Общая информация
Название [OneHack.Us] Coursera - Practical Deep Learning With Python 2025
Тип
Размер 2.66Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
01. Support - Onehack.Us.txt 94б
01-basics_of_lstm.mp4 28.36Мб
01-classification_and_object_detection.mp4 29.81Мб
01-course_summary_for_practical_deep_learning_with_python.mp4 23.39Мб
01-fast_rcnn_limitations.mp4 24.90Мб
01-improving_a_model.mp4 32.93Мб
01-limitations_of_mlp.mp4 27.91Мб
01-limitations_of_single_layered_perceptron.mp4 11.05Мб
01-machine_learning_vs_deep_learning.mp4 34.27Мб
01-rnn_fundamentals.mp4 20.50Мб
01-summary_of_cnn_in_deep_learning.mp4 13.32Мб
01-summary_of_deep_learning_components.mp4 36.33Мб
01-summary_of_deep_learning_with_rnn_and_lstm_with_model_optimization.mp4 32.88Мб
01-welcome_to_practical_deep_learning_with_python_instructions.html 7.21Кб
02-advent_of_faster_r_cnn.mp4 25.24Мб
02-course_introduction.mp4 27.98Мб
02-introduction_to_rcnn.mp4 31.51Мб
02-lstm_structure.mp4 24.24Мб
02-mlp_limitations_resolving_the_issue_with_cnn.mp4 21.51Мб
02-model_optimization.mp4 21.84Мб
02-multi_layered_perceptron.mp4 12.04Мб
02-practice_project_mnist_fashion_dataset_analysis_instructions.html 64.00Кб
02-rnn_architecture.mp4 22.59Мб
02-summary_of_faster_rcnn.mp4 22.48Мб
02-what_is_deep_learning.mp4 20.31Мб
03-environment_configuration.mp4 21.82Мб
03-forget_gate_and_input_gate.mp4 20.87Мб
03-neural_networks.mp4 42.16Мб
03-r_cnn_bounding_box_regression.mp4 12.46Мб
03-rnn_architecture_workflow.mp4 28.92Мб
03-tensorflow_hub.mp4 20.32Мб
03-using_adam_optimizer.mp4 31.96Мб
03-visual_cortex_and_cnn.mp4 31.61Мб
03-what_is_backpropagation.mp4 10.26Мб
04-artificial_neural_network_ann.mp4 24.40Мб
04-backpropagation.mp4 17.00Мб
04-convolutional_layer.mp4 31.99Мб
04-demonstration object detection with faster rcnn pretrained model setup mp4 74.66Мб
04-implementing_rnn.mp4 28.87Мб
04-model_compilation.mp4 14.37Мб
04-output_gate.mp4 14.09Мб
04-pre_trained_model.mp4 29.04Мб
04-system requirements and pre requisite for studying deep learning instructions html 4.51Кб
05-ann_types_and_applications.mp4 17.78Мб
05-demonstration_building_a_simple_neural_network.mp4 40.88Мб
05-demonstration_object_detection_with_faster_rcnn_building_the_model.mp4 82.91Мб
05-demonstration_rnn_dataset_preparation.mp4 62.04Мб
05-fast_regional_cnn.mp4 32.10Мб
05-importance_of_lstm_architecture.mp4 23.04Мб
05-model_compilation_with_popular_frameworks.mp4 27.34Мб
05-working_of_convolutional_layer.mp4 31.99Мб
06-demonstration_creating_base_variables_and_loading_the_model.mp4 37.00Мб
06-demonstration_load_and_preprocess_the_data.mp4 42.04Мб
06-demonstration_model_compilation_preparing_the_dataset.mp4 55.53Мб
06-demonstration_rnn_building_the_model.mp4 62.38Мб
06-demonstration_understanding_how_backpropagation_has_worked.mp4 40.45Мб
06-faster_r_cnn_architecture_instructions.html 5.92Кб
06-forward_propagation.mp4 20.61Мб
06-types_of_lstm.mp4 19.16Мб
07-demonstration_building_and_compiling_model.mp4 46.26Мб
07-demonstration_designing_the_model.mp4 52.84Мб
07-demonstration_handwritten_digits_classification_data_preprocessing.mp4 41.79Мб
07-demonstration_next_word_prediction_processing_the_corpus.mp4 50.16Мб
07-demonstration_training_the_model_and_visualizing_the_predictions.mp4 53.63Мб
07-perceptron.mp4 30.93Мб
07-recurrent_neural_networks_rnns_in_deep_learning_instructions.html 19.64Кб
08-demonstration_building_the_cnn_model.mp4 37.97Мб
08-demonstration_from_rmsprop_to_adam.mp4 45.17Мб
08-demonstration_handwritten_digits_classification_designing_the_model.mp4 73.22Мб
08-demonstration_next_word_prediction_layers.mp4 58.93Мб
08-demonstration_svm_as_a_classifier.mp4 23.40Мб
08-learning_rate.mp4 29.25Мб
09-demonstration_handwritten_digits_classification_optimizing_the_model.mp4 88.77Мб
09-demonstration_model_accuracy.mp4 21.46Мб
09-demonstration_next_word_prediction_model_compilation_and_prediction.mp4 96.56Мб
09-model_optimizers_beyond_adam_instructions.html 87.35Кб
09-svm_classifier_in_object_detection_instructions.html 4.26Кб
09-what_is_activation_function.mp4 17.83Мб
10-activation_function_and_its_types.mp4 23.41Мб
10-attention_based_lstm_long_short_term_memory_instructions.html 7.41Кб
10-demonstration_adding_more_layers.mp4 62.39Мб
10-hebbian_learning_algorithm_instructions.html 27.28Кб
11-capsule_networks_in_deep_learning_instructions.html 4.17Кб
11-demonstration_building_basic_cnn_model_with_new_parameters.mp4 78.21Мб
11-importance_of_epoch.mp4 24.78Мб
12-demonstration_pre_trained_model.mp4 37.38Мб
12-single_layer_perceptron_define_sigmoid_function.mp4 44.01Мб
13-single_layer_perceptron_decision_boundary.mp4 77.15Мб
13-why_convolutions_are_important_instructions.html 2.08Кб
14-learning_rate_in_deep_learning_instructions.html 3.86Кб
history.p 436б
next_word_model.keras 9.76Мб
resources.html 65.68Кб
Support - Onehack.Us.txt 94б
Статистика распространения по странам
США (US) 5
Китай (CN) 3
Индия (IN) 3
Египет (EG) 3
Италия (IT) 2
Тайланд (TH) 2
Швейцария (CH) 2
Панама (PA) 1
Вьетнам (VN) 1
Румыния (RO) 1
Гонконг (HK) 1
Катар (QA) 1
Уганда (UG) 1
ОАЭ (AE) 1
Турция (TR) 1
Южная Корея (KR) 1
Аргентина (AR) 1
Всего 30
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент