confidence intervals. Two means. Independent Samples (Part 1)__en.srt 6.10Кб
011 Confidence intervals. Two means. Independent Samples (Part 1).mp4 12.00Мб
011 Continuous Distributions_ The Students' T Distribution__en.srt 2.97Кб
011 Continuous Distributions_ The Students' T Distribution.mp4 5.44Мб
011 Dealing with Categorical Data - Dummy Variables__en.srt 8.16Кб
011 Dealing with Categorical Data - Dummy Variables.mp4 35.09Мб
011 Market Segmentation with Cluster Analysis (Part 1)__en.srt 7.32Кб
011 Market Segmentation with Cluster Analysis (Part 1).mp4 21.16Мб
011 Mean, median and mode__en.srt 5.99Кб
011 Mean, median and mode.mp4 17.53Мб
011 MNIST_ Solutions.html 2.22Кб
011 MNIST - Exercises.html 1.98Кб
011 Obtaining Dummies from a Single Feature__en.srt 10.28Кб
011 Obtaining Dummies from a Single Feature.mp4 63.77Мб
011 Optimization Algorithm_ 1-Parameter Gradient Descent__en.srt 8.75Кб
011 Optimization Algorithm_ 1-Parameter Gradient Descent.mp4 22.70Мб
011 pandas DataFrames - Indexing with .iloc[]__en.srt 8.07Кб
011 pandas DataFrames - Indexing with .iloc[].mp4 23.54Мб
011 Real Life Examples of Machine Learning (ML)__en.srt 2.96Кб
011 Real Life Examples of Machine Learning (ML).mp4 22.44Мб
011 R-Squared__en.srt 6.73Кб
011 R-Squared.mp4 10.79Мб
011 Test for the Mean. Dependent Samples Exercise.html 81б
011 Why is Linear Algebra Useful___en.srt 12.42Кб
011 Why is Linear Algebra Useful_.mp4 86.18Мб
012 A Practical Example of Bayesian Inference__en.srt 19.75Кб
012 A Practical Example of Bayesian Inference.mp4 125.49Мб
012 Business Case_ Final Exercise.html 433б
012 Business Case_ Final Exercise.html 441б
012 Calculating the Accuracy of the Model__en.srt 4.41Кб
012 Calculating the Accuracy of the Model.mp4 20.28Мб
012 Confidence intervals. Two means. Independent Samples (Part 1). Exercise.html 81б
012 Continuous Distributions_ The Chi-Squared Distribution__en.srt 2.90Кб
012 Continuous Distributions_ The Chi-Squared Distribution.mp4 10.95Мб
012 Creating a Summary Table with P-values__en.srt 3.04Кб
012 Creating a Summary Table with P-values.mp4 6.45Мб
012 Dealing with Categorical Data - Dummy Variables.html 76б
012 EXERCISE - Obtaining Dummies from a Single Feature.html 123б
012 Market Segmentation with Cluster Analysis (Part 2)__en.srt 9.28Кб
012 Market Segmentation with Cluster Analysis (Part 2).mp4 34.08Мб
012 Mean, Median and Mode Exercise.html 81б
012 MNIST_ Testing the Model__en.srt 6.07Кб
012 MNIST_ Testing the Model.mp4 22.64Мб
012 Optimization Algorithm_ n-Parameter Gradient Descent__en.srt 7.75Кб
012 Optimization Algorithm_ n-Parameter Gradient Descent.mp4 16.35Мб
012 pandas DataFrames - Indexing with .loc[]__en.srt 5.51Кб
012 pandas DataFrames - Indexing with .loc[].mp4 20.72Мб
012 Test for the mean. Independent Samples (Part 1)__en.srt 5.57Кб
012 Test for the mean. Independent Samples (Part 1).mp4 7.57Мб
012 Testing the Model We Created__en.srt 6.51Кб
012 Testing the Model We Created.mp4 31.63Мб
013 Calculating the Accuracy of the Model.html 87б
013 Confidence intervals. Two means. Independent Samples (Part 2)__en.srt 4.81Кб
013 Confidence intervals. Two means. Independent Samples (Part 2).mp4 13.05Мб
013 Continuous Distributions_ The Exponential Distribution__en.srt 4.20Кб
013 Continuous Distributions_ The Exponential Distribution.mp4 15.76Мб
013 How is Clustering Useful___en.srt 6.52Кб
013 How is Clustering Useful_.mp4 36.49Мб
013 Making Predictions with the Linear Regression__en.srt 4.54Кб
013 Making Predictions with the Linear Regression.mp4 16.36Мб
013 Multiple Linear Regression - Exercise.html 76б
013 Saving the Model and Preparing it for Deployment__en.srt 1.23Кб
013 Saving the Model and Preparing it for Deployment_en.vtt 4.96Кб
013 Saving the Model and Preparing it for Deployment.mp4 25.52Мб
013 Skewness__en.srt 3.63Кб
013 Skewness.mp4 9.92Мб
013 SOLUTION - Obtaining Dummies from a Single Feature.html 117б
013 Test for the mean. Independent Samples (Part 1). Exercise.html 81б
014 ARTICLE - A Note on 'pickling'.html 2.11Кб
014 Confidence intervals. Two means. Independent Samples (Part 2). Exercise.html 81б
014 Continuous Distributions_ The Logistic Distribution__en.srt 5.42Кб
014 Continuous Distributions_ The Logistic Distribution.mp4 15.95Мб
014 Dropping a Dummy Variable from the Data Set.html 2.31Кб
014 EXERCISE_ Species Segmentation with Cluster Analysis (Part 1).html 87б
014 Feature Scaling (Standardization)__en.srt 7.79Кб
014 Feature Scaling (Standardization).mp4 20.37Мб
014 Skewness Exercise.html 81б
014 Test for the mean. Independent Samples (Part 2)__en.srt 5.47Кб
014 Test for the mean. Independent Samples (Part 2).mp4 24.47Мб
014 Underfitting and Overfitting__en.srt 4.88Кб
014 Underfitting and Overfitting.mp4 7.25Мб
015 A Practical Example of Probability Distributions__en.srt 20.29Кб
015 A Practical Example of Probability Distributions.mp4 138.31Мб
015 Confidence intervals. Two means. Independent Samples (Part 3)__en.srt 1.93Кб
015 Confidence intervals. Two means. Independent Samples (Part 3).mp4 4.17Мб
015 EXERCISE_ Species Segmentation with Cluster Analysis (Part 2).html 87б
015 EXERCISE - Saving the Model (and Scaler).html 284б
015 Feature Selection through Standardization of Weights__en.srt 7.47Кб
015 Feature Selection through Standardization of Weights.mp4 27.16Мб
015 More on Dummy Variables_ A Statistical Perspective__en.srt 1.74Кб
015 More on Dummy Variables_ A Statistical Perspective.mp4 3.18Мб
015 Test for the mean. Independent Samples (Part 2). Exercise.html 81б
015 Testing the Model__en.srt 6.46Кб
015 Testing the Model.mp4 21.60Мб
015 Variance__en.srt 7.87Кб
015 Variance.mp4 20.21Мб
016 Classifying the Various Reasons for Absence__en.srt 10.05Кб
016 Classifying the Various Reasons for Absence.mp4 51.32Мб
016 Predicting with the Standardized Coefficients__en.srt 5.81Кб
016 Predicting with the Standardized Coefficients.mp4 18.34Мб
016 Preparing the Deployment of the Model through a Module__en.srt 5.51Кб
016 Preparing the Deployment of the Model through a Module.mp4 28.57Мб
016 Testing the Model - Exercise.html 87б
016 Variance Exercise.html 522б
017 Feature Scaling (Standardization) - Exercise.html 76б
017 Standard Deviation and Coefficient of Variation__en.srt 6.62Кб
017 Standard Deviation and Coefficient of Variation.mp4 20.14Мб
017 Using .concat() in Python__en.srt 5.23Кб
017 Using .concat() in Python.mp4 19.77Мб
018 EXERCISE - Using .concat() in Python.html 189б
018 Standard Deviation and Coefficient of Variation Exercise.html 81б
018 Underfitting and Overfitting__en.srt 3.43Кб
018 Underfitting and Overfitting.mp4 5.69Мб
019 Covariance__en.srt 4.97Кб
019 Covariance.mp4 18.41Мб
019 SOLUTION - Using .concat() in Python.html 143б
019 Train - Test Split Explained__en.srt 9.82Кб
019 Train - Test Split Explained.mp4 35.58Мб
020 Covariance Exercise.html 81б
020 Reordering Columns in a Pandas DataFrame in Python__en.srt 1.87Кб
020 Reordering Columns in a Pandas DataFrame in Python.mp4 7.18Мб
021 Correlation Coefficient__en.srt 4.75Кб
021 Correlation Coefficient.mp4 19.38Мб
021 EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html 161б
022 Correlation Coefficient Exercise.html 81б
022 SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html 478б
023 Creating Checkpoints while Coding in Jupyter__en.srt 3.72Кб
023 Creating Checkpoints while Coding in Jupyter.mp4 17.34Мб
024 EXERCISE - Creating Checkpoints while Coding in Jupyter.html 137б
025 SOLUTION - Creating Checkpoints while Coding in Jupyter.html 118б
026 Analyzing the Dates from the Initial Data Set__en.srt 8.55Кб
026 Analyzing the Dates from the Initial Data Set.mp4 40.13Мб
027 Extracting the Month Value from the _Date_ Column__en.srt 7.93Кб
027 Extracting the Month Value from the _Date_ Column.mp4 38.91Мб
028 Extracting the Day of the Week from the _Date_ Column__en.srt 4.40Кб
028 Extracting the Day of the Week from the _Date_ Column.mp4 9.12Мб
029 EXERCISE - Removing the _Date_ Column.html 1.14Кб
030 Analyzing Several _Straightforward_ Columns for this Exercise__en.srt 4.43Кб
030 Analyzing Several _Straightforward_ Columns for this Exercise.mp4 12.23Мб
031 Working on _Education_, _Children_, and _Pets___en.srt 5.65Кб
031 Working on _Education_, _Children_, and _Pets_.mp4 19.69Мб
032 Final Remarks of this Section__en.srt 2.52Кб
032 Final Remarks of this Section.mp4 17.04Мб
033 A Note on Exporting Your Data as a _.csv File.html 880б
13055412-2.3.Categorical-variables.Visualization-techniques-exercise.xlsx 15.24Кб
13055414-2 3 Categorical-variables Visualization-techniques-exercise-solution xlsx 41.11Кб
13055440-2.5.The-Histogram-lesson.xlsx 18.63Кб
13055456-2.6.Cross-table-and-scatter-plot.xlsx 26.12Кб
13055460-2.6.Cross-table-and-scatter-plot-exercise.xlsx 16.28Кб
13055464-2.6.Cross-table-and-scatter-plot-exercise-solution.xlsx 40.44Кб
13055474-2.7.Mean-median-and-mode-lesson.xlsx 10.49Кб
13055484-2.7.Mean-median-and-mode-exercise.xlsx 10.87Кб
13055486-2.7.Mean-median-and-mode-exercise-solution.xlsx 11.35Кб
13055492-2.8.Skewness-lesson.xlsx 34.63Кб
13055500-2.8.Skewness-exercise.xlsx 9.49Кб
13055502-2.8.Skewness-exercise-solution.xlsx 19.78Кб
13055510-2.9.Variance-lesson.xlsx 10.08Кб
13055516-2.9.Variance-exercise.xlsx 10.83Кб
13055520-2.9.Variance-exercise-solution.xlsx 11.05Кб
13055774-2.3.Categorical-variables.Visualization-techniques-lesson.xlsx 30.77Кб
13055786-2.5.The-Histogram-exercise.xlsx 15.50Кб
13055790-2.5.The-Histogram-exercise-solution.xlsx 17.10Кб
13055800-2.10.Standard-deviation-and-coefficient-of-variation-lesson.xlsx 10.97Кб
13055814-2.11.Covariance-lesson.xlsx 24.92Кб
13055822-2.11.Covariance-exercise.xlsx 20.23Кб
13055824-2.11.Covariance-exercise-solution.xlsx 29.51Кб
13055834-2.12.Correlation-exercise.xlsx 29.30Кб
13055838-2.12.Correlation-exercise-solution.xlsx 29.48Кб
13055898-3.2.What-is-a-distribution-lesson.xlsx 19.46Кб
13055942-3.4.Standard-normal-distribution-lesson.xlsx 10.38Кб
13056180-3.9.Population-variance-known-z-score-lesson.xlsx 11.21Кб
13056196-3.9.Population-variance-known-z-score-exercise.xlsx 10.83Кб
13056200-3.9.Population-variance-known-z-score-exercise-solution.xlsx 11.16Кб
13056212-3.11.Population-variance-unknown-t-score-lesson.xlsx 10.78Кб
13056216-3.11.The-t-table.xlsx 15.85Кб
13056226-3.11.Population-variance-unknown-t-score-exercise.xlsx 10.62Кб
13056228-3.11.Population-variance-unknown-t-score-exercise-solution.xlsx 11.10Кб
13056236-3.13.Confidence-intervals.Two-means.Dependent-samples-lesson.xlsx 10.47Кб
13056246-3 13 Confidence-intervals Two-means Dependent-samples-exercise xlsx 13.74Кб
13056252-3 13 Confidence-intervals Two-means Dependent-samples-exercise-solution xlsx 14.24Кб
13056280-3 14 Confidence-intervals Two-means Independent-samples-Part-1-lesson xlsx 9.83Кб
13056290-3 14 Confidence-intervals Two-means Independent-samples-Part-1-exercise xlsx 9.83Кб
13056292-3 14 Confidence-intervals Two-means Independent-samples-Part-1-exercise-solution xlsx 10.12Кб
13056308-3 15 Confidence-intervals Two-means Independent-samples-Part-2-lesson xlsx 9.52Кб
13056316-3 15 Confidence-intervals Two-means Independent-samples-Part-2-exercise xlsx 9.17Кб
13056318-3 15 Confidence-intervals Two-means Independent-samples-Part-2-exercise-solution xlsx 9.79Кб
13056326-3.17.Practical-example.Confidence-intervals-lesson.xlsx 1.74Мб
13056520-4.4.Test-for-the-mean.Population-variance-known-lesson.xlsx 10.96Кб
13056684-4.4.Test-for-the-mean.Population-variance-known-exercise.xlsx 11.03Кб
13056688-4 4 Test-for-the-mean Population-variance-known-exercise-solution xlsx 11.22Кб
13056708-4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx 11.34Кб
13056712-4.7.Test-for-the-mean.Dependent-samples-lesson.xlsx 9.79Кб
13056716-4.7.Test-for-the-mean.Dependent-samples-exercise.xlsx 12.80Кб
13056718-4.7.Test-for-the-mean.Dependent-samples-exercise-solution.xlsx 14.40Кб
13056720-4.8.Test-for-the-mean.Independent-samples-Part-1-lesson.xlsx 9.63Кб
13056726-4.9.Test-for-the-mean.Independent-samples-Part-2-lesson.xlsx 9.31Кб
13070016-Course-Notes-Section-6.pdf 936.42Кб
13070018-Course-Notes-Section-6.pdf 936.42Кб
13070602-Shortcuts-for-Jupyter.pdf 619.17Кб
13070604-Shortcuts-for-Jupyter.pdf 619.17Кб
13070608-Shortcuts-for-Jupyter.pdf 619.17Кб
13070978-Audiobooks-data.csv 710.77Кб
13075156-365-DataScience-Diagram.pdf 323.08Кб
13075162-365-DataScience-Diagram.pdf 323.08Кб
13075166-365-DataScience.png 6.92Мб
13075168-365-DataScience.png 6.92Мб
13129220-2.13.Practical-example.Descriptive-statistics-lesson.xlsx 146.51Кб
13737052-4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx 14.54Кб
13831264-Course-notes-inferential-statistics.pdf 382.32Кб
13831266-Course-notes-inferential-statistics.pdf 382.32Кб
14171114-3.4.Standard-normal-distribution-exercise.xlsx 11.99Кб
14171118-3.4.Standard-normal-distribution-exercise-solution.xlsx 24.04Кб
14679830-2.4.Numerical-variables.Frequency-distribution-table-lesson.xlsx 11.44Кб
14812652-Course-notes-descriptive-statistics.pdf 482.21Кб
14812660-Course-notes-descriptive-statistics.pdf 482.21Кб
15271310-Absenteeism-data.csv 32.05Кб
15271322-data-preprocessing-homework.pdf 134.47Кб
15271330-df-preprocessed.csv 29.11Кб
15364076-Absenteeism-preprocessed.csv 29.13Кб
15451783-Example-bank-data.csv 6.21Кб
15451889-Bank-data.csv 19.55Кб
15451939-Bank-data.csv 19.55Кб
15451967-Bank-data.csv 19.55Кб
15452033-Bank-data.csv 19.55Кб
15452035-Bank-data-testing.csv 8.30Кб
15452987-Categorical.csv 10.34Кб
15453017-Countries-exercise.csv 8.27Кб
15453029-iris-dataset.csv 2.40Кб
15453055-iris-dataset.csv 2.40Кб
15453059-iris-with-answers.csv 3.63Кб
15762096-Statistics-Glossary.xlsx 20.26Кб
15870664-Python-Introduction-Course-Notes.pdf 2.03Мб
16190540-4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx 10.54Кб
16190542-4 9 Test-for-the-mean Independent-samples-Part-2-exercise-2-solution xlsx 11.39Кб
16200120-4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx 10.77Кб
16413674-3.9.The-z-table.xlsx 25.58Кб
16413678-3.9.The-z-table.xlsx 25.58Кб
16507136-FAQ-The-Data-Science-Course.pdf 306.10Кб
16752952-Course-Notes-Section-2.pdf 578.08Кб
16752958-Course-Notes-Section-2.pdf 578.08Кб
16753580-Online-p-value-calculator.pdf 1.15Мб
16753694-Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly pdf 289.12Кб
16753696-Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly pdf 289.12Кб
17187788-GD-function-example.xlsx 42.33Кб
17431614-Course-Notes-Basic-Probability.pdf 371.05Кб
17431618-Course-Notes-Combinatorics.pdf 226.12Кб
17431622-Course-Notes-Bayesian-Inference.pdf 386.01Кб
17431624-Symmetry-Explained.pdf 85.04Кб
17431628-Solving-Integrals.pdf 343.85Кб
17550252-Normal-Distribution-Exp-and-Var.pdf 144.08Кб
17550452-Combinations-With-Repetition.pdf 207.41Кб
17710210-4 6 Test-for-the-mean Population-variance-unknown-exercise-solution xlsx 12.63Кб
17756226-Additional-Exercises-Combinatorics.pdf 106.58Кб
17862366-Poisson-Expected-Value-and-Variance.pdf 145.99Кб
17959056-3.17.Practical-example.Confidence-intervals-exercise.xlsx 1.73Мб
17959058-3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx 1.82Мб
17970686-CDS-2017-2018-Hamilton.pdf 845.31Кб
17971238-FIFA19.csv 8.64Мб
17971248-FIFA19-post.csv 8.64Мб
17971258-Daily-Views.xlsx 9.53Кб
17971260-Daily-Views-post.xlsx 20.21Кб
17971264-Customers-Membership.xlsx 9.69Кб
17971268-Customers-Membership-post.xlsx 15.62Кб
18029224-Glossary.xlsx 19.97Кб
18041220-4 8 Test-for-the-mean Independent-samples-Part-1-exercise-solution xlsx 11.25Кб
18886388-Bayesian-Homework.pdf 27.26Кб
18886392-Bayesian-Homework-Solutions.pdf 30.35Кб
19327638-Probability-in-Finance-Homework.pdf 110.68Кб
19327648-Probability-in-Finance-Solutions.pdf 184.46Кб
19527574-2.13.Practical-example.Descriptive-statistics-exercise.xlsx 120.27Кб
19527576-2 13 Practical-example Descriptive-statistics-exercise-solution xlsx 146.38Кб
19540858-Additional-Exercises-Combinatorics-Solutions.pdf 245.67Кб
19664156-Audiobooks-data.csv 710.77Кб
19880121-2.10.Standard-deviation-and-coefficient-of-variation-exercise.xlsx 11.61Кб
19880123-2 10 Standard-deviation-and-coefficient-of-variation-exercise-solution xlsx 12.60Кб
20945990-Course-Notes-Probability-Distributions.pdf 463.95Кб
21198408-3.11.The-t-table.xlsx 15.85Кб
21993772-Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf 182.38Кб
22431075-Course-notes-hypothesis-testing.pdf 656.44Кб
22431079-Course-notes-hypothesis-testing.pdf 656.44Кб
22685780-Course-notes-regression-analysis.pdf 312.18Кб
22685784-Course-notes-regression-analysis.pdf 312.18Кб
23038654-2 4 Numerical-variables Frequency-distribution-table-exercise-solution xlsx 13.15Кб
23224540-Probability-Cheat-Sheet.pdf 320.28Кб
23412976-Course-Notes-Logistic-Regression.pdf 335.17Кб
23413016-Course-Notes-Logistic-Regression.pdf 335.17Кб
23413656-Course-Notes-Cluster-Analysis.pdf 208.65Кб
23413662-Course-Notes-Cluster-Analysis.pdf 208.65Кб
24453624-Absenteeism-predictions.csv 2.10Кб
27047254-4.10.Hypothesis-testing-section-practical-example.xlsx 51.90Кб
27047330-4.10.Hypothesis-testing-section-practical-example-exercise.xlsx 43.69Кб
27047334-4 10 Hypothesis-testing-section-practical-example-exercise-solution xlsx 44.27Кб
29535536-Additional-Python-Tools-Lectures.ipynb 13.47Кб
29535540-Additional-Python-Tools-Exercises.ipynb 11.37Кб
29535546-Additional-Python-Tools-Solutions.ipynb 25.49Кб
29535548-Additional-Python-Tools-Lectures.ipynb 13.47Кб
29535552-Additional-Python-Tools-Exercises.ipynb 11.37Кб
29535554-Additional-Python-Tools-Solutions.ipynb 25.49Кб
29544526-Variables-Lecture-Py3.ipynb 3.61Кб
29544572-Numbers-and-Boolean-Values-Lecture-Py3.ipynb 3.36Кб
29544578-Strings-Lecture-Py3.ipynb 7.56Кб
29544582-Strings-Exercise-Py3.ipynb 2.61Кб
29544586-Strings-Solution-Py3.ipynb 5.45Кб
29544590-Numbers-and-Boolean-Values-Exercise-Py3.ipynb 2.29Кб
29544594-Numbers-and-Boolean-Values-Solution-Py3.ipynb 3.23Кб
29544602-Variables-Exercise-Py3.ipynb 2.23Кб
29544612-Variables-Solution-Py3.ipynb 3.79Кб
29544616-Arithmetic-Operators-Lecture-Py3.ipynb 3.53Кб
29544618-Arithmetic-Operators-Exercise-Py3.ipynb 2.62Кб
29544620-Arithmetic-Operators-Solution-Py3.ipynb 4.24Кб
29544624-The-Double-Equality-Sign-Lecture-Py3.ipynb 1.45Кб
29544630-The-Double-Equality-Sign-Exercise-Py3.ipynb 838б
29544632-The-Double-Equality-Sign-Solution-Py3.ipynb 1.14Кб
29544648-Reassign-Values-Lecture-Py3.ipynb 3.08Кб
29544656-Reassign-Values-Exercise-Py3.ipynb 1.67Кб
29544658-Reassign-Values-Solution-Py3.ipynb 2.12Кб
29544678-Add-Comments-Lecture-Py3.ipynb 1.03Кб
29544682-Indexing-Elements-Lecture-Py3.ipynb 1.32Кб
29544684-Indexing-Elements-Exercise-Py3.ipynb 1.35Кб
29544694-Indexing-Elements-Solution-Py3.ipynb 2.17Кб
29544712-Line-Continuation-Lecture-Py3.ipynb 779б
29544714-Line-Continuation-Exercise-Py3.ipynb 1.14Кб
29544716-Line-Continuation-Solution-Py3.ipynb 1.50Кб
29544720-Structure-Your-Code-with-Indentation-Lecture-Py3.ipynb 958б
29544724-Structure-Your-Code-with-Indentation-Exercise-Py3.ipynb 956б
29544728-Structure-Your-Code-with-Indentation-Solution-Py3.ipynb 1.50Кб
29544734-Comparison-Operators-Lecture-Py3.ipynb 2.53Кб
29544738-Comparison-Operators-Exercise-Py3.ipynb 1.61Кб
29544744-Comparison-Operators-Solution-Py3.ipynb 2.41Кб
29544754-Logical-and-Identity-Operators-Lecture-Py3.ipynb 5.86Кб
29544770-Logical-and-Identity-Operators-Lecture-Py3.ipynb 5.86Кб
29544776-Logical-and-Identity-Operators-Solution-Py3.ipynb 3.43Кб
29544784-Introduction-to-the-If-Statement-Lecture-Py3.ipynb 1.14Кб
29544788-Introduction-to-the-If-Statement-Exercise-Py3.ipynb 1.53Кб
29544792-Introduction-to-the-If-Statement-Solution-Py3.ipynb 2.19Кб
29544796-Add-an-Else-Statement-Lecture-Py3.ipynb 1.76Кб
29544802-Add-an-Else-Statement-Exercise-Py3.ipynb 1.02Кб
29544804-Add-an-Else-Statement-Solution-Py3.ipynb 1.40Кб
29544814-Else-If-for-Brief-Elif-Lecture-Py3.ipynb 3.24Кб
29544818-Else-If-for-Brief-Elif-Exercise-Py3.ipynb 1.75Кб
29544822-Else-If-for-Brief-Elif-Solution-Py3.ipynb 2.40Кб
29544828-A-Note-on-Boolean-Values-Lecture-Py3.ipynb 791б
29544842-Defining-a-Function-in-Python-Lecture-Py3.ipynb 868б
29544846-Creating-a-Function-with-a-Parameter-Lecture-Py3.ipynb 1.59Кб
29544848-Creating-a-Function-with-a-Parameter-Exercise-Py3.ipynb 1.16Кб
29544850-Creating-a-Function-with-a-Parameter-Solution-Py3.ipynb 1.79Кб
29544866-Another-Way-to-Define-a-Function-Lecture-Py3.ipynb 3.29Кб
29544868-Another-Way-to-Define-a-Function-Exercise-Py3.ipynb 1.24Кб
29544874-Another-Way-to-Define-a-Function-Solution-Py3.ipynb 1.98Кб
29544880-0.6.4-Using-a-Function-in-another-Function-Lecture-Py3.ipynb 1015б
29544888-0.6.4-Using-a-Function-in-another-Function-Exercise-Py3.ipynb 1.04Кб
29544890-0.6.4-Using-a-Function-in-another-Function-Solution-Py3.ipynb 1.60Кб
29544904-Combining-Conditional-Statements-and-Functions-Lecture-Py3.ipynb 1.29Кб
29544906-Combining-Conditional-Statements-and-Functions-Exercise-Py3.ipynb 1.06Кб
29544910-Combining-Conditional-Statements-and-Functions-Solution-Py3.ipynb 1.65Кб
29544920-Creating-Functions-Containing-a-Few-Arguments-Lecture-Py3.ipynb 1.72Кб
29544922-Notable-Built-In-Functions-in-Python-Lecture-Py3.ipynb 4.51Кб
29544924-Notable-Built-In-Functions-in-Python-Exercise-Py3.ipynb 3.66Кб
29544926-Notable-Built-In-Functions-in-Python-Solution-Py3.ipynb 5.52Кб
29544928-Lists-Lecture-Py3.ipynb 2.70Кб
29544930-Lists-Exercise-Py3.ipynb 2.14Кб
29544932-Lists-Solution-Py3.ipynb 3.18Кб
29544938-Help-Yourself-with-Methods-Lecture-Py3.ipynb 4.39Кб
29544942-Help-Yourself-with-Methods-Exercise-Py3.ipynb 1.91Кб
29544946-Help-Yourself-with-Methods-Solution-Py3.ipynb 2.83Кб
29544952-List-Slicing-Lecture-Py3.ipynb 5.02Кб
29544956-List-Slicing-Exercise-Py3.ipynb 2.79Кб
29544960-List-Slicing-Solution-Py3.ipynb 4.26Кб
29544972-Tuples-Lecture-Py3.ipynb 2.91Кб
29544976-Tuples-Exercise-Py3.ipynb 2.07Кб
29544978-Tuples-Solution-Py3.ipynb 4.61Кб
29544988-Dictionaries-Lecture-Py3.ipynb 4.35Кб
29544992-Dictionaries-Exercise-Py3.ipynb 2.92Кб
29544994-Dictionaries-Solution-Py3.ipynb 6.16Кб
29545008-For-Loops-Lecture-Py3.ipynb 1.26Кб
29545010-For-Loops-Exercise-Py3.ipynb 1.28Кб
29545018-For-Loops-Solution-Py3.ipynb 1.80Кб
29545028-While-Loops-and-Incrementing-Lecture-Py3.ipynb 1.08Кб
29545030-While-Loops-and-Incrementing-Exercise-Py3.ipynb 1.12Кб
29545032-While-Loops-and-Incrementing-Solution-Py3.ipynb 1.75Кб
29545042-Create-Lists-with-the-range-Function-Lecture-Py3.ipynb 1.34Кб
29545046-Create-Lists-with-the-range-Function-Exercise-Py3.ipynb 1.45Кб
29545048-Create-Lists-with-the-range-Function-Solution-Py3.ipynb 2.25Кб
29545058-Use-Conditional-Statements-and-Loops-Together-Lecture-Py3.ipynb 1.95Кб
29545070-Use-Conditional-Statements-and-Loops-Together-Exercise-Py3.ipynb 2.10Кб
29545074-Use-Conditional-Statements-and-Loops-Together-Solution-Py3.ipynb 2.96Кб
29545092-All-In-Lecture-Py3.ipynb 1.62Кб
29545100-All-In-Exercise-Py3.ipynb 1.30Кб
29545102-All-In-Solution-Py3.ipynb 1.90Кб
29545116-Iterating-over-Dictionaries-Lecture-Py3.ipynb 1.08Кб
29545118-Iterating-over-Dictionaries-Exercise-Py3.ipynb 2.19Кб
29545120-Iterating-over-Dictionaries-Solution-Py3.ipynb 2.87Кб
29545266-Absenteeism-predictions.csv 2.10Кб
29545298-Absenteeism-Exercise-Preprocessing-df-reason-mod.ipynb 4.82Кб
29545314-Absenteeism-Exercise-Preprocessing-ChP-df-date-reason-mod.ipynb 7.33Кб
29545316-Absenteeism-Exercise-Removing-the-Date-Column-SOLUTION.ipynb 8.33Кб
29545318-Absenteeism-Exercise-Preprocessing-LECTURES.ipynb 7.60Мб
29545334-Absenteeism-Exercise-Preprocessing-df-preprocessed.ipynb 8.51Кб
29545338-Absenteeism-Exercise-EXERCISES-and-SOLUTIONS.ipynb 4.13Кб
29545348-Absenteeism-Exercise-Deploying-the-absenteeism-module.ipynb 973б
29545372-Absenteeism-Exercise-Integration.ipynb 62.35Кб
29545374-absenteeism-module.py 6.62Кб
29545382-Absenteeism-new-data.csv 1.87Кб
29545384-model 1.01Кб
29545388-scaler 1.86Кб
29587970-1.01.Simple-linear-regression.csv 922б
29587976-Simple-linear-regression.ipynb 3.79Кб
29588016-Simple-linear-regression-with-comments.ipynb 4.06Кб
29588022-real-estate-price-size.csv 1.86Кб
29588024-Simple-Linear-Regression-Exercise-Solution.ipynb 3.57Кб
29588026-Simple-Linear-Regression-Exercise.ipynb 2.78Кб
29588058-1.02.Multiple-linear-regression.csv 1.09Кб
29588064-Multiple-linear-regression-and-Adjusted-R-squared.ipynb 2.15Кб
29588066-Multiple-linear-regression-and-Adjusted-R-squared-with-comments ipynb 2.80Кб
29588068-Multiple-Linear-Regression-Exercise-Solution.ipynb 13.39Кб
29588072-Multiple-Linear-Regression-Exercise.ipynb 2.45Кб
29588076-real-estate-price-size-year.csv 2.35Кб
29588090-1.03.Dummies.csv 1.19Кб
29588094-Dummy-Variables.ipynb 4.62Кб
29588120-Dummy-variables-with-comments.ipynb 7.09Кб
29588124-Multiple-Linear-Regression-with-Dummies-Exercise-Solution.ipynb 18.00Кб
29588128-Multiple-Linear-Regression-with-Dummies-Exercise.ipynb 3.01Кб
29588130-real-estate-price-size-year-view.csv 3.39Кб
29588138-Making-predictions.ipynb 5.77Кб
29588142-Making-predictions-with-comments.ipynb 9.41Кб
29588160-1.01.Simple-linear-regression.csv 922б
29588164-sklearn-Simple-Linear-Regression.ipynb 4.92Кб
29588166-sklearn-Simple-Linear-Regression-with-comments.ipynb 6.06Кб
29588200-1.01.Simple-linear-regression.csv 922б
29588206-sklearn-Simple-Linear-Regression.ipynb 26.07Кб
29588208-sklearn-Simple-Linear-Regression-with-comments.ipynb 28.35Кб
29588240-1.02.Multiple-linear-regression.csv 1.07Кб
29588244-sklearn-Multiple-Linear-Regression.ipynb 7.79Кб
29588246-sklearn-Multiple-Linear-Regression-with-comments.ipynb 8.65Кб
29588306-1.02.Multiple-linear-regression.csv 1.07Кб
29588310-sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared.ipynb 9.11Кб
29588312-sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-with-comments ipynb 10.41Кб
29588320-1.02.Multiple-linear-regression.csv 1.07Кб
29588324-sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise-Solution ipynb 10.31Кб
29588328-sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise ipynb 9.83Кб
29588334-1.02.Multiple-linear-regression.csv 1.07Кб
29588340-sklearn-Feature-Selection-with-F-regression.ipynb 10.44Кб
29588342-sklearn-Feature-Selection-with-F-regression-with-comments.ipynb 12.99Кб
29588350-1.02.Multiple-linear-regression.csv 1.07Кб
29588358-sklearn-How-to-properly-include-p-values.ipynb 12.71Кб
29588366-1.02.Multiple-linear-regression.csv 1.07Кб
29588370-sklearn-Multiple-Linear-Regression-Summary-Table.ipynb 13.71Кб
29588372-sklearn-Multiple-Linear-Regression-Summary-Table-with-comments ipynb 16.63Кб
29588378-real-estate-price-size-year.csv 2.35Кб
29588380-sklearn-Multiple-Linear-Regression-Exercise-Solution.ipynb 15.44Кб
29588382-sklearn-Multiple-Linear-Regression-Exercise.ipynb 5.67Кб
29588388-1.02.Multiple-linear-regression.csv 1.07Кб
29588392-sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-1 ipynb 11.73Кб
29588394-SKLEAR-1.IPY 12.87Кб
29588398-1.02.Multiple-linear-regression.csv 1.07Кб
29588400-sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-2 ipynb 14.89Кб
29588412-SKLEAR-1.IPY 16.79Кб
29588414-1.02.Multiple-linear-regression.csv 1.07Кб
29588416-sklearn-Making-Predictions-with-the-Standardized-Coefficients ipynb 29.75Кб
29588422-sklearn-Making-Predictions-with-the-Standardized-Coefficients-with-comments ipynb 22.03Кб
29588430-real-estate-price-size-year.csv 2.35Кб
29588432-sklearn-Feature-Scaling-Exercise-Solution.ipynb 16.28Кб
29588434-sklearn-Feature-Scaling-Exercise.ipynb 6.07Кб
29588436-sklearn-Train-Test-Split.ipynb 7.23Кб
29588440-sklearn-Train-Test-Split-with-comments.ipynb 9.05Кб
29588446-1.04.Real-life-example.csv 219.83Кб
29588452-sklearn-Linear-Regression-Practical-Example-Part-1.ipynb 166.91Кб
29588454-sklearn-Linear-Regression-Practical-Example-Part-1-with-comments ipynb 171.38Кб
29588460-1.04.Real-life-example.csv 219.83Кб
29588462-sklearn-Linear-Regression-Practical-Example-Part-2.ipynb 328.74Кб
29588466-sklearn-Linear-Regression-Practical-Example-Part-2-with-comments ipynb 335.63Кб
29588552-sklearn-Linear-Regression-Practical-Example-Part-3.ipynb 343.58Кб
29588558-sklearn-Linear-Regression-Practical-Example-Part-3-with-comments ipynb 351.47Кб
29588598-1.04.Real-life-example.csv 219.83Кб
29588602-sklearn-Dummies-and-VIF-Exercise-Solution.ipynb 370.22Кб
29588604-sklearn-Dummies-and-VIF-Exercise.ipynb 344.62Кб
29588606-1.04.Real-life-example.csv 219.83Кб
29588612-sklearn-Linear-Regression-Practical-Example-Part-4.ipynb 397.23Кб
29588618-sklearn-Linear-Regression-Practical-Example-Part-4-with-comments ipynb 407.59Кб
29588624-1.04.Real-life-example.csv 219.83Кб
29588626-sklearn-Linear-Regression-Practical-Example-Part-5.ipynb 698.36Кб
29588630-sklearn-Linear-Regression-Practical-Example-Part-5-with-comments ipynb 711.05Кб
29588638-2.01.Admittance.csv 1.58Кб
29588642-Admittance.ipynb 3.54Кб
29588644-Admittance-with-comments.ipynb 5.32Кб
29588660-Admittance-regression-tables-fixed-error.ipynb 4.11Кб
29588666-Admittance-regression.ipynb 2.09Кб
29588668-Admittance-regression-summary-error.ipynb 2.48Кб
29588676-Building-a-Logistic-Regression-Exercise.ipynb 2.92Кб
29588678-Building-a-Logistic-Regression-Solution.ipynb 4.44Кб
29588694-Understanding-Logistic-Regression-Tables-Exercise.ipynb 3.16Кб
29588700-Understanding-Logistic-Regression-Tables-Solution.ipynb 4.79Кб
29588712-2.02.Binary-predictors.csv 2.56Кб
29588716-Binary-predictors.ipynb 2.41Кб
29588826-Binary-Predictors-in-a-Logistic-Regression-Exercise.ipynb 2.54Кб
29588832-Binary-Predictors-in-a-Logistic-Regression-Solution.ipynb 4.51Кб
29588838-Accuracy.ipynb 3.63Кб
29588842-Accuracy-with-comments.ipynb 11.67Кб
29588854-Calculating-the-Accuracy-of-the-Model-Exercise.ipynb 5.39Кб
29588856-Calculating-the-Accuracy-of-the-Model-Solution.ipynb 81.21Кб
29588864-Testing-the-model.ipynb 5.77Кб
29588872-2.03.Test-dataset.csv 322б
29588876-Testing-the-model-with-comments.ipynb 7.56Кб
29588894-Testing-the-Model-Exercise.ipynb 6.79Кб
29588898-Testing-the-Model-Solution.ipynb 111.10Кб
29588934-3.01.Country-clusters.csv 200б
29588936-Country-clusters.ipynb 3.31Кб
29588940-Country-clusters-with-comments.ipynb 5.80Кб
29588950-Countries-exercise.csv 8.27Кб
29588952-A-Simple-Example-of-Clustering-Exercise.ipynb 3.62Кб
29588954-A-Simple-Example-of-Clustering-Solution.ipynb 4.65Кб
29588960-Categorical-data.ipynb 3.35Кб
29588968-Categorical-data-with-comments.ipynb 5.62Кб
29588982-Clustering-Categorical-Data-Exercise.ipynb 3.78Кб
29588986-Clustering-Categorical-Data-Solution.ipynb 4.90Кб
29588998-Selecting-the-number-of-clusters.ipynb 4.53Кб
29589000-Selecting-the-number-of-clusters-with-comments.ipynb 7.48Кб
29589006-How-to-Choose-the-Number-of-Clusters-Exercise.ipynb 5.55Кб
29589008-How-to-Choose-the-Number-of-Clusters-Solution.ipynb 8.49Кб
29589020-Market-segmentation-example.ipynb 3.80Кб
29589022-Market-segmentation-example-with-comments.ipynb 5.90Кб
29589028-3.12.Example.csv 283б
29589036-Market-segmentation-example-Part2.ipynb 4.68Кб
29589038-Market-segmentation-example-Part2-with-comments.ipynb 6.81Кб
29589044-Species-Segmentation-with-Cluster-Analysis-Part-1-Exercise.ipynb 4.46Кб
29589048-Species-Segmentation-with-Cluster-Analysis-Part-1-Solution.ipynb 7.35Кб
29589052-Species-Segmentation-with-Cluster-Analysis-Part-2-Exercise.ipynb 10.74Кб
29589056-Species-Segmentation-with-Cluster-Analysis-Part-2-Solution.ipynb 15.30Кб
29589066-Heatmaps.ipynb 1.82Кб
29589070-Heatmaps-with-comments.ipynb 17.66Кб
29589074-Country-clusters-standardized.csv 244б
29589122-Scalars-Vectors-and-Matrices.ipynb 4.55Кб
29589126-Tensors.ipynb 2.08Кб
29589134-Adding-and-subtracting-matrices.ipynb 3.22Кб
29589174-Errors-when-adding-scalars-vectors-and-matrices-in-Python.ipynb 3.17Кб
29589180-Tranpose-of-a-matrix.ipynb 2.89Кб
29589188-Dot-product.ipynb 2.13Кб
29589194-Dot-product-Part-2.ipynb 3.60Кб
29589208-Minimal-example-Part-1.ipynb 1.19Кб
29589218-Minimal-example-Part-2.ipynb 3.65Кб
29589230-Minimal-example-Part-3.ipynb 6.79Кб
29589236-Minimal-example-Part-4-Complete.ipynb 11.41Кб
29589260-Minimal-example-All-Exercises.ipynb 12.89Кб
29589266-Minimal-example-Exercise-1-Solution.ipynb 69.00Кб
29589272-Minimal-example-Exercise-2-Solution.ipynb 61.41Кб
29589274-Minimal-example-Exercise-3.a.Solution.ipynb 67.89Кб
29589278-Minimal-example-Exercise-3.b.Solution.ipynb 67.72Кб
29589280-Minimal-example-Exercise-3.c.Solution.ipynb 70.13Кб
29589288-Minimal-example-Exercise-3.d.Solution.ipynb 84.13Кб
29589294-Minimal-example-Exercise-4-Solution.ipynb 66.52Кб
29589298-Minimal-example-Exercise-5-Solution.ipynb 68.88Кб
29589302-Minimal-example-Exercise-6.ipynb 61.76Кб
29589304-Minimal-example-Exercise-6-Solution.ipynb 61.76Кб
29589774-TensorFlow-Minimal-example-Part1.ipynb 1.66Кб
29589782-TensorFlow-Minimal-example-Part2.ipynb 9.06Кб
29589788-TensorFlow-Minimal-example-Part3.ipynb 76.52Кб
29589804-TensorFlow-Minimal-example-complete.ipynb 76.85Кб
29589808-TensorFlow-Minimal-example-complete-with-comments.ipynb 82.29Кб
29589822-TensorFlow-Minimal-example-All-exercises.ipynb 83.62Кб
29589824-TensorFlow-Minimal-example-Exercise-1-Solution.ipynb 27.96Кб
29589828-TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb 83.68Кб
29589834-TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb 77.52Кб
29589836-TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb 84.44Кб
29589868-TensorFlow-MNIST-Part1-with-comments.ipynb 3.97Кб
29589876-TensorFlow-MNIST-Part2-with-comments.ipynb 6.39Кб
29589878-TensorFlow-MNIST-Part3-with-comments.ipynb 8.61Кб
29589884-TensorFlow-MNIST-Part4-with-comments.ipynb 10.49Кб
29589888-TensorFlow-MNIST-Part5-with-comments.ipynb 10.99Кб
29589892-TensorFlow-MNIST-Part6-with-comments.ipynb 12.54Кб
29589896-1.TensorFlow-MNIST-Width-Solution.ipynb 14.84Кб
29589904-2.TensorFlow-MNIST-Depth-Solution.ipynb 15.31Кб
29589908-3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb 15.30Кб
29589912-4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb 15.11Кб
29589920-5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb 14.74Кб
29589928-6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb 15.12Кб
29589932-7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb 15.18Кб
29589934-8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb 20.58Кб
29589940-9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb 15.80Кб
29589948-TensorFlow-MNIST-All-Exercises.ipynb 16.65Кб
29589952-TensorFlow-MNIST-around-98-percent-accuracy.ipynb 15.02Кб
29589956-TensorFlow-MNIST-complete.ipynb 6.78Кб
29589960-TensorFlow-MNIST-complete-with-comments.ipynb 14.51Кб
29589970-TensorFlow-Audiobooks-Preprocessing.ipynb 5.58Кб
29589978-TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.19Кб
29589984-TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb 8.60Кб
29589992-TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb 10.04Кб
29590000-TensorFlow-Audiobooks-Machine-Learning-Part1-with-comments.ipynb 4.61Кб
29590002-TensorFlow-Audiobooks-Machine-Learning-Part2-with-comments.ipynb 19.69Кб
29590006-TensorFlow-Audiobooks-Machine-Learning-Part3-with-comments.ipynb 10.06Кб
29590012-TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb 11.95Кб
29590020-TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb 11.95Кб
29590038-5.3.TensorFlow-Minimal-example-Part-1.ipynb 3.36Кб
29590046-5.4.TensorFlow-Minimal-example-Part-2.ipynb 6.17Кб
29591380-5.5.TensorFlow-Minimal-example-Part-3.ipynb 8.65Кб
29591408-5.6.TensorFlow-Minimal-example-complete.ipynb 12.15Кб
29591428-TensorFlow-Minimal-Example-All-Exercises.ipynb 13.97Кб
29591432-TensorFlow-Minimal-Example-Exercise-1-Solution.ipynb 23.63Кб
29591442-TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb 25.54Кб
29591444-TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb 25.51Кб
29591454-TensorFlow-Minimal-Example-Exercise-2-3-Solution.ipynb 49.96Кб
29591458-TensorFlow-Minimal-Example-Exercise-2-4-Solution.ipynb 21.75Кб
29591464-TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb 26.71Кб
29591468-TensorFlow-Minimal-Example-Exercise-4-Solution.ipynb 26.98Кб
29591484-12.3.TensorFlow-MNIST-with-comments-Part-1.ipynb 3.89Кб
29591494-12.4.TensorFlow-MNIST-with-comments-Part-2.ipynb 6.10Кб
29591504-12.5.TensorFlow-MNIST-with-comments-Part-3.ipynb 7.31Кб
29591514-12.6.TensorFlow-MNIST-with-comments-Part-4.ipynb 7.90Кб
29591520-12.7.TensorFlow-MNIST-with-comments-Part-5.ipynb 8.53Кб
29591538-12.8.TensorFlow-MNIST-with-comments-Part-6.ipynb 11.50Кб
29591550-12.9.TensorFlow-MNIST-with-comments.ipynb 13.03Кб
29591622-TensorFlow-MNIST-Exercises-All.ipynb 15.47Кб
29591632-0.TensorFlow-MNIST-take-note-of-time-Solution.ipynb 14.00Кб
29591642-1.TensorFlow-MNIST-Width-Solution.ipynb 14.01Кб
29591650-2.TensorFlow-MNIST-Depth-Solution.ipynb 14.87Кб
29591654-3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb 16.81Кб
29591658-4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb 14.35Кб
29591660-5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb 13.93Кб
29591668-6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb 14.26Кб
29591682-7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb 14.16Кб
29591686-8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb 14.07Кб
29591690-9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb 15.21Кб
29591694-TensorFlow-MNIST-around-98-percent-accuracy.ipynb 17.66Кб
29591716-Audiobooks-data.csv 710.77Кб
29591732-Audiobooks-data.csv 710.77Кб
29591734-TensorFlow-Audiobooks-Preprocessing.ipynb 5.58Кб
29591738-TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.19Кб
29591808-Audiobooks-data.csv 710.77Кб
29591812-TensorFlow-Audiobooks-Machine-learning-Homework.ipynb 14.40Кб
29591820-TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.19Кб
29591842-Audiobooks-data.csv 710.77Кб
29591844-TensorFlow-Audiobooks-Machine-learning-Homework.ipynb 14.40Кб
29591846-TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.19Кб
29591888-TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb 10.64Кб
29591892-TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb 12.73Кб
29591894-TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb 10.64Кб
29591900-TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb 12.73Кб
29591906-TensorFlow-Audiobooks-Outlining-the-model.ipynb 9.36Кб
29591910-TensorFlow-Audiobooks-Outlining-the-model-with-comments.ipynb 10.34Кб
29591940-Audiobooks-data.csv 710.77Кб
29591944-TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb 8.60Кб
29591948-TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb 10.03Кб
33130180-real-estate-price-size.csv 1.86Кб
33130182-Simple-Linear-Regression-with-sklearn-Exercise.ipynb 4.08Кб
33130186-Simple-Linear-Regression-with-sklearn-Exercise-Solution.ipynb 26.61Кб
35215106-365-Data-Science-Data-Science-Interview-Questions-Guide.pdf 15.56Мб
external-assets-links.txt 101б
external-assets-links.txt 130б
external-assets-links.txt 774б
Статистика распространения по странам
Великобритания (GB) 1
Всего 1
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент