Общая информация
Название [ DevCourseWeb.com ] Udemy - Feature Engineering for Machine Learning by Soledad Galli
Тип
Размер 3.03Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
001 Categorical encoding Introduction_en.srt 8.27Кб
001 Categorical encoding Introduction.mp4 34.02Мб
001 Course curriculum overview_en.srt 6.95Кб
001 Course curriculum overview.mp4 49.62Мб
001 Discretisation Introduction_en.srt 3.45Кб
001 Discretisation Introduction.mp4 15.45Мб
001 Engineering datetime variables_en.srt 5.55Кб
001 Engineering datetime variables.mp4 13.42Мб
001 Engineering mixed variables_en.srt 4.02Кб
001 Engineering mixed variables.mp4 11.72Мб
001 Feature scaling Introduction_en.srt 4.71Кб
001 Feature scaling Introduction.mp4 9.15Мб
001 Introduction to missing data imputation_en.srt 5.21Кб
001 Introduction to missing data imputation.mp4 17.87Мб
001 Multivariate imputation_en.srt 3.87Кб
001 Multivariate imputation.mp4 7.48Мб
001 Outlier Engineering Intro_en.srt 8.00Кб
001 Outlier Engineering Intro.mp4 32.21Мб
001 Putting it all together_en.srt 8.89Кб
001 Putting it all together.mp4 32.96Мб
001 Survey.html 947б
001 Variable characteristics_en.srt 3.55Кб
001 Variable characteristics.mp4 7.21Мб
001 Variables Intro_en.srt 3.50Кб
001 Variables Intro.mp4 5.38Мб
001 Variable Transformation Introduction_en.srt 5.59Кб
001 Variable Transformation Introduction.mp4 9.28Мб
002 Complete Case Analysis_en.srt 8.63Кб
002 Complete Case Analysis.mp4 39.23Мб
002 Congratulations.html 593б
002 Course requirements_en.srt 3.45Кб
002 Course requirements.mp4 20.53Мб
002 Engineering dates Demo_en.srt 9.47Кб
002 Engineering dates Demo.mp4 39.65Мб
002 Engineering mixed variables Demo_en.srt 7.70Кб
002 Engineering mixed variables Demo.mp4 39.48Мб
002 Equal-width discretisation_en.srt 4.50Кб
002 Equal-width discretisation.mp4 9.05Мб
002 Feature Engineering Pipeline_en.srt 10.73Кб
002 Feature Engineering Pipeline.mp4 22.04Мб
002 KNN imputation_en.srt 4.92Кб
002 KNN imputation.mp4 9.55Мб
002 Missing data_en.srt 8.98Кб
002 Missing data.mp4 21.49Мб
002 Numerical variables_en.srt 7.03Кб
002 Numerical variables.mp4 14.77Мб
002 One hot encoding_en.srt 7.23Кб
002 One hot encoding.mp4 13.69Мб
002 Outlier trimming_en.srt 8.45Кб
002 Outlier trimming.mp4 37.55Мб
002 Standardisation_en.srt 6.71Кб
002 Standardisation.mp4 11.64Мб
002 Variable Transformation with Numpy and SciPy_en.srt 8.72Кб
002 Variable Transformation with Numpy and SciPy.mp4 42.45Мб
003 Bonus lecture.html 625б
003 Cardinality - categorical variables_en.srt 6.38Кб
003 Cardinality - categorical variables.mp4 22.46Мб
003 Categorical variables_en.srt 4.59Кб
003 Categorical variables.mp4 7.55Мб
003 Classification pipeline_en.srt 16.56Кб
003 Classification pipeline.mp4 76.61Мб
003 Engineering time variables and different timezones_en.srt 5.73Кб
003 Engineering time variables and different timezones.mp4 23.89Мб
003 How to approach this course.html 1.69Кб
003 Important Feature-engine v 1.0.0.html 739б
003 Important Feature-engine version 1.0.0.html 1009б
003 KNN imputation - Demo_en.srt 8.51Кб
003 KNN imputation - Demo.mp4 18.96Мб
003 Mean or median imputation_en.srt 10.30Кб
003 Mean or median imputation.mp4 25.93Мб
003 Outlier capping with IQR_en.srt 7.18Кб
003 Outlier capping with IQR.mp4 41.03Мб
003 Standardisation Demo_en.srt 5.67Кб
003 Standardisation Demo.mp4 40.30Мб
003 Variable Transformation with Scikit-learn_en.srt 8.01Кб
003 Variable Transformation with Scikit-learn.mp4 44.49Мб
004 Arbitrary value imputation_en.srt 8.78Кб
004 Arbitrary value imputation.mp4 30.66Мб
004 Date and time variables_en.srt 2.46Кб
004 Date and time variables.mp4 4.16Мб
004 Equal-width discretisation Demo_en.srt 12.75Кб
004 Equal-width discretisation Demo.mp4 68.19Мб
004 Mean normalisation_en.srt 5.04Кб
004 Mean normalisation.mp4 8.67Мб
004 MICE_en.srt 8.50Кб
004 MICE.mp4 15.42Мб
004 One-hot-encoding Demo_en.srt 18.05Кб
004 One-hot-encoding Demo.mp4 85.90Мб
004 Outlier capping with mean and std_en.srt 5.17Кб
004 Outlier capping with mean and std.mp4 30.24Мб
004 Rare labels - categorical variables_en.srt 6.23Кб
004 Rare labels - categorical variables.mp4 14.53Мб
004 Regression pipeline_en.srt 17.46Кб
004 Regression pipeline.mp4 101.08Мб
004 Setting up your computer.html 3.18Кб
004 Variable transformation with Feature-engine_en.srt 4.37Кб
004 Variable transformation with Feature-engine.mp4 21.61Мб
005 Course material_en.srt 2.28Кб
005 Course material.mp4 5.81Мб
005 End of distribution imputation_en.srt 6.13Кб
005 End of distribution imputation.mp4 18.23Мб
005 Equal-frequency discretisation_en.srt 4.88Кб
005 Equal-frequency discretisation.mp4 9.38Мб
005 Feature engineering pipeline with cross-validation_en.srt 8.73Кб
005 Feature engineering pipeline with cross-validation.mp4 54.13Мб
005 Linear models assumptions_en.srt 10.90Кб
005 Linear models assumptions.mp4 41.46Мб
005 Mean normalisation Demo_en.srt 6.52Кб
005 Mean normalisation Demo.mp4 43.15Мб
005 missForest_en.srt 1.26Кб
005 missForest.mp4 2.43Мб
005 Mixed variables_en.srt 2.83Кб
005 Mixed variables.mp4 4.56Мб
005 One hot encoding of top categories_en.srt 3.57Кб
005 One hot encoding of top categories.mp4 9.10Мб
005 Outlier capping with quantiles_en.srt 3.83Кб
005 Outlier capping with quantiles.mp4 10.44Мб
005 sample-s2.csv 9.94Мб
006 Arbitrary capping_en.srt 3.99Кб
006 Arbitrary capping.mp4 15.08Мб
006 Download Jupyter notebooks.html 1019б
006 Equal-frequency discretisation Demo_en.srt 7.99Кб
006 Equal-frequency discretisation Demo.mp4 40.99Мб
006 Frequent category imputation_en.srt 8.60Кб
006 Frequent category imputation.mp4 38.09Мб
006 Linear model assumptions - additional reading resources (optional).html 1.49Кб
006 MICE and missForest - Demo_en.srt 5.17Кб
006 MICE and missForest - Demo.mp4 27.70Мб
006 More examples.html 308б
006 One hot encoding of top categories Demo_en.srt 9.90Кб
006 One hot encoding of top categories Demo.mp4 53.90Мб
006 Scaling to minimum and maximum values_en.srt 3.85Кб
006 Scaling to minimum and maximum values.mp4 7.48Мб
007 Additional reading resources (Optional).html 1.15Кб
007 Download datasets.html 3.46Кб
007 Important Feature-engine v1.0.0.html 262б
007 K-means discretisation_en.srt 4.69Кб
007 K-means discretisation.mp4 8.42Мб
007 MinMaxScaling Demo_en.srt 3.54Кб
007 MinMaxScaling Demo.mp4 24.91Мб
007 Missing category imputation_en.srt 5.02Кб
007 Missing category imputation.mp4 23.41Мб
007 Ordinal encoding Label encoding_en.srt 2.08Кб
007 Ordinal encoding Label encoding.mp4 4.87Мб
007 Variable distribution_en.srt 6.46Кб
007 Variable distribution.mp4 14.93Мб
008 Additional reading resources.html 526б
008 Download presentations.html 286б
008 K-means discretisation Demo_en.srt 3.19Кб
008 K-means discretisation Demo.mp4 16.24Мб
008 Maximum absolute scaling_en.srt 3.36Кб
008 Maximum absolute scaling.mp4 6.53Мб
008 Ordinal encoding Demo_en.srt 9.89Кб
008 Ordinal encoding Demo.mp4 49.50Мб
008 Outliers_en.srt 10.67Кб
008 Outliers.mp4 18.65Мб
008 Random sample imputation_en.srt 18.21Кб
008 Random sample imputation.mp4 87.64Мб
009 Adding a missing indicator_en.srt 6.92Кб
009 Adding a missing indicator.mp4 14.68Мб
009 Count or frequency encoding_en.srt 3.85Кб
009 Count or frequency encoding.mp4 6.87Мб
009 Discretisation plus categorical encoding_en.srt 2.95Кб
009 Discretisation plus categorical encoding.mp4 5.91Мб
009 MaxAbsScaling Demo_en.srt 4.57Кб
009 MaxAbsScaling Demo.mp4 27.14Мб
009 Moving forward_en.srt 2.48Кб
009 Moving forward.mp4 3.91Мб
009 Variable magnitude_en.srt 4.04Кб
009 Variable magnitude.mp4 7.41Мб
010 Count encoding Demo_en.srt 5.32Кб
010 Count encoding Demo.mp4 16.65Мб
010 Discretisation plus encoding Demo_en.srt 6.54Кб
010 Discretisation plus encoding Demo.mp4 33.97Мб
010 FAQ Data science, Python, datasets, presentations and more.html 1.97Кб
010 Imputation with Scikit-learn_en.srt 5.12Кб
010 Imputation with Scikit-learn.mp4 20.83Мб
010 ML-Comparison.pdf 297.57Кб
010 Scaling to median and quantiles_en.srt 3.24Кб
010 Scaling to median and quantiles.mp4 6.85Мб
010 Variable characteristics and machine learning models.html 402б
011 Additional reading resources.html 4.51Кб
011 Discretisation with classification trees_en.srt 5.80Кб
011 Discretisation with classification trees.mp4 20.37Мб
011 Mean or median imputation with Scikit-learn_en.srt 6.52Кб
011 Mean or median imputation with Scikit-learn.mp4 37.92Мб
011 Robust Scaling Demo_en.srt 2.44Кб
011 Robust Scaling Demo.mp4 15.83Мб
011 Target guided ordinal encoding_en.srt 3.39Кб
011 Target guided ordinal encoding.mp4 7.02Мб
012 Arbitrary value imputation with Scikit-learn_en.srt 6.39Кб
012 Arbitrary value imputation with Scikit-learn.mp4 36.35Мб
012 Discretisation with decision trees using Scikit-learn_en.srt 13.74Кб
012 Discretisation with decision trees using Scikit-learn.mp4 75.56Мб
012 Scaling to vector unit length_en.srt 6.80Кб
012 Scaling to vector unit length.mp4 13.07Мб
012 Target guided ordinal encoding Demo_en.srt 9.77Кб
012 Target guided ordinal encoding Demo.mp4 65.87Мб
013 Discretisation with decision trees using Feature-engine_en.srt 4.38Кб
013 Discretisation with decision trees using Feature-engine.mp4 24.84Мб
013 Frequent category imputation with Scikit-learn_en.srt 6.73Кб
013 Frequent category imputation with Scikit-learn.mp4 35.30Мб
013 Mean encoding_en.srt 2.92Кб
013 Mean encoding.mp4 5.20Мб
013 Scaling to vector unit length Demo_en.srt 6.19Кб
013 Scaling to vector unit length Demo.mp4 44.81Мб
014 Additional reading resources.html 1.34Кб
014 Domain knowledge discretisation_en.srt 4.18Кб
014 Domain knowledge discretisation.mp4 18.93Мб
014 Mean encoding Demo_en.srt 6.58Кб
014 Mean encoding Demo.mp4 36.23Мб
014 Missing category imputation with Scikit-learn_en.srt 3.56Кб
014 Missing category imputation with Scikit-learn.mp4 19.97Мб
015 Adding a missing indicator with Scikit-learn_en.srt 4.64Кб
015 Adding a missing indicator with Scikit-learn.mp4 23.27Мб
015 Additional reading resources.html 1.41Кб
015 Probability ratio encoding_en.srt 7.21Кб
015 Probability ratio encoding.mp4 22.57Мб
016 Automatic determination of imputation method with Sklearn_en.srt 9.24Кб
016 Automatic determination of imputation method with Sklearn.mp4 65.39Мб
016 Weight of evidence (WoE)_en.srt 6.43Кб
016 Weight of evidence (WoE).mp4 10.04Мб
017 Introduction to Feature-engine_en.srt 8.34Кб
017 Introduction to Feature-engine.mp4 26.89Мб
017 Weight of Evidence Demo_en.srt 16.69Кб
017 Weight of Evidence Demo.mp4 98.28Мб
018 Comparison of categorical variable encoding_en.srt 13.36Кб
018 Comparison of categorical variable encoding.mp4 76.19Мб
018 Mean or median imputation with Feature-engine_en.srt 5.49Кб
018 Mean or median imputation with Feature-engine.mp4 31.73Мб
019 Arbitrary value imputation with Feature-engine_en.srt 3.78Кб
019 Arbitrary value imputation with Feature-engine.mp4 25.11Мб
019 Rare label encoding_en.srt 5.18Кб
019 Rare label encoding.mp4 10.27Мб
020 End of distribution imputation with Feature-engine_en.srt 5.81Кб
020 End of distribution imputation with Feature-engine.mp4 26.03Мб
020 Rare label encoding Demo_en.srt 12.45Кб
020 Rare label encoding Demo.mp4 60.59Мб
021 Binary encoding and feature hashing_en.srt 7.53Кб
021 Binary encoding and feature hashing.mp4 13.80Мб
021 Frequent category imputation with Feature-engine_en.srt 1.98Кб
021 Frequent category imputation with Feature-engine.mp4 5.25Мб
022 Missing category imputation with Feature-engine_en.srt 3.80Кб
022 Missing category imputation with Feature-engine.mp4 19.81Мб
022 Summary table of encoding techniques.html 312б
023 Additional reading resources.html 2.37Кб
023 Random sample imputation with Feature-engine_en.srt 2.86Кб
023 Random sample imputation with Feature-engine.mp4 16.88Мб
024 Adding a missing indicator with Feature-engine_en.srt 4.88Кб
024 Adding a missing indicator with Feature-engine.mp4 28.02Мб
025 CCA with Feature-engine_en.srt 8.46Кб
025 CCA with Feature-engine.mp4 37.30Мб
026 NA-methods-Comparison.pdf 273.81Кб
026 Overview of missing value imputation methods.html 339б
027 Conclusion when to use each missing data imputation method.html 2.69Кб
Bonus Resources.txt 386б
Get Bonus Downloads Here.url 182б
loan.csv 1.02Мб
sample_s2.csv 9.94Мб
Статистика распространения по странам
Индия (IN) 19
США (US) 7
Чешская Республика (CZ) 6
Италия (IT) 2
Великобритания (GB) 1
Россия (RU) 1
Германия (DE) 1
Всего 37
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент