Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
001 Categorical encoding Introduction_en.srt |
8.27Кб |
001 Categorical encoding Introduction.mp4 |
34.02Мб |
001 Course curriculum overview_en.srt |
6.95Кб |
001 Course curriculum overview.mp4 |
49.62Мб |
001 Discretisation Introduction_en.srt |
3.45Кб |
001 Discretisation Introduction.mp4 |
15.45Мб |
001 Engineering datetime variables_en.srt |
5.55Кб |
001 Engineering datetime variables.mp4 |
13.42Мб |
001 Engineering mixed variables_en.srt |
4.02Кб |
001 Engineering mixed variables.mp4 |
11.72Мб |
001 Feature scaling Introduction_en.srt |
4.71Кб |
001 Feature scaling Introduction.mp4 |
9.15Мб |
001 Introduction to missing data imputation_en.srt |
5.21Кб |
001 Introduction to missing data imputation.mp4 |
17.87Мб |
001 Multivariate imputation_en.srt |
3.87Кб |
001 Multivariate imputation.mp4 |
7.48Мб |
001 Outlier Engineering Intro_en.srt |
8.00Кб |
001 Outlier Engineering Intro.mp4 |
32.21Мб |
001 Putting it all together_en.srt |
8.89Кб |
001 Putting it all together.mp4 |
32.96Мб |
001 Survey.html |
947б |
001 Variable characteristics_en.srt |
3.55Кб |
001 Variable characteristics.mp4 |
7.21Мб |
001 Variables Intro_en.srt |
3.50Кб |
001 Variables Intro.mp4 |
5.38Мб |
001 Variable Transformation Introduction_en.srt |
5.59Кб |
001 Variable Transformation Introduction.mp4 |
9.28Мб |
002 Complete Case Analysis_en.srt |
8.63Кб |
002 Complete Case Analysis.mp4 |
39.23Мб |
002 Congratulations.html |
593б |
002 Course requirements_en.srt |
3.45Кб |
002 Course requirements.mp4 |
20.53Мб |
002 Engineering dates Demo_en.srt |
9.47Кб |
002 Engineering dates Demo.mp4 |
39.65Мб |
002 Engineering mixed variables Demo_en.srt |
7.70Кб |
002 Engineering mixed variables Demo.mp4 |
39.48Мб |
002 Equal-width discretisation_en.srt |
4.50Кб |
002 Equal-width discretisation.mp4 |
9.05Мб |
002 Feature Engineering Pipeline_en.srt |
10.73Кб |
002 Feature Engineering Pipeline.mp4 |
22.04Мб |
002 KNN imputation_en.srt |
4.92Кб |
002 KNN imputation.mp4 |
9.55Мб |
002 Missing data_en.srt |
8.98Кб |
002 Missing data.mp4 |
21.49Мб |
002 Numerical variables_en.srt |
7.03Кб |
002 Numerical variables.mp4 |
14.77Мб |
002 One hot encoding_en.srt |
7.23Кб |
002 One hot encoding.mp4 |
13.69Мб |
002 Outlier trimming_en.srt |
8.45Кб |
002 Outlier trimming.mp4 |
37.55Мб |
002 Standardisation_en.srt |
6.71Кб |
002 Standardisation.mp4 |
11.64Мб |
002 Variable Transformation with Numpy and SciPy_en.srt |
8.72Кб |
002 Variable Transformation with Numpy and SciPy.mp4 |
42.45Мб |
003 Bonus lecture.html |
625б |
003 Cardinality - categorical variables_en.srt |
6.38Кб |
003 Cardinality - categorical variables.mp4 |
22.46Мб |
003 Categorical variables_en.srt |
4.59Кб |
003 Categorical variables.mp4 |
7.55Мб |
003 Classification pipeline_en.srt |
16.56Кб |
003 Classification pipeline.mp4 |
76.61Мб |
003 Engineering time variables and different timezones_en.srt |
5.73Кб |
003 Engineering time variables and different timezones.mp4 |
23.89Мб |
003 How to approach this course.html |
1.69Кб |
003 Important Feature-engine v 1.0.0.html |
739б |
003 Important Feature-engine version 1.0.0.html |
1009б |
003 KNN imputation - Demo_en.srt |
8.51Кб |
003 KNN imputation - Demo.mp4 |
18.96Мб |
003 Mean or median imputation_en.srt |
10.30Кб |
003 Mean or median imputation.mp4 |
25.93Мб |
003 Outlier capping with IQR_en.srt |
7.18Кб |
003 Outlier capping with IQR.mp4 |
41.03Мб |
003 Standardisation Demo_en.srt |
5.67Кб |
003 Standardisation Demo.mp4 |
40.30Мб |
003 Variable Transformation with Scikit-learn_en.srt |
8.01Кб |
003 Variable Transformation with Scikit-learn.mp4 |
44.49Мб |
004 Arbitrary value imputation_en.srt |
8.78Кб |
004 Arbitrary value imputation.mp4 |
30.66Мб |
004 Date and time variables_en.srt |
2.46Кб |
004 Date and time variables.mp4 |
4.16Мб |
004 Equal-width discretisation Demo_en.srt |
12.75Кб |
004 Equal-width discretisation Demo.mp4 |
68.19Мб |
004 Mean normalisation_en.srt |
5.04Кб |
004 Mean normalisation.mp4 |
8.67Мб |
004 MICE_en.srt |
8.50Кб |
004 MICE.mp4 |
15.42Мб |
004 One-hot-encoding Demo_en.srt |
18.05Кб |
004 One-hot-encoding Demo.mp4 |
85.90Мб |
004 Outlier capping with mean and std_en.srt |
5.17Кб |
004 Outlier capping with mean and std.mp4 |
30.24Мб |
004 Rare labels - categorical variables_en.srt |
6.23Кб |
004 Rare labels - categorical variables.mp4 |
14.53Мб |
004 Regression pipeline_en.srt |
17.46Кб |
004 Regression pipeline.mp4 |
101.08Мб |
004 Setting up your computer.html |
3.18Кб |
004 Variable transformation with Feature-engine_en.srt |
4.37Кб |
004 Variable transformation with Feature-engine.mp4 |
21.61Мб |
005 Course material_en.srt |
2.28Кб |
005 Course material.mp4 |
5.81Мб |
005 End of distribution imputation_en.srt |
6.13Кб |
005 End of distribution imputation.mp4 |
18.23Мб |
005 Equal-frequency discretisation_en.srt |
4.88Кб |
005 Equal-frequency discretisation.mp4 |
9.38Мб |
005 Feature engineering pipeline with cross-validation_en.srt |
8.73Кб |
005 Feature engineering pipeline with cross-validation.mp4 |
54.13Мб |
005 Linear models assumptions_en.srt |
10.90Кб |
005 Linear models assumptions.mp4 |
41.46Мб |
005 Mean normalisation Demo_en.srt |
6.52Кб |
005 Mean normalisation Demo.mp4 |
43.15Мб |
005 missForest_en.srt |
1.26Кб |
005 missForest.mp4 |
2.43Мб |
005 Mixed variables_en.srt |
2.83Кб |
005 Mixed variables.mp4 |
4.56Мб |
005 One hot encoding of top categories_en.srt |
3.57Кб |
005 One hot encoding of top categories.mp4 |
9.10Мб |
005 Outlier capping with quantiles_en.srt |
3.83Кб |
005 Outlier capping with quantiles.mp4 |
10.44Мб |
005 sample-s2.csv |
9.94Мб |
006 Arbitrary capping_en.srt |
3.99Кб |
006 Arbitrary capping.mp4 |
15.08Мб |
006 Download Jupyter notebooks.html |
1019б |
006 Equal-frequency discretisation Demo_en.srt |
7.99Кб |
006 Equal-frequency discretisation Demo.mp4 |
40.99Мб |
006 Frequent category imputation_en.srt |
8.60Кб |
006 Frequent category imputation.mp4 |
38.09Мб |
006 Linear model assumptions - additional reading resources (optional).html |
1.49Кб |
006 MICE and missForest - Demo_en.srt |
5.17Кб |
006 MICE and missForest - Demo.mp4 |
27.70Мб |
006 More examples.html |
308б |
006 One hot encoding of top categories Demo_en.srt |
9.90Кб |
006 One hot encoding of top categories Demo.mp4 |
53.90Мб |
006 Scaling to minimum and maximum values_en.srt |
3.85Кб |
006 Scaling to minimum and maximum values.mp4 |
7.48Мб |
007 Additional reading resources (Optional).html |
1.15Кб |
007 Download datasets.html |
3.46Кб |
007 Important Feature-engine v1.0.0.html |
262б |
007 K-means discretisation_en.srt |
4.69Кб |
007 K-means discretisation.mp4 |
8.42Мб |
007 MinMaxScaling Demo_en.srt |
3.54Кб |
007 MinMaxScaling Demo.mp4 |
24.91Мб |
007 Missing category imputation_en.srt |
5.02Кб |
007 Missing category imputation.mp4 |
23.41Мб |
007 Ordinal encoding Label encoding_en.srt |
2.08Кб |
007 Ordinal encoding Label encoding.mp4 |
4.87Мб |
007 Variable distribution_en.srt |
6.46Кб |
007 Variable distribution.mp4 |
14.93Мб |
008 Additional reading resources.html |
526б |
008 Download presentations.html |
286б |
008 K-means discretisation Demo_en.srt |
3.19Кб |
008 K-means discretisation Demo.mp4 |
16.24Мб |
008 Maximum absolute scaling_en.srt |
3.36Кб |
008 Maximum absolute scaling.mp4 |
6.53Мб |
008 Ordinal encoding Demo_en.srt |
9.89Кб |
008 Ordinal encoding Demo.mp4 |
49.50Мб |
008 Outliers_en.srt |
10.67Кб |
008 Outliers.mp4 |
18.65Мб |
008 Random sample imputation_en.srt |
18.21Кб |
008 Random sample imputation.mp4 |
87.64Мб |
009 Adding a missing indicator_en.srt |
6.92Кб |
009 Adding a missing indicator.mp4 |
14.68Мб |
009 Count or frequency encoding_en.srt |
3.85Кб |
009 Count or frequency encoding.mp4 |
6.87Мб |
009 Discretisation plus categorical encoding_en.srt |
2.95Кб |
009 Discretisation plus categorical encoding.mp4 |
5.91Мб |
009 MaxAbsScaling Demo_en.srt |
4.57Кб |
009 MaxAbsScaling Demo.mp4 |
27.14Мб |
009 Moving forward_en.srt |
2.48Кб |
009 Moving forward.mp4 |
3.91Мб |
009 Variable magnitude_en.srt |
4.04Кб |
009 Variable magnitude.mp4 |
7.41Мб |
010 Count encoding Demo_en.srt |
5.32Кб |
010 Count encoding Demo.mp4 |
16.65Мб |
010 Discretisation plus encoding Demo_en.srt |
6.54Кб |
010 Discretisation plus encoding Demo.mp4 |
33.97Мб |
010 FAQ Data science, Python, datasets, presentations and more.html |
1.97Кб |
010 Imputation with Scikit-learn_en.srt |
5.12Кб |
010 Imputation with Scikit-learn.mp4 |
20.83Мб |
010 ML-Comparison.pdf |
297.57Кб |
010 Scaling to median and quantiles_en.srt |
3.24Кб |
010 Scaling to median and quantiles.mp4 |
6.85Мб |
010 Variable characteristics and machine learning models.html |
402б |
011 Additional reading resources.html |
4.51Кб |
011 Discretisation with classification trees_en.srt |
5.80Кб |
011 Discretisation with classification trees.mp4 |
20.37Мб |
011 Mean or median imputation with Scikit-learn_en.srt |
6.52Кб |
011 Mean or median imputation with Scikit-learn.mp4 |
37.92Мб |
011 Robust Scaling Demo_en.srt |
2.44Кб |
011 Robust Scaling Demo.mp4 |
15.83Мб |
011 Target guided ordinal encoding_en.srt |
3.39Кб |
011 Target guided ordinal encoding.mp4 |
7.02Мб |
012 Arbitrary value imputation with Scikit-learn_en.srt |
6.39Кб |
012 Arbitrary value imputation with Scikit-learn.mp4 |
36.35Мб |
012 Discretisation with decision trees using Scikit-learn_en.srt |
13.74Кб |
012 Discretisation with decision trees using Scikit-learn.mp4 |
75.56Мб |
012 Scaling to vector unit length_en.srt |
6.80Кб |
012 Scaling to vector unit length.mp4 |
13.07Мб |
012 Target guided ordinal encoding Demo_en.srt |
9.77Кб |
012 Target guided ordinal encoding Demo.mp4 |
65.87Мб |
013 Discretisation with decision trees using Feature-engine_en.srt |
4.38Кб |
013 Discretisation with decision trees using Feature-engine.mp4 |
24.84Мб |
013 Frequent category imputation with Scikit-learn_en.srt |
6.73Кб |
013 Frequent category imputation with Scikit-learn.mp4 |
35.30Мб |
013 Mean encoding_en.srt |
2.92Кб |
013 Mean encoding.mp4 |
5.20Мб |
013 Scaling to vector unit length Demo_en.srt |
6.19Кб |
013 Scaling to vector unit length Demo.mp4 |
44.81Мб |
014 Additional reading resources.html |
1.34Кб |
014 Domain knowledge discretisation_en.srt |
4.18Кб |
014 Domain knowledge discretisation.mp4 |
18.93Мб |
014 Mean encoding Demo_en.srt |
6.58Кб |
014 Mean encoding Demo.mp4 |
36.23Мб |
014 Missing category imputation with Scikit-learn_en.srt |
3.56Кб |
014 Missing category imputation with Scikit-learn.mp4 |
19.97Мб |
015 Adding a missing indicator with Scikit-learn_en.srt |
4.64Кб |
015 Adding a missing indicator with Scikit-learn.mp4 |
23.27Мб |
015 Additional reading resources.html |
1.41Кб |
015 Probability ratio encoding_en.srt |
7.21Кб |
015 Probability ratio encoding.mp4 |
22.57Мб |
016 Automatic determination of imputation method with Sklearn_en.srt |
9.24Кб |
016 Automatic determination of imputation method with Sklearn.mp4 |
65.39Мб |
016 Weight of evidence (WoE)_en.srt |
6.43Кб |
016 Weight of evidence (WoE).mp4 |
10.04Мб |
017 Introduction to Feature-engine_en.srt |
8.34Кб |
017 Introduction to Feature-engine.mp4 |
26.89Мб |
017 Weight of Evidence Demo_en.srt |
16.69Кб |
017 Weight of Evidence Demo.mp4 |
98.28Мб |
018 Comparison of categorical variable encoding_en.srt |
13.36Кб |
018 Comparison of categorical variable encoding.mp4 |
76.19Мб |
018 Mean or median imputation with Feature-engine_en.srt |
5.49Кб |
018 Mean or median imputation with Feature-engine.mp4 |
31.73Мб |
019 Arbitrary value imputation with Feature-engine_en.srt |
3.78Кб |
019 Arbitrary value imputation with Feature-engine.mp4 |
25.11Мб |
019 Rare label encoding_en.srt |
5.18Кб |
019 Rare label encoding.mp4 |
10.27Мб |
020 End of distribution imputation with Feature-engine_en.srt |
5.81Кб |
020 End of distribution imputation with Feature-engine.mp4 |
26.03Мб |
020 Rare label encoding Demo_en.srt |
12.45Кб |
020 Rare label encoding Demo.mp4 |
60.59Мб |
021 Binary encoding and feature hashing_en.srt |
7.53Кб |
021 Binary encoding and feature hashing.mp4 |
13.80Мб |
021 Frequent category imputation with Feature-engine_en.srt |
1.98Кб |
021 Frequent category imputation with Feature-engine.mp4 |
5.25Мб |
022 Missing category imputation with Feature-engine_en.srt |
3.80Кб |
022 Missing category imputation with Feature-engine.mp4 |
19.81Мб |
022 Summary table of encoding techniques.html |
312б |
023 Additional reading resources.html |
2.37Кб |
023 Random sample imputation with Feature-engine_en.srt |
2.86Кб |
023 Random sample imputation with Feature-engine.mp4 |
16.88Мб |
024 Adding a missing indicator with Feature-engine_en.srt |
4.88Кб |
024 Adding a missing indicator with Feature-engine.mp4 |
28.02Мб |
025 CCA with Feature-engine_en.srt |
8.46Кб |
025 CCA with Feature-engine.mp4 |
37.30Мб |
026 NA-methods-Comparison.pdf |
273.81Кб |
026 Overview of missing value imputation methods.html |
339б |
027 Conclusion when to use each missing data imputation method.html |
2.69Кб |
Bonus Resources.txt |
386б |
Get Bonus Downloads Here.url |
182б |
loan.csv |
1.02Мб |
sample_s2.csv |
9.94Мб |