Общая информация
Название [FreeCourseSite.com] Udemy - Complete Machine Learning and Data Science Zero to Mastery
Тип
Размер 19.68Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[CourseClub.ME].url 122б
[FCS Forum].url 133б
[FreeCourseSite.com].url 127б
1. Become An Alumni.html 1.72Кб
1. Bonus Special Thank You Gift!.html 1.59Кб
1. Breaking The Flow.mp4 20.34Мб
1. Breaking The Flow.srt 2.98Кб
1. Course Outline.mp4 77.27Мб
1. Course Outline.srt 9.17Кб
1. Data Engineering Introduction.mp4 13.50Мб
1. Data Engineering Introduction.srt 4.25Кб
1. Endorsements On LinkedIn.html 2.08Кб
1. Milestone Projects!.html 738б
1. Section Overview.mp4 10.20Мб
1. Section Overview.mp4 8.96Мб
1. Section Overview.mp4 12.20Мб
1. Section Overview.mp4 10.93Мб
1. Section Overview.mp4 13.35Мб
1. Section Overview.mp4 6.03Мб
1. Section Overview.mp4 10.87Мб
1. Section Overview.mp4 13.33Мб
1. Section Overview.mp4 8.60Мб
1. Section Overview.mp4 12.47Мб
1. Section Overview.srt 3.11Кб
1. Section Overview.srt 1.84Кб
1. Section Overview.srt 2.77Кб
1. Section Overview.srt 3.29Кб
1. Section Overview.srt 4.65Кб
1. Section Overview.srt 2.12Кб
1. Section Overview.srt 3.75Кб
1. Section Overview.srt 3.11Кб
1. Section Overview.srt 2.69Кб
1. Section Overview.srt 4.10Кб
1. Statistics and Mathematics.html 710б
1. The 2 Paths.mp4 9.75Мб
1. The 2 Paths.srt 4.71Кб
1. What Is A Programming Language.mp4 104.78Мб
1. What Is A Programming Language.srt 7.04Кб
1. What Is Machine Learning.mp4 28.33Мб
1. What Is Machine Learning.srt 8.67Кб
10.1 Conda documentation on sharing an environment.html 172б
10.1 Floating point numbers.html 104б
10.1 Loading TensorFlow 2.0 into a Colab Notebook (if it isn't the default).html 129б
10.1 pandas-anatomy-of-a-dataframe.png 333.24Кб
10.1 Standard deviation and variance explained.html 116б
10. CWD Git + Github 2.mp4 118.35Мб
10. CWD Git + Github 2.srt 18.25Кб
10. Filling Missing Categorical Values.mp4 66.92Мб
10. Filling Missing Categorical Values.srt 11.20Кб
10. For Loops.mp4 34.32Мб
10. For Loops.srt 7.53Кб
10. Manipulating Data 2.mp4 86.53Мб
10. Manipulating Data 2.srt 13.85Кб
10. Modelling - Tuning.mp4 15.99Мб
10. Modelling - Tuning.srt 4.86Кб
10. Numbers.mp4 72.71Мб
10. Numbers.srt 11.13Кб
10. Optional Learn SQL.html 410б
10. Optional TensorFlow 2.0 Default Issue.mp4 28.10Мб
10. Optional TensorFlow 2.0 Default Issue.srt 28.12Мб
10. Preparing Our Data For Machine Learning.mp4 72.61Мб
10. Preparing Our Data For Machine Learning.srt 12.02Кб
10. Quick Note Regular Expressions.html 632б
10. Quick Tip Clean, Transform, Reduce.mp4 16.54Мб
10. Quick Tip Clean, Transform, Reduce.srt 6.42Кб
10. Sharing your Conda Environment.html 2.41Кб
10. Standard Deviation and Variance.mp4 51.17Мб
10. Standard Deviation and Variance.srt 9.35Кб
11.1 Dataquest Jupyter Notebook for Beginners Tutorial.html 117б
11.1 Google Colab example GPU usage.html 114б
11.1 Introduction to Pandas Jupyter Notebook (with annotations).html 185б
11.2 Introduction to Pandas Jupyter Notebook (from the videos).html 191б
11.2 Jupyter Notebook documentation.html 111б
11.3 heart-disease.csv 11.06Кб
11.4 6-step-ml-framework.png 324.24Кб
11. Choosing The Right Models.mp4 96.43Мб
11. Choosing The Right Models.srt 12.97Кб
11. Contributing To Open Source.mp4 130.26Мб
11. Contributing To Open Source.srt 17.13Кб
11. Fitting A Machine Learning Model.mp4 55.53Мб
11. Fitting A Machine Learning Model.srt 10.47Кб
11. Getting Your Data Ready Convert Data To Numbers.mp4 135.03Мб
11. Getting Your Data Ready Convert Data To Numbers.srt 22.71Кб
11. Hadoop, HDFS and MapReduce.mp4 10.10Мб
11. Hadoop, HDFS and MapReduce.srt 4.70Кб
11. Iterables.mp4 43.20Мб
11. Iterables.srt 6.85Кб
11. Jupyter Notebook Walkthrough.mp4 67.35Мб
11. Jupyter Notebook Walkthrough.srt 15.14Кб
11. Manipulating Data 3.mp4 91.02Мб
11. Manipulating Data 3.srt 13.71Кб
11. Math Functions.mp4 41.82Мб
11. Math Functions.srt 5.43Кб
11. Modelling - Comparison.mp4 44.89Мб
11. Modelling - Comparison.srt 13.09Кб
11. Plotting From Pandas DataFrames 2.mp4 98.81Мб
11. Plotting From Pandas DataFrames 2.srt 13.63Кб
11. Reshape and Transpose.mp4 53.53Мб
11. Reshape and Transpose.srt 9.53Кб
11. Using A GPU.mp4 80.59Мб
11. Using A GPU.srt 12.11Кб
12.1 Introduction to Google Colab example notebook.html 116б
12.1 Matrix Multiplication Explained.html 119б
12.1 Solution Repl.html 92б
12.2 Google Colab Example of GPU speed up versus CPU.html 114б
12. Apache Spark and Apache Flink.mp4 5.76Мб
12. Apache Spark and Apache Flink.srt 2.31Кб
12. Assignment Pandas Practice.html 2.05Кб
12. Contributing To Open Source 2.mp4 113.04Мб
12. Contributing To Open Source 2.srt 10.18Кб
12. DEVELOPER FUNDAMENTALS I.mp4 59.71Мб
12. DEVELOPER FUNDAMENTALS I.srt 5.22Кб
12. Dot Product vs Element Wise.mp4 83.94Мб
12. Dot Product vs Element Wise.srt 15.34Кб
12. Exercise Tricky Counter.mp4 16.39Мб
12. Exercise Tricky Counter.srt 3.58Кб
12. Experimenting With Machine Learning Models.mp4 55.35Мб
12. Experimenting With Machine Learning Models.srt 9.63Кб
12. Getting Your Data Ready Handling Missing Values With Pandas.mp4 104.85Мб
12. Getting Your Data Ready Handling Missing Values With Pandas.srt 16.94Кб
12. Jupyter Notebook Walkthrough 2.mp4 103.90Мб
12. Jupyter Notebook Walkthrough 2.srt 22.48Кб
12. Optional GPU and Google Colab.mp4 45.88Мб
12. Optional GPU and Google Colab.srt 5.99Кб
12. Overfitting and Underfitting Definitions.html 1.74Кб
12. Plotting from Pandas DataFrames 3.mp4 74.72Мб
12. Plotting from Pandas DataFrames 3.srt 74.73Мб
12. Splitting Data.mp4 82.68Мб
12. Splitting Data.srt 13.51Кб
13.1 Course notebooks - Github.html 108б
13.1 Exercise Repl.html 106б
13.1 heart-disease.csv 11.06Кб
13.2 Google Colab.html 95б
13. Challenge What's wrong with splitting data after filling it.html 1.50Кб
13. Coding Challenges.html 948б
13. Exercise Nut Butter Store Sales.mp4 91.33Мб
13. Exercise Nut Butter Store Sales.srt 16.96Кб
13. Experimentation.mp4 21.33Мб
13. Experimentation.srt 4.98Кб
13. How To Download The Course Assignments.mp4 66.78Мб
13. How To Download The Course Assignments.srt 11.06Кб
13. Jupyter Notebook Walkthrough 3.mp4 71.42Мб
13. Jupyter Notebook Walkthrough 3.srt 11.49Кб
13. Kafka and Stream Processing.mp4 19.25Мб
13. Kafka and Stream Processing.srt 5.05Кб
13. Note Correction in the upcoming video (splitting data).html 2.16Кб
13. Operator Precedence.mp4 14.42Мб
13. Operator Precedence.srt 3.50Кб
13. Optional Reloading Colab Notebook.mp4 88.66Мб
13. Optional Reloading Colab Notebook.srt 7.77Кб
13. Plotting from Pandas DataFrames 4.mp4 49.00Мб
13. Plotting from Pandas DataFrames 4.srt 9.41Кб
13. range().mp4 28.32Мб
13. range().srt 5.86Кб
13. TuningImproving Our Model.mp4 102.78Мб
13. TuningImproving Our Model.srt 17.64Кб
14.1 Documentation on how many images Google recommends for image problems.html 129б
14.1 Exercise Repl.html 106б
14. Comparison Operators.mp4 26.38Мб
14. Comparison Operators.srt 5.26Кб
14. Custom Evaluation Function.mp4 103.34Мб
14. Custom Evaluation Function.srt 16.11Кб
14. enumerate().mp4 24.81Мб
14. enumerate().srt 4.56Кб
14. Exercise Contribute To Open Source.html 1.43Кб
14. Exercise Operator Precedence.html 683б
14. Getting Your Data Ready Handling Missing Values With Scikit-learn.mp4 136.90Мб
14. Getting Your Data Ready Handling Missing Values With Scikit-learn.srt 23.13Кб
14. Loading Our Data Labels.mp4 114.83Мб
14. Loading Our Data Labels.srt 16.08Кб
14. Plotting from Pandas DataFrames 5.mp4 56.96Мб
14. Plotting from Pandas DataFrames 5.srt 11.63Кб
14. Tools We Will Use.mp4 27.34Мб
14. Tools We Will Use.srt 5.99Кб
14. Tuning Hyperparameters.mp4 108.01Мб
14. Tuning Hyperparameters.srt 15.67Кб
15.1 Base Numbers.html 111б
15.1 Scikit-Learn machine learning map (how to choose the right machine learning model).html 133б
15. Choosing The Right Model For Your Data.mp4 143.27Мб
15. Choosing The Right Model For Your Data.srt 21.38Кб
15. Optional bin() and complex.mp4 21.90Мб
15. Optional bin() and complex.srt 4.80Кб
15. Optional Elements of AI.html 975б
15. Plotting from Pandas DataFrames 6.mp4 82.05Мб
15. Plotting from Pandas DataFrames 6.srt 11.08Кб
15. Preparing The Images.mp4 133.89Мб
15. Preparing The Images.srt 15.12Кб
15. Reducing Data.mp4 93.48Мб
15. Reducing Data.srt 14.62Кб
15. Sorting Arrays.mp4 32.83Мб
15. Sorting Arrays.srt 8.80Кб
15. Tuning Hyperparameters 2.mp4 104.12Мб
15. Tuning Hyperparameters 2.srt 15.10Кб
15. While Loops.mp4 28.32Мб
15. While Loops.srt 7.36Кб
16.1 Introduction to NumPy Jupyter Notebook (from the videos).html 190б
16.1 Python Keywords.html 117б
16.2 Introduction to NumPy Jupyter Notebook (with annotations).html 184б
16.3 numpy-images.zip 7.27Мб
16. Choosing The Right Model For Your Data 2 (Regression).mp4 86.93Мб
16. Choosing The Right Model For Your Data 2 (Regression).srt 11.98Кб
16. Plotting from Pandas DataFrames 7.mp4 119.76Мб
16. Plotting from Pandas DataFrames 7.srt 14.95Кб
16. RandomizedSearchCV.mp4 85.83Мб
16. RandomizedSearchCV.srt 12.65Кб
16. Tuning Hyperparameters 3.mp4 63.02Мб
16. Tuning Hyperparameters 3.srt 63.03Мб
16. Turn Images Into NumPy Arrays.mp4 85.92Мб
16. Turn Images Into NumPy Arrays.srt 10.42Кб
16. Turning Data Labels Into Numbers.mp4 107.47Мб
16. Turning Data Labels Into Numbers.srt 13.76Кб
16. Variables.mp4 93.56Мб
16. Variables.srt 16.04Кб
16. While Loops 2.mp4 25.94Мб
16. While Loops 2.srt 6.42Кб
17.1 Blog post by Rachel Thomas (of fast.ai) on how and why you should create a validation set.html 108б
17. Assignment NumPy Practice.html 2.17Кб
17. break, continue, pass.mp4 22.22Мб
17. break, continue, pass.srt 5.25Кб
17. Creating Our Own Validation Set.mp4 66.44Мб
17. Creating Our Own Validation Set.srt 11.32Кб
17. Customizing Your Plots.mp4 92.22Мб
17. Customizing Your Plots.srt 13.95Кб
17. Evaluating Our Model.mp4 71.60Мб
17. Evaluating Our Model.srt 15.11Кб
17. Expressions vs Statements.mp4 10.97Мб
17. Expressions vs Statements.srt 1.72Кб
17. Improving Hyperparameters.mp4 79.29Мб
17. Improving Hyperparameters.srt 11.03Кб
17. Quick Note Decision Trees.html 221б
18.1 Documentation for loading images in TensorFlow.html 114б
18.1 Exercise Repl.html 116б
18.1 Exercise Repl.html 99б
18.2 Solution Repl.html 99б
18.2 TensorFlow guidelines for loading all kinds of data (turning your data into Tensors).html 98б
18. Augmented Assignment Operator.mp4 15.33Мб
18. Augmented Assignment Operator.srt 2.95Кб
18. Customizing Your Plots 2.mp4 123.60Мб
18. Customizing Your Plots 2.srt 13.29Кб
18. Evaluating Our Model 2.mp4 41.54Мб
18. Evaluating Our Model 2.srt 7.41Кб
18. Optional Extra NumPy resources.html 1.02Кб
18. Our First GUI.mp4 49.64Мб
18. Our First GUI.srt 10.37Кб
18. Preproccessing Our Data.mp4 139.30Мб
18. Preproccessing Our Data.srt 17.80Кб
18. Preprocess Images.mp4 90.10Мб
18. Preprocess Images.srt 12.93Кб
18. Quick Tip How ML Algorithms Work.mp4 11.07Мб
18. Quick Tip How ML Algorithms Work.srt 1.91Кб
19.1 Introduction to Matplotlib Notebook (from the videos).html 195б
19. Choosing The Right Model For Your Data 3 (Classification).mp4 118.85Мб
19. Choosing The Right Model For Your Data 3 (Classification).srt 17.13Кб
19. DEVELOPER FUNDAMENTALS IV.mp4 50.22Мб
19. DEVELOPER FUNDAMENTALS IV.srt 7.82Кб
19. Evaluating Our Model 3.mp4 64.84Мб
19. Evaluating Our Model 3.srt 11.55Кб
19. Making Predictions.mp4 79.22Мб
19. Making Predictions.srt 11.37Кб
19. Preprocess Images 2.mp4 105.08Мб
19. Preprocess Images 2.srt 12.89Кб
19. Saving And Sharing Your Plots.mp4 49.52Мб
19. Saving And Sharing Your Plots.srt 5.83Кб
19. Strings.mp4 30.99Мб
19. Strings.srt 6.29Кб
2.1 End-to-end Bluebook Bulldozer Regression Notebook (with annotations).html 208б
2.1 How to Think About Communicating and Sharing Your Work (blog post).html 142б
2.1 Introduction to Matplotlib Jupyter Notebook (from the upcoming videos).html 195б
2.1 Kaggle.html 92б
2.1 NumPy Documentation.html 83б
2.1 Scikit-Learn Documentation.html 108б
2.1 Structured Data Projects on GitHub.html 155б
2.2 End-to-end Bluebook Bulldozer Regression Notebook (same as in videos).html 214б
2.2 End-to-end Heart Disease Classification Notebook (with annotations).html 201б
2.2 Introduction to NumPy Jupyter Notebook (from the upcoming videos).html 190б
2.2 Introduction to Scikit-Learn Jupyter Notebook (from the upcoming videos).html 197б
2.2 Matplotlib Documentation.html 103б
2.3 End-to-end Heart Disease Classification Notebook (same as in videos).html 207б
2.3 Introduction to NumPy Jupyter Notebook (with annotations).html 184б
2.3 Introduction to Scikit-Learn Jupyter Notebook (with annotations).html 191б
2.3 Kaggle Bluebook for Bulldozers Competition.html 118б
2.4 Structured Data Projects on GitHub.html 155б
2. AIMachine LearningData Science.mp4 19.67Мб
2. AIMachine LearningData Science.srt 6.36Кб
2. Communicating Your Work.mp4 20.20Мб
2. Communicating Your Work.srt 4.84Кб
2. Conditional Logic.mp4 74.58Мб
2. Conditional Logic.srt 15.66Кб
2. Deep Learning and Unstructured Data.mp4 102.04Мб
2. Deep Learning and Unstructured Data.srt 20.20Кб
2. Downloading Workbooks and Assignments.html 967б
2. Introducing Our Framework.mp4 11.38Мб
2. Introducing Our Framework.srt 3.70Кб
2. Introducing Our Tools.mp4 19.29Мб
2. Introducing Our Tools.srt 4.34Кб
2. Join Our Online Classroom!.html 2.31Кб
2. Matplotlib Introduction.mp4 31.51Мб
2. Matplotlib Introduction.srt 8.03Кб
2. NumPy Introduction.mp4 26.85Мб
2. NumPy Introduction.srt 7.50Кб
2. Project Overview.mp4 34.45Мб
2. Project Overview.mp4 32.95Мб
2. Project Overview.srt 10.02Кб
2. Project Overview.srt 6.66Кб
2. Python + Machine Learning Monthly.html 734б
2. Python Interpreter.mp4 93.47Мб
2. Python Interpreter.srt 8.30Кб
2. Quick Note Upcoming Video.html 587б
2. Scikit-learn Introduction.mp4 40.63Мб
2. Scikit-learn Introduction.srt 10.60Кб
2. Thank You.mp4 11.12Мб
2. Thank You.srt 3.64Кб
2. What Is Data.mp4 42.22Мб
2. What Is Data.srt 7.62Кб
20.1 End-to-end Bluebook Bulldozer Regression Notebook (with annotations).html 208б
20.1 Solution Repl.html 102б
20.2 End-to-end Bluebook Bulldozer Regression Notebook (same as in videos).html 214б
20. Assignment Matplotlib Practice.html 2.05Кб
20. Exercise Find Duplicates.mp4 20.26Мб
20. Exercise Find Duplicates.srt 4.39Кб
20. Feature Importance.mp4 142.31Мб
20. Feature Importance.srt 17.26Кб
20. Finding The Most Important Features.mp4 127.49Мб
20. Finding The Most Important Features.srt 22.33Кб
20. Fitting A Model To The Data.mp4 56.57Мб
20. Fitting A Model To The Data.srt 9.33Кб
20. String Concatenation.mp4 7.34Мб
20. String Concatenation.srt 1.42Кб
20. Turning Data Into Batches.mp4 87.78Мб
20. Turning Data Into Batches.srt 11.61Кб
21.1 End-to-end Heart Disease Classification Notebook (same as in videos).html 207б
21.1 Yann LeCun's (OG of deep learning) Tweet on Batch Sizes.html 118б
21.2 End-to-end Heart Disease Classification Notebook (with annotations).html 201б
21. Functions.mp4 48.60Мб
21. Functions.srt 9.20Кб
21. Making Predictions With Our Model.mp4 66.50Мб
21. Making Predictions With Our Model.srt 66.52Мб
21. Reviewing The Project.mp4 86.14Мб
21. Reviewing The Project.srt 86.16Мб
21. Turning Data Into Batches 2.mp4 149.39Мб
21. Turning Data Into Batches 2.srt 20.15Кб
21. Type Conversion.mp4 19.00Мб
21. Type Conversion.srt 3.09Кб
22. Escape Sequences.mp4 23.16Мб
22. Escape Sequences.srt 23.13Мб
22. Parameters and Arguments.mp4 23.15Мб
22. Parameters and Arguments.srt 4.88Кб
22. predict() vs predict_proba().mp4 54.33Мб
22. predict() vs predict_proba().srt 11.56Кб
22. Visualizing Our Data.mp4 121.99Мб
22. Visualizing Our Data.srt 15.66Кб
23.1 Exercise Repl.html 104б
23.1 TensorFlow Hub (resource for pre-trained deep learning models and more).html 79б
23. Default Parameters and Keyword Arguments.mp4 38.15Мб
23. Default Parameters and Keyword Arguments.srt 5.98Кб
23. Formatted Strings.mp4 49.25Мб
23. Formatted Strings.srt 8.84Кб
23. Making Predictions With Our Model (Regression).mp4 44.92Мб
23. Making Predictions With Our Model (Regression).srt 9.13Кб
23. Preparing Our Inputs and Outputs.mp4 50.08Мб
23. Preparing Our Inputs and Outputs.srt 7.78Кб
24.1 Exercise Repl.html 101б
24. Evaluating A Machine Learning Model (Score).mp4 87.14Мб
24. Evaluating A Machine Learning Model (Score).srt 12.86Кб
24. Optional How machines learn and what's going on behind the scenes.html 2.72Кб
24. return.mp4 63.04Мб
24. return.srt 14.97Кб
24. String Indexes.mp4 49.15Мб
24. String Indexes.srt 9.21Кб
25.1 TensorFlow Hub (resource for pre-trained deep learning models and more).html 79б
25.2 MobileNetV2 (the model we're using) on TensorFlow Hub.html 132б
25.3 Andrei Karpathy's talk on AI at Tesla.html 95б
25.4 Papers with Code (a great resource for some of the best machine learning papers with code examples).html 88б
25.5 PyTorch Hub (PyTorch version of TensorFlow Hub).html 85б
25. Building A Deep Learning Model.mp4 121.85Мб
25. Building A Deep Learning Model.srt 15.92Кб
25. Evaluating A Machine Learning Model 2 (Cross Validation).mp4 95.98Мб
25. Evaluating A Machine Learning Model 2 (Cross Validation).srt 17.25Кб
25. Exercise Tesla.html 402б
25. Immutability.mp4 20.80Мб
25. Immutability.srt 3.50Кб
26.1 Built in Functions.html 109б
26.1 Keras in TensorFlow Overview Documentation.html 108б
26.2 String Methods.html 115б
26. Building A Deep Learning Model 2.mp4 105.91Мб
26. Building A Deep Learning Model 2.srt 12.54Кб
26. Built-In Functions + Methods.mp4 69.40Мб
26. Built-In Functions + Methods.srt 10.27Кб
26. Evaluating A Classification Model 1 (Accuracy).mp4 31.42Мб
26. Evaluating A Classification Model 1 (Accuracy).srt 5.87Кб
26. Methods vs Functions.mp4 30.69Мб
26. Methods vs Functions.srt 5.25Кб
27.1 Step by step breakdown of a convolutional neural network (what MobileNetV2 is made of).html 172б
27.2 The Softmax Function (activation function we use in our model).html 107б
27.3 MobileNetV2 (the model we're using) architecture explanation by Sik-Ho Tsang.html 163б
27. Booleans.mp4 16.55Мб
27. Booleans.srt 3.94Кб
27. Building A Deep Learning Model 3.mp4 105.92Мб
27. Building A Deep Learning Model 3.srt 11.20Кб
27. Docstrings.mp4 17.34Мб
27. Docstrings.srt 4.28Кб
27. Evaluating A Classification Model 2 (ROC Curve).mp4 66.04Мб
27. Evaluating A Classification Model 2 (ROC Curve).srt 12.28Кб
28.1 [Article] How to choose loss & activation functions when building a deep learning model.html 169б
28. Building A Deep Learning Model 4.mp4 86.31Мб
28. Building A Deep Learning Model 4.srt 12.02Кб
28. Clean Code.mp4 19.67Мб
28. Clean Code.srt 5.36Кб
28. Evaluating A Classification Model 3 (ROC Curve).mp4 50.62Мб
28. Evaluating A Classification Model 3 (ROC Curve).srt 10.04Кб
28. Exercise Type Conversion.mp4 50.34Мб
28. Exercise Type Conversion.srt 8.58Кб
29.1 Python Comments Best Practices.html 106б
29. args and kwargs.mp4 43.02Мб
29. args and kwargs.srt 8.09Кб
29. DEVELOPER FUNDAMENTALS II.mp4 29.25Мб
29. DEVELOPER FUNDAMENTALS II.srt 5.30Кб
29. Evaluating A Classification Model 4 (Confusion Matrix).mp4 77.72Мб
29. Evaluating A Classification Model 4 (Confusion Matrix).srt 15.11Кб
29. Summarizing Our Model.mp4 45.44Мб
29. Summarizing Our Model.srt 5.98Кб
3.1 A 6 Step Field Guide for Machine Learning Modelling (blog post).html 147б
3.1 Conda documentation.html 93б
3.1 Introduction to Pandas Jupyter Notebook (with annotations).html 185б
3.1 Teachable Machine.html 101б
3.2 10-minutes to pandas (from the pandas documentation).html 132б
3.2 Getting your computer ready for machine learning How, what and why you should use Anaconda, Miniconda and Conda (blog post).html 167б
3.3 Getting started with Conda (documentation).html 139б
3.3 Introduction to Pandas Jupyter Notebook (from the upcoming videos).html 191б
3.4 conda-cheatsheet.pdf 201.29Кб
3.4 Pandas Documentation.html 106б
3. 6 Step Machine Learning Framework.mp4 23.47Мб
3. 6 Step Machine Learning Framework.srt 6.63Кб
3. Communicating With Managers.mp4 18.38Мб
3. Communicating With Managers.srt 4.53Кб
3. Exercise Machine Learning Playground.mp4 42.59Мб
3. Exercise Machine Learning Playground.srt 8.09Кб
3. Exercise Meet The Community.html 2.51Кб
3. How To Run Python Code.mp4 63.90Мб
3. How To Run Python Code.srt 6.46Кб
3. Importing And Using Matplotlib.mp4 86.46Мб
3. Importing And Using Matplotlib.srt 16.05Кб
3. Indentation In Python.mp4 28.03Мб
3. Indentation In Python.srt 5.27Кб
3. Pandas Introduction.mp4 27.45Мб
3. Project Environment Setup.mp4 100.76Мб
3. Project Environment Setup.mp4 101.28Мб
3. Project Environment Setup.srt 14.39Кб
3. Project Environment Setup.srt 15.91Кб
3. Quick Note Correction In Next Video.html 1.25Кб
3. Quick Note Upcoming Video.html 390б
3. Setting Up With Google.html 568б
3. What If I Don't Have Enough Experience.mp4 160.94Мб
3. What If I Don't Have Enough Experience.srt 19.98Кб
3. What Is A Data Engineer.mp4 15.16Мб
3. What Is A Data Engineer.srt 4.90Кб
3. What is Conda.mp4 12.48Мб
3. What is Conda.srt 3.41Кб
30.1 Solution Repl.html 108б
30.1 TensorBoard Callback Documentation.html 134б
30. Evaluating A Classification Model 5 (Confusion Matrix).mp4 63.60Мб
30. Evaluating A Classification Model 5 (Confusion Matrix).srt 11.20Кб
30. Evaluating Our Model.mp4 79.29Мб
30. Evaluating Our Model.srt 10.42Кб
30. Exercise Functions.mp4 21.86Мб
30. Exercise Functions.srt 4.69Кб
30. Exercise Password Checker.mp4 51.10Мб
30. Exercise Password Checker.srt 7.89Кб
31.1 Early Stopping Callback (a way to stop your model from training when it stops improving) Documentation.html 136б
31. Evaluating A Classification Model 6 (Classification Report).mp4 87.25Мб
31. Evaluating A Classification Model 6 (Classification Report).srt 14.56Кб
31. Lists.mp4 21.97Мб
31. Lists.srt 5.57Кб
31. Preventing Overfitting.mp4 36.51Мб
31. Preventing Overfitting.srt 5.54Кб
31. Scope.mp4 20.14Мб
31. Scope.srt 3.82Кб
32.1 Exercise Repl.html 92б
32. Evaluating A Regression Model 1 (R2 Score).mp4 70.40Мб
32. Evaluating A Regression Model 1 (R2 Score).srt 12.01Кб
32. List Slicing.mp4 49.87Мб
32. List Slicing.srt 8.50Кб
32. Scope Rules.mp4 37.69Мб
32. Scope Rules.srt 8.48Кб
32. Training Your Deep Neural Network.mp4 166.61Мб
32. Training Your Deep Neural Network.srt 23.07Кб
33.1 Exercise Repl.html 93б
33. Evaluating A Regression Model 2 (MAE).mp4 28.52Мб
33. Evaluating A Regression Model 2 (MAE).srt 5.70Кб
33. Evaluating Performance With TensorBoard.mp4 74.18Мб
33. Evaluating Performance With TensorBoard.srt 9.57Кб
33. global Keyword.mp4 36.51Мб
33. global Keyword.srt 6.67Кб
33. Matrix.mp4 19.16Мб
33. Matrix.srt 4.13Кб
34.1 List Methods.html 113б
34.1 Solution Repl.html 95б
34. Evaluating A Regression Model 3 (MSE).mp4 54.91Мб
34. Evaluating A Regression Model 3 (MSE).srt 9.23Кб
34. List Methods.mp4 61.75Мб
34. List Methods.srt 10.75Кб
34. Make And Transform Predictions.mp4 154.98Мб
34. Make And Transform Predictions.srt 19.18Кб
34. nonlocal Keyword.mp4 18.26Мб
34. nonlocal Keyword.srt 4.07Кб
35.1 Exercise Repl.html 94б
35.1 TensorFlow documentation for the unbatch() function.html 127б
35.2 Python Keywords.html 117б
35. List Methods 2.mp4 27.40Мб
35. List Methods 2.srt 4.48Кб
35. Machine Learning Model Evaluation.html 7.12Кб
35. Transform Predictions To Text.mp4 129.87Мб
35. Transform Predictions To Text.srt 17.58Кб
35. Why Do We Need Scope.mp4 19.18Мб
35. Why Do We Need Scope.srt 4.77Кб
36. Evaluating A Model With Cross Validation and Scoring Parameter.mp4 91.50Мб
36. Evaluating A Model With Cross Validation and Scoring Parameter.srt 17.96Кб
36. List Methods 3.mp4 27.66Мб
36. List Methods 3.srt 27.67Мб
36. Pure Functions.mp4 67.37Мб
36. Pure Functions.srt 10.06Кб
36. Visualizing Model Predictions.mp4 119.31Мб
36. Visualizing Model Predictions.srt 17.02Кб
37.1 Exercise Repl.html 94б
37. Common List Patterns.mp4 40.47Мб
37. Common List Patterns.srt 5.83Кб
37. Evaluating A Model With Scikit-learn Functions.mp4 94.82Мб
37. Evaluating A Model With Scikit-learn Functions.srt 16.32Кб
37. map().mp4 38.38Мб
37. map().srt 6.29Кб
37. Visualizing And Evaluate Model Predictions 2.mp4 143.79Мб
37. Visualizing And Evaluate Model Predictions 2.srt 17.64Кб
38. filter().mp4 23.56Мб
38. filter().srt 5.05Кб
38. Improving A Machine Learning Model.mp4 90.94Мб
38. Improving A Machine Learning Model.srt 14.86Кб
38. List Unpacking.mp4 13.87Мб
38. List Unpacking.srt 2.91Кб
38. Visualizing And Evaluate Model Predictions 3.mp4 113.21Мб
38. Visualizing And Evaluate Model Predictions 3.srt 13.82Кб
39. None.mp4 7.93Мб
39. None.srt
39. Saving And Loading A Trained Model.mp4 126.98Мб
39. Saving And Loading A Trained Model.srt 16.85Кб
39. Tuning Hyperparameters.mp4 175.57Мб
39. Tuning Hyperparameters.srt 30.54Кб
39. zip().mp4 21.27Мб
39. zip().srt 3.26Кб
4.1 Google Colab (our workspace for the upcoming project).html 95б
4.1 matplotlib-anatomy-of-a-plot.png 369.39Кб
4.1 pandas-anatomy-of-a-dataframe.png 333.24Кб
4.1 Truthy vs Falsey Stackoverflow.html 170б
4.2 Google Colab IO example (how to get data in and out of your Colab notebook).html 113б
4.2 matplotlib-anatomy-of-a-plot-with-code.png 654.77Кб
4.3 Kaggle Dog Breed Identification Competition (the basis of our upcoming project).html 119б
4.4 End-to-end Dog Vision Notebook (the project we'll be working through).html 182б
4.5 Introduction to Google Colab example notebook.html 116б
4. Anatomy Of A Matplotlib Figure.mp4 82.16Мб
4. Anatomy Of A Matplotlib Figure.srt 14.16Кб
4. Communicating With Co-Workers.mp4 19.00Мб
4. Communicating With Co-Workers.srt 5.54Кб
4. Conda Environments.mp4 30.57Мб
4. Conda Environments.srt 6.15Кб
4. How Did We Get Here.mp4 30.51Мб
4. How Did We Get Here.srt 7.07Кб
4. Learning Guideline.html 310б
4. NumPy DataTypes and Attributes.mp4 78.99Мб
4. NumPy DataTypes and Attributes.srt 19.19Кб
4. Our First Python Program.mp4 47.21Мб
4. Our First Python Program.srt 9.03Кб
4. Refresher What Is Machine Learning.mp4 88.28Мб
4. Refresher What Is Machine Learning.srt 6.33Кб
4. Series, Data Frames and CSVs.mp4 95.37Мб
4. Series, Data Frames and CSVs.srt 16.82Кб
4. Setting Up Google Colab.mp4 74.24Мб
4. Setting Up Google Colab.srt 74.26Мб
4. Step 1~4 Framework Setup.mp4 105.51Мб
4. Step 1~4 Framework Setup.mp4 85.69Мб
4. Step 1~4 Framework Setup.srt 16.60Кб
4. Step 1~4 Framework Setup.srt 12.44Кб
4. Truthy vs Falsey.mp4 42.82Мб
4. Truthy vs Falsey.srt 5.99Кб
4. Types of Machine Learning Problems.mp4 60.50Мб
4. Types of Machine Learning Problems.srt 13.98Кб
4. What Is A Data Engineer 2.mp4 24.24Мб
4. What Is A Data Engineer 2.srt 6.33Кб
4. Your First Day.mp4 27.92Мб
4. Your First Day.srt 5.27Кб
40. Dictionaries.mp4 32.70Мб
40. Dictionaries.srt 7.09Кб
40. reduce().mp4 52.27Мб
40. reduce().srt 8.39Кб
40. Training Model On Full Dataset.mp4 139.83Мб
40. Training Model On Full Dataset.srt 19.17Кб
40. Tuning Hyperparameters 2.mp4 116.78Мб
40. Tuning Hyperparameters 2.srt 16.97Кб
41.1 Dog Vision Prediction Probabilities Array.html 170б
41. DEVELOPER FUNDAMENTALS III.mp4 26.63Мб
41. DEVELOPER FUNDAMENTALS III.srt 3.59Кб
41. List Comprehensions.mp4 53.34Мб
41. List Comprehensions.srt 9.38Кб
41. Making Predictions On Test Images.mp4 140.84Мб
41. Making Predictions On Test Images.srt 20.31Кб
41. Tuning Hyperparameters 3.mp4 121.77Мб
41. Tuning Hyperparameters 3.srt 18.78Кб
42.1 Dog Vision Predictions with MobileNetV2 Ready for Kaggle Submission.html 180б
42. Dictionary Keys.mp4 20.38Мб
42. Dictionary Keys.srt 4.17Кб
42. Quick Tip Correlation Analysis.mp4 16.92Мб
42. Quick Tip Correlation Analysis.srt 3.09Кб
42. Set Comprehensions.mp4 35.37Мб
42. Set Comprehensions.srt 6.58Кб
42. Submitting Model to Kaggle.mp4 121.35Мб
42. Submitting Model to Kaggle.srt 16.58Кб
43.1 Dictionary Methods.html 119б
43.1 End-to-end Dog Vision Notebook (with annotations).html 185б
43.1 Exercise Repl.html 100б
43.2 End-to-end Dog Vision Notebook (from the videos).html 191б
43.2 Solution Repl.html 102б
43. Dictionary Methods.mp4 27.16Мб
43. Dictionary Methods.srt 5.26Кб
43. Exercise Comprehensions.mp4 21.97Мб
43. Exercise Comprehensions.srt 4.94Кб
43. Making Predictions On Our Images.mp4 119.24Мб
43. Making Predictions On Our Images.srt 18.57Кб
43. Saving And Loading A Model.mp4 52.61Мб
43. Saving And Loading A Model.srt 9.85Кб
44.1 Exercise Repl.html 97б
44. Dictionary Methods 2.mp4 42.40Мб
44. Dictionary Methods 2.srt 7.14Кб
44. Finishing Dog Vision Where to next.html 3.86Кб
44. Python Exam Testing Your Understanding.html 1.12Кб
44. Saving And Loading A Model 2.mp4 56.78Мб
44. Saving And Loading A Model 2.srt 8.98Кб
45. Modules in Python.mp4 82.18Мб
45. Modules in Python.srt 12.67Кб
45. Putting It All Together.mp4 158.36Мб
45. Putting It All Together.srt 26.43Кб
45. Tuples.mp4 25.66Мб
45. Tuples.srt 5.69Кб
46.1 Introduction to Scikit-Learn Jupyter Notebook (from the videos).html 197б
46.1 Tuple Methods.html 114б
46.2 Introduction to Scikit-Learn Jupyter Notebook (with annotations).html 191б
46. Putting It All Together 2.mp4 116.86Мб
46. Putting It All Together 2.srt 16.11Кб
46. Quick Note Upcoming Videos.html 448б
46. Tuples 2.mp4 16.99Мб
46. Tuples 2.srt 3.08Кб
47. Optional PyCharm.mp4 53.06Мб
47. Optional PyCharm.srt 10.51Кб
47. Scikit-Learn Practice.html 2.07Кб
47. Sets.mp4 36.99Мб
47. Sets.srt 8.43Кб
48.1 Exercise Repl.html 91б
48.2 Sets Methods.html 112б
48. Packages in Python.mp4 72.43Мб
48. Packages in Python.srt 12.45Кб
48. Sets 2.mp4 64.27Мб
48. Sets 2.srt 9.24Кб
49. Different Ways To Import.mp4 47.97Мб
49. Different Ways To Import.srt 7.49Кб
5.1 Google Colab FAQ (things you should know about Google Colab).html 110б
5.1 Machine Learning Playground.html 88б
5.1 Miniconda download documentation.html 107б
5.1 Python 2 vs Python 3.html 161б
5.2 Google Colab (our workspace for the upcoming project).html 95б
5.2 The Story of Python.html 104б
5. Creating NumPy Arrays.mp4 66.78Мб
5. Creating NumPy Arrays.srt 12.44Кб
5. Data from URLs.html 1.09Кб
5. Exercise YouTube Recommendation Engine.mp4 19.43Мб
5. Exercise YouTube Recommendation Engine.srt 5.65Кб
5. Exploring Our Data.mp4 137.82Мб
5. Exploring Our Data.srt 19.97Кб
5. Getting Our Tools Ready.mp4 79.37Мб
5. Getting Our Tools Ready.srt 12.78Кб
5. Google Colab Workspace.mp4 39.63Мб
5. Google Colab Workspace.srt 6.32Кб
5. Mac Environment Setup.mp4 144.40Мб
5. Mac Environment Setup.srt 23.93Кб
5. Python 2 vs Python 3.mp4 82.15Мб
5. Python 2 vs Python 3.srt 8.17Кб
5. Quick Note Upcoming Videos.html 565б
5. Quick Note Upcoming Videos.html 1018б
5. Scatter Plot And Bar Plot.mp4 67.04Мб
5. Scatter Plot And Bar Plot.srt 14.67Кб
5. Ternary Operator.mp4 19.71Мб
5. Ternary Operator.srt 4.81Кб
5. Types of Data.mp4 29.33Мб
5. Types of Data.srt 6.52Кб
5. Weekend Project Principle.mp4 23.59Мб
5. Weekend Project Principle.srt 8.98Кб
5. What Is A Data Engineer 3.mp4 24.29Мб
5. What Is A Data Engineer 3.srt 5.41Кб
50. Next Steps.html 959б
6.1 Devblog by Hashnode (an easy and free way to create a blog you own).html 89б
6.1 heart-disease.csv 11.06Кб
6.1 Kaggle Dog Breed Identification Competition Data.html 115б
6.1 Scikit-Learn Reference Notebook.html 194б
6.2 fast_template by fast.ai (a template you can use for your blog on GitHub Pages).html 106б
6.2 Google Colab IO example (how to get data in and out of your Colab notebook).html 113б
6. Communicating With Outside World.mp4 14.53Мб
6. Communicating With Outside World.srt 4.51Кб
6. Describing Data with Pandas.mp4 75.56Мб
6. Describing Data with Pandas.srt 13.58Кб
6. Exercise How Does Python Work.mp4 25.96Мб
6. Exercise How Does Python Work.srt 2.85Кб
6. Exploring Our Data.mp4 66.89Мб
6. Exploring Our Data.srt 11.40Кб
6. Exploring Our Data 2.mp4 52.05Мб
6. Exploring Our Data 2.srt 8.60Кб
6. Histograms And Subplots.mp4 69.75Мб
6. Histograms And Subplots.srt 12.44Кб
6. JTS Learn to Learn.mp4 11.15Мб
6. JTS Learn to Learn.srt 2.49Кб
6. Mac Environment Setup 2.mp4 125.47Мб
6. Mac Environment Setup 2.srt 20.69Кб
6. NumPy Random Seed.mp4 51.93Мб
6. NumPy Random Seed.srt 9.72Кб
6. Scikit-learn Cheatsheet.mp4 75.14Мб
6. Scikit-learn Cheatsheet.srt 10.08Кб
6. Short Circuiting.mp4 19.39Мб
6. Short Circuiting.srt 4.47Кб
6. Types of Evaluation.mp4 17.75Мб
6. Types of Evaluation.srt 4.33Кб
6. Types of Machine Learning.mp4 22.76Мб
6. Types of Machine Learning.srt 5.27Кб
6. Uploading Project Data.mp4 51.99Мб
6. Uploading Project Data.srt 8.64Кб
6. What Is A Data Engineer 4.mp4 14.93Мб
6. What Is A Data Engineer 4.srt 14.94Мб
7.1 A Primer on ACID Transactions.html 117б
7.1 car-sales.csv 369б
7.1 Example Scikit-Learn Workflow Notebook.html 192б
7.1 Miniconda download documentation.html 107б
7.2 OLTP vs OLAP.html 126б
7. Are You Getting It Yet.html 160б
7. Feature Engineering.mp4 159.14Мб
7. Feature Engineering.srt 22.13Кб
7. Features In Data.mp4 36.78Мб
7. Features In Data.srt 6.75Кб
7. Finding Patterns.mp4 63.35Мб
7. Finding Patterns.srt 13.39Кб
7. JTS Start With Why.mp4 15.44Мб
7. JTS Start With Why.srt 2.96Кб
7. Learning Python.mp4 38.53Мб
7. Learning Python.srt 2.59Кб
7. Logical Operators.mp4 28.34Мб
7. Logical Operators.srt 8.10Кб
7. Selecting and Viewing Data with Pandas.mp4 72.36Мб
7. Selecting and Viewing Data with Pandas.srt 14.59Кб
7. Setting Up Our Data.mp4 42.26Мб
7. Setting Up Our Data.srt 6.38Кб
7. Storytelling.mp4 12.03Мб
7. Storytelling.srt 4.10Кб
7. Subplots Option 2.mp4 38.09Мб
7. Subplots Option 2.srt 6.40Кб
7. Types Of Databases.mp4 32.56Мб
7. Types Of Databases.srt 8.37Кб
7. Typical scikit-learn Workflow.mp4 190.19Мб
7. Typical scikit-learn Workflow.srt 31.71Кб
7. Viewing Arrays and Matrices.mp4 70.65Мб
7. Viewing Arrays and Matrices.srt 12.89Кб
7. Windows Environment Setup.mp4 47.92Мб
7. Windows Environment Setup.srt 7.62Кб
8.1 Standard deviation and variance explained.html 116б
8. Communicating and sharing your work Further reading.html 3.14Кб
8. Exercise Logical Operators.mp4 46.62Мб
8. Exercise Logical Operators.srt 8.40Кб
8. Finding Patterns 2.mp4 99.93Мб
8. Finding Patterns 2.srt 22.32Кб
8. Manipulating Arrays.mp4 80.65Мб
8. Manipulating Arrays.srt 16.17Кб
8. Modelling - Splitting Data.mp4 27.51Мб
8. Modelling - Splitting Data.srt 7.71Кб
8. Optional Debugging Warnings In Jupyter.mp4 176.14Мб
8. Optional Debugging Warnings In Jupyter.srt 25.51Кб
8. Python Data Types.mp4 28.85Мб
8. Python Data Types.srt 5.22Кб
8. Quick Note Upcoming Video.html 481б
8. Quick Note Upcoming Videos.html 352б
8. Quick Tip Data Visualizations.mp4 12.25Мб
8. Quick Tip Data Visualizations.srt 2.34Кб
8. Selecting and Viewing Data with Pandas Part 2.mp4 106.51Мб
8. Selecting and Viewing Data with Pandas Part 2.srt 17.92Кб
8. Setting Up Our Data 2.mp4 20.87Мб
8. Setting Up Our Data 2.srt 2.18Кб
8. Turning Data Into Numbers.mp4 146.17Мб
8. Turning Data Into Numbers.srt 22.32Кб
8. What Is Machine Learning Round 2.mp4 25.52Мб
8. What Is Machine Learning Round 2.srt 6.07Кб
8. Windows Environment Setup 2.mp4 227.61Мб
8. Windows Environment Setup 2.srt 31.61Кб
9.1 Jake VanderPlas's Data Manipulation with Pandas.html 146б
9.1 Pandas Categorical Datatype Documentation.html 143б
9.1 scikit-learn-data.zip 20.83Кб
9.1 Standard deviation and variance explained.html 116б
9.2 car-sales-missing-data.csv 287б
9. CWD Git + Github.mp4 176.11Мб
9. CWD Git + Github.srt 21.17Кб
9. Filling Missing Numerical Values.mp4 106.34Мб
9. Filling Missing Numerical Values.srt 16.94Кб
9. Finding Patterns 3.mp4 137.87Мб
9. Finding Patterns 3.srt 18.88Кб
9. Getting Your Data Ready Splitting Your Data.mp4 63.67Мб
9. Getting Your Data Ready Splitting Your Data.srt 12.08Кб
9. How To Succeed.html 280б
9. Importing TensorFlow 2.mp4 116.77Мб
9. Importing TensorFlow 2.srt 16.79Кб
9. is vs ==.mp4 33.57Мб
9. is vs ==.srt 8.12Кб
9. Linux Environment Setup.html 1.03Кб
9. Manipulating Arrays 2.mp4 67.91Мб
9. Manipulating Arrays 2.srt 11.49Кб
9. Manipulating Data.mp4 104.99Мб
9. Manipulating Data.srt 18.07Кб
9. Modelling - Picking the Model.mp4 23.25Мб
9. Modelling - Picking the Model.srt 6.21Кб
9. Optional OLTP Databases.mp4 79.68Мб
9. Optional OLTP Databases.srt 12.11Кб
9. Plotting From Pandas DataFrames.mp4 60.35Мб
9. Plotting From Pandas DataFrames.srt 9.02Кб
9. Section Review.mp4 5.56Мб
9. Section Review.srt 2.34Кб
Статистика распространения по странам
США (US) 3
Индия (IN) 3
Эфиопия (ET) 2
Филиппины (PH) 2
Танзания (TZ) 1
Китай (CN) 1
Румыния (RO) 1
Кения (KE) 1
Сербия (RS) 1
Сенегал (SN) 1
Испания (ES) 1
Польша (PL) 1
Сингапур (SG) 1
Иран (IR) 1
ОАЭ (AE) 1
Австрия (AT) 1
Россия (RU) 1
Швейцария (CH) 1
Алжир (DZ) 1
Всего 25
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент