Общая информация
Название [FreeCourseSite.com] Udemy - Unsupervised Deep Learning in Python
Тип
Размер 2.85Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[CourseClub.NET].url 123б
[FCS Forum].url 133б
[FreeCourseSite.com].url 127б
1. (Legacy) Restricted Boltzmann Machine Theory.mp4 14.39Мб
1. (Legacy) Restricted Boltzmann Machine Theory.vtt 10.39Кб
1. (Review) Theano Basics.mp4 93.43Мб
1. (Review) Theano Basics.vtt 6.31Кб
1. Application of PCA and SVD to NLP (Natural Language Processing).mp4 3.93Мб
1. Application of PCA and SVD to NLP (Natural Language Processing).vtt 351б
1. Autoencoders.mp4 5.82Мб
1. Autoencoders.vtt 3.94Кб
1. Basic Outline for RBMs.mp4 32.98Мб
1. Basic Outline for RBMs.vtt 5.64Кб
1. Exercises on feature visualization and interpretation.mp4 3.75Мб
1. Exercises on feature visualization and interpretation.vtt 351б
1. Introduction and Outline.mp4 3.27Мб
1. Introduction and Outline.vtt 351б
1. Recommender Systems Section Introduction.mp4 68.17Мб
1. Recommender Systems Section Introduction.vtt 351б
1. The Vanishing Gradient Problem Description.mp4 5.20Мб
1. The Vanishing Gradient Problem Description.vtt 351б
1. t-SNE Theory.mp4 7.90Мб
1. t-SNE Theory.vtt 4.78Кб
1. What does PCA do.mp4 27.79Мб
1. What does PCA do.vtt 4.96Кб
1. What is the Appendix.mp4 5.45Мб
1. What is the Appendix.vtt 3.28Кб
10. Deep Autoencoder Visualization Description.mp4 2.46Мб
10. Deep Autoencoder Visualization Description.vtt 2.00Кб
10. Python 2 vs Python 3.mp4 7.84Мб
10. Python 2 vs Python 3.vtt 5.35Кб
10. RBM in Code (Theano) with Greedy Layer-Wise Training on MNIST.mp4 47.76Мб
10. RBM in Code (Theano) with Greedy Layer-Wise Training on MNIST.vtt 6.77Кб
10. Recommender RBM Code Speedup.mp4 82.95Мб
10. Recommender RBM Code Speedup.vtt 82.96Мб
10. SVD (Singular Value Decomposition).mp4 42.47Мб
10. SVD (Singular Value Decomposition).vtt 10.33Кб
11. Deep Autoencoder Visualization in Code.mp4 27.85Мб
11. Deep Autoencoder Visualization in Code.vtt 6.67Кб
11. Is Theano Dead.mp4 17.82Мб
11. Is Theano Dead.vtt 11.30Кб
11. RBM in Code (Tensorflow).mp4 13.70Мб
11. RBM in Code (Tensorflow).vtt 351б
12. An Autoencoder in 1 Line of Code.mp4 24.94Мб
12. An Autoencoder in 1 Line of Code.vtt 5.08Кб
12. What order should I take your courses in (part 1).mp4 29.33Мб
12. What order should I take your courses in (part 1).vtt 14.09Кб
13. What order should I take your courses in (part 2).mp4 37.62Мб
13. What order should I take your courses in (part 2).vtt 20.24Кб
2. (Legacy) Deriving Conditional Probabilities from Joint Probability.mp4 9.37Мб
2. (Legacy) Deriving Conditional Probabilities from Joint Probability.vtt 5.72Кб
2. (Review) Theano Neural Network in Code.mp4 87.03Мб
2. (Review) Theano Neural Network in Code.vtt 3.29Кб
2. BONUS Where to get Udemy coupons and FREE deep learning material.mp4 4.03Мб
2. BONUS Where to get Udemy coupons and FREE deep learning material.vtt 2.99Кб
2. Denoising Autoencoders.mp4 3.44Мб
2. Denoising Autoencoders.vtt 2.26Кб
2. How does PCA work.mp4 50.93Мб
2. How does PCA work.vtt 12.37Кб
2. Introduction to RBMs.mp4 39.44Мб
2. Introduction to RBMs.vtt 351б
2. Latent Semantic Analysis in Code.mp4 25.62Мб
2. Latent Semantic Analysis in Code.vtt 351б
2. The Vanishing Gradient Problem Demo in Code.mp4 31.29Мб
2. The Vanishing Gradient Problem Demo in Code.vtt 351б
2. t-SNE Visualization.mp4 13.03Мб
2. t-SNE Visualization.vtt 4.82Кб
2. Where does this course fit into your deep learning studies.mp4 5.19Мб
2. Where does this course fit into your deep learning studies.vtt 351б
2. Why Autoencoders and RBMs work.mp4 38.19Мб
2. Why Autoencoders and RBMs work.vtt 351б
3. (Legacy) Contrastive Divergence for RBM Training.mp4 4.85Мб
3. (Legacy) Contrastive Divergence for RBM Training.vtt 3.01Кб
3. (Review) Tensorflow Basics.mp4 81.47Мб
3. (Review) Tensorflow Basics.vtt 5.06Кб
3. Application of t-SNE + K-Means Finding Clusters of Related Words.mp4 25.99Мб
3. Application of t-SNE + K-Means Finding Clusters of Related Words.vtt 351б
3. Data Preparation and Logistics.mp4 21.21Мб
3. Data Preparation and Logistics.vtt 351б
3. How to Succeed in this Course.mp4 6.41Мб
3. How to Succeed in this Course.vtt 351б
3. Motivation Behind RBMs.mp4 34.00Мб
3. Motivation Behind RBMs.vtt 351б
3. Stacked Autoencoders.mp4 6.60Мб
3. Stacked Autoencoders.vtt 4.24Кб
3. t-SNE on the Donut.mp4 15.10Мб
3. t-SNE on the Donut.vtt 2.23Кб
3. Why does PCA work (PCA derivation).mp4 51.32Мб
3. Why does PCA work (PCA derivation).vtt 351б
3. Windows-Focused Environment Setup 2018.mp4 186.39Мб
3. Windows-Focused Environment Setup 2018.vtt 17.39Кб
4. (Legacy) How to derive the free energy formula.mp4 10.88Мб
4. (Legacy) How to derive the free energy formula.vtt 5.60Кб
4. (Review) Tensorflow Neural Network in Code.mp4 97.39Мб
4. (Review) Tensorflow Neural Network in Code.vtt 4.78Кб
4. AutoRec.mp4 48.90Мб
4. AutoRec.vtt 351б
4. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4 43.92Мб
4. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.vtt 12.40Кб
4. Intractability.mp4 12.92Мб
4. Intractability.vtt 351б
4. PCA only rotates.mp4 16.45Мб
4. PCA only rotates.vtt 351б
4. t-SNE on XOR.mp4 9.31Мб
4. t-SNE on XOR.vtt 3.64Кб
4. Where to get the code and data.mp4 26.43Мб
4. Where to get the code and data.vtt 351б
4. Writing the autoencoder class in code (Theano).mp4 38.52Мб
4. Writing the autoencoder class in code (Theano).vtt 6.08Кб
5. (Review) Keras Basics.mp4 27.64Мб
5. (Review) Keras Basics.vtt 8.05Кб
5. AutoRec in Code.mp4 102.28Мб
5. AutoRec in Code.vtt 12.62Кб
5. How to Code by Yourself (part 1).mp4 24.53Мб
5. How to Code by Yourself (part 1).vtt 19.78Кб
5. MNIST visualization, finding the optimal number of principal components.mp4 9.39Мб
5. MNIST visualization, finding the optimal number of principal components.vtt 3.33Кб
5. Neural Network Equations.mp4 31.71Мб
5. Neural Network Equations.vtt 7.42Кб
5. Tensorflow or Theano - Your Choice!.mp4 18.93Мб
5. Tensorflow or Theano - Your Choice!.vtt 351б
5. Testing our Autoencoder (Theano).mp4 11.36Мб
5. Testing our Autoencoder (Theano).vtt 2.67Кб
5. t-SNE on MNIST.mp4 4.35Мб
5. t-SNE on MNIST.vtt 1.59Кб
6. (Review) Keras in Code pt 1.mp4 66.17Мб
6. (Review) Keras in Code pt 1.vtt 6.47Кб
6. Categorical RBM for Recommender System Ratings.mp4 47.59Мб
6. Categorical RBM for Recommender System Ratings.vtt 12.05Кб
6. How to Code by Yourself (part 2).mp4 14.80Мб
6. How to Code by Yourself (part 2).vtt 11.62Кб
6. PCA implementation.mp4 32.09Мб
6. PCA implementation.vtt 351б
6. Training an RBM (part 1).mp4 49.08Мб
6. Training an RBM (part 1).vtt 11.76Кб
6. What are the practical applications of unsupervised deep learning.mp4 11.66Мб
6. What are the practical applications of unsupervised deep learning.vtt 351б
6. Writing the deep neural network class in code (Theano).mp4 41.97Мб
6. Writing the deep neural network class in code (Theano).vtt 6.37Кб
7. (Review) Keras in Code pt 2.mp4 38.67Мб
7. (Review) Keras in Code pt 2.vtt 4.70Кб
7. Autoencoder in Code (Tensorflow).mp4 24.45Мб
7. Autoencoder in Code (Tensorflow).vtt 8.17Кб
7. How to Succeed in this Course (Long Version).mp4 18.31Мб
7. How to Succeed in this Course (Long Version).vtt 12.79Кб
7. PCA for NLP.mp4 16.62Мб
7. PCA for NLP.vtt 3.89Кб
7. Recommender RBM Code pt 1.mp4 70.42Мб
7. Recommender RBM Code pt 1.vtt 8.74Кб
7. Training an RBM (part 2).mp4 27.34Мб
7. Training an RBM (part 2).vtt 6.44Кб
8. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 38.95Мб
8. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.vtt 27.77Кб
8. PCA objective function.mp4 3.68Мб
8. PCA objective function.vtt 2.28Кб
8. Recommender RBM Code pt 2.mp4 39.58Мб
8. Recommender RBM Code pt 2.vtt 4.63Кб
8. Testing greedy layer-wise autoencoder training vs. pure backpropagation.mp4 18.53Мб
8. Testing greedy layer-wise autoencoder training vs. pure backpropagation.vtt 1.86Кб
8. Training an RBM (part 3) - Free Energy.mp4 27.58Мб
8. Training an RBM (part 3) - Free Energy.vtt 7.03Кб
9. Cross Entropy vs. KL Divergence.mp4 7.42Мб
9. Cross Entropy vs. KL Divergence.vtt 5.48Кб
9. PCA Application Naive Bayes.mp4 53.65Мб
9. PCA Application Naive Bayes.vtt 10.78Кб
9. Proof that using Jupyter Notebook is the same as not using it.mp4 78.25Мб
9. Proof that using Jupyter Notebook is the same as not using it.vtt 78.26Мб
9. RBM Greedy Layer-Wise Pretraining.mp4 23.62Мб
9. RBM Greedy Layer-Wise Pretraining.vtt 5.19Кб
9. Recommender RBM Code pt 3.mp4 128.54Мб
9. Recommender RBM Code pt 3.vtt 11.98Кб
Статистика распространения по странам
Всего 0
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент