Общая информация
Название [FreeCourseSite.com] Udemy - 2021 Python for Machine Learning & Data Science Masterclass
Тип
Размер 6.41Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[FreeCourseSite.com].url 127б
1. Capstone Project Overview.mp4 93.20Мб
1. Capstone Project Overview.srt 20.60Кб
1. EARLY BIRD INFO.html 550б
1. Introduction to Linear Regression Section.mp4 8.87Мб
1. Introduction to Linear Regression Section.srt 2.68Кб
1. Introduction to Machine Learning Overview Section.mp4 29.73Мб
1. Introduction to Machine Learning Overview Section.srt 8.58Кб
1. Introduction to Matplotlib.mp4 21.57Мб
1. Introduction to Matplotlib.srt 6.72Кб
1. Introduction to NumPy.mp4 11.28Мб
1. Introduction to NumPy.srt 3.01Кб
1. Introduction to Pandas.mp4 21.01Мб
1. Introduction to Pandas.srt 7.24Кб
1. Introduction to Seaborn.mp4 20.01Мб
1. Introduction to Seaborn.srt 6.51Кб
1. Machine Learning Pathway.mp4 40.55Мб
1. Machine Learning Pathway.srt 15.79Кб
1. OPTIONAL Python Crash Course.html 472б
10. Linear Regression - Residual Plots.mp4 59.52Мб
10. Linear Regression - Residual Plots.srt 20.22Кб
10. Matplotlib Exercise Questions Overview.mp4 50.77Мб
10. Matplotlib Exercise Questions Overview.srt 9.33Кб
10. Pandas - Useful Methods - Apply on Multiple Columns.mp4 98.55Мб
10. Pandas - Useful Methods - Apply on Multiple Columns.srt 25.93Кб
10. Seaborn - Comparison Plots - Coding with Seaborn.mp4 70.16Мб
10. Seaborn - Comparison Plots - Coding with Seaborn.srt 15.70Кб
11. Linear Regression - Model Deployment and Coefficient Interpretation.mp4 88.19Мб
11. Linear Regression - Model Deployment and Coefficient Interpretation.srt 25.62Кб
11. Matplotlib Exercise Questions - Solutions.mp4 123.11Мб
11. Matplotlib Exercise Questions - Solutions.srt 24.53Кб
11. Pandas - Useful Methods - Statistical Information and Sorting.mp4 85.65Мб
11. Pandas - Useful Methods - Statistical Information and Sorting.srt 23.40Кб
11. Seaborn Grid Plots.mp4 91.62Мб
11. Seaborn Grid Plots.srt 20.50Кб
12. Missing Data - Overview.mp4 53.18Мб
12. Missing Data - Overview.srt 18.36Кб
12. Polynomial Regression - Theory and Motivation.mp4 44.47Мб
12. Polynomial Regression - Theory and Motivation.srt 11.20Кб
12. Seaborn - Matrix Plots.mp4 71.25Мб
12. Seaborn - Matrix Plots.srt 21.09Кб
13. Missing Data - Pandas Operations.mp4 97.86Мб
13. Missing Data - Pandas Operations.srt 27.41Кб
13. Polynomial Regression - Creating Polynomial Features.mp4 52.62Мб
13. Polynomial Regression - Creating Polynomial Features.srt 16.39Кб
13. Seaborn Plot Exercises Overview.mp4 49.91Мб
13. Seaborn Plot Exercises Overview.srt 11.26Кб
14. GroupBy Operations - Part One.mp4 93.11Мб
14. GroupBy Operations - Part One.srt 21.41Кб
14. Polynomial Regression - Training and Evaluation.mp4 48.86Мб
14. Polynomial Regression - Training and Evaluation.srt 14.17Кб
14. Seaborn Plot Exercises Solutions.mp4 110.60Мб
14. Seaborn Plot Exercises Solutions.srt 22.40Кб
15. Bias Variance Trade-Off.mp4 43.04Мб
15. Bias Variance Trade-Off.srt 15.94Кб
15. GroupBy Operations - Part Two - MultiIndex.mp4 105.86Мб
15. GroupBy Operations - Part Two - MultiIndex.srt 20.86Кб
16. Combining DataFrames - Concatenation.mp4 50.51Мб
16. Combining DataFrames - Concatenation.srt 15.02Кб
16. Polynomial Regression - Choosing Degree of Polynomial.mp4 72.93Мб
16. Polynomial Regression - Choosing Degree of Polynomial.srt 19.88Кб
17. Combining DataFrames - Inner Merge.mp4 53.61Мб
17. Combining DataFrames - Inner Merge.srt 18.52Кб
17. Polynomial Regression - Model Deployment.mp4 28.94Мб
17. Polynomial Regression - Model Deployment.srt 8.38Кб
18. Combining DataFrames - Left and Right Merge.mp4 27.90Мб
18. Combining DataFrames - Left and Right Merge.srt 9.10Кб
18. Regularization Overview.mp4 33.34Мб
18. Regularization Overview.srt 10.33Кб
19. Combining DataFrames - Outer Merge.mp4 39.89Мб
19. Combining DataFrames - Outer Merge.srt 14.57Кб
19. Feature Scaling.mp4 53.97Мб
19. Feature Scaling.srt 14.83Кб
2.1 UNZIP_ME_FOR_NOTEBOOKS.zip 27.09Мб
2. Capstone Project Solutions - Part One.mp4 116.95Мб
2. Capstone Project Solutions - Part One.srt 26.84Кб
2. COURSE OVERVIEW LECTURE - PLEASE DO NOT SKIP!.mp4 24.55Мб
2. COURSE OVERVIEW LECTURE - PLEASE DO NOT SKIP!.srt 7.17Кб
2. Linear Regression - Algorithm History.mp4 54.71Мб
2. Linear Regression - Algorithm History.srt 13.09Кб
2. Matplotlib Basics.mp4 53.61Мб
2. Matplotlib Basics.srt 19.64Кб
2. NumPy Arrays.mp4 109.63Мб
2. NumPy Arrays.srt 31.91Кб
2. Python Crash Course - Part One.mp4 29.52Мб
2. Python Crash Course - Part One.srt 24.63Кб
2. Scatterplots with Seaborn.mp4 128.61Мб
2. Scatterplots with Seaborn.srt 29.72Кб
2. Series - Part One.mp4 38.48Мб
2. Series - Part One.srt 13.39Кб
2. Why Machine Learning.mp4 44.77Мб
2. Why Machine Learning.srt 14.66Кб
20. Introduction to Cross Validation.mp4 62.59Мб
20. Introduction to Cross Validation.srt 19.81Кб
20. Pandas - Text Methods for String Data.mp4 75.69Мб
20. Pandas - Text Methods for String Data.srt 23.95Кб
21. Pandas - Time Methods for Date and Time Data.mp4 101.92Мб
21. Pandas - Time Methods for Date and Time Data.srt 31.72Кб
21. Regularization Data Setup.mp4 34.45Мб
21. Regularization Data Setup.srt 12.42Кб
22. L2 Regularization - Ridge Regression Theory.mp4 61.09Мб
22. L2 Regularization - Ridge Regression Theory.srt 20.72Кб
22. Pandas Input and Output - CSV Files.mp4 49.87Мб
22. Pandas Input and Output - CSV Files.srt 16.59Кб
23. L2 Regularization - Ridge Regression - Python Implementation.mp4 96.42Мб
23. L2 Regularization - Ridge Regression - Python Implementation.srt 26.45Кб
23. Pandas Input and Output - HTML Tables.mp4 106.65Мб
23. Pandas Input and Output - HTML Tables.srt 22.36Кб
24. L1 Regularization - Lasso Regression - Background and Implementation.mp4 100.00Мб
24. L1 Regularization - Lasso Regression - Background and Implementation.srt 22.44Кб
24. Pandas Input and Output - Excel Files.mp4 34.58Мб
24. Pandas Input and Output - Excel Files.srt 10.88Кб
25. L1 and L2 Regularization - Elastic Net.mp4 93.41Мб
25. L1 and L2 Regularization - Elastic Net.srt 25.72Кб
25. Pandas Input and Output - SQL Databases.mp4 103.19Мб
25. Pandas Input and Output - SQL Databases.srt 29.43Кб
26. Linear Regression Project - Data Overview.mp4 39.07Мб
26. Linear Regression Project - Data Overview.srt 7.67Кб
26. Pandas Pivot Tables.mp4 128.74Мб
26. Pandas Pivot Tables.srt 32.18Кб
27. Pandas Project Exercise Overview.mp4 41.07Мб
27. Pandas Project Exercise Overview.srt 9.59Кб
28. Pandas Project Exercise Solutions.mp4 181.59Мб
28. Pandas Project Exercise Solutions.srt 38.76Кб
3.1 UNZIP_ME_FOR_NOTEBOOKS.zip 27.09Мб
3. Anaconda Python and Jupyter Install and Setup.mp4 98.75Мб
3. Anaconda Python and Jupyter Install and Setup.srt 21.55Кб
3. Capstone Project Solutions - Part Two.mp4 111.05Мб
3. Capstone Project Solutions - Part Two.srt 23.48Кб
3. Coding Exercise Check-in Creating NumPy Arrays.html 163б
3. Distribution Plots - Part One - Understanding Plot Types.mp4 32.05Мб
3. Distribution Plots - Part One - Understanding Plot Types.srt 15.00Кб
3. Linear Regression - Understanding Ordinary Least Squares.mp4 86.26Мб
3. Linear Regression - Understanding Ordinary Least Squares.srt 22.52Кб
3. Matplotlib - Understanding the Figure Object.mp4 25.81Мб
3. Matplotlib - Understanding the Figure Object.srt 11.55Кб
3. Python Crash Course - Part Two.mp4 22.25Мб
3. Python Crash Course - Part Two.srt 18.03Кб
3. Series - Part Two.mp4 45.30Мб
3. Series - Part Two.srt 15.37Кб
3. Types of Machine Learning Algorithms.mp4 38.68Мб
3. Types of Machine Learning Algorithms.srt 11.63Кб
4.1 Backup Google Link for requirements.txt file.html 143б
4.2 requirements.txt 221б
4. Capstone Project Solutions - Part Three.mp4 143.96Мб
4. Capstone Project Solutions - Part Three.srt 30.88Кб
4. DataFrames - Part One - Creating a DataFrame.mp4 114.08Мб
4. DataFrames - Part One - Creating a DataFrame.srt 29.00Кб
4. Distribution Plots - Part Two - Coding with Seaborn.mp4 77.74Мб
4. Distribution Plots - Part Two - Coding with Seaborn.srt 24.79Кб
4. Environment Setup.mp4 49.32Мб
4. Environment Setup.srt 14.49Кб
4. Linear Regression - Cost Functions.mp4 36.02Мб
4. Linear Regression - Cost Functions.srt 11.46Кб
4. Matplotlib - Implementing Figures and Axes.mp4 59.09Мб
4. Matplotlib - Implementing Figures and Axes.srt 20.97Кб
4. NumPy Indexing and Selection.mp4 46.35Мб
4. NumPy Indexing and Selection.srt 16.22Кб
4. Python Crash Course - Part Three.mp4 23.17Мб
4. Python Crash Course - Part Three.srt 16.57Кб
4. Supervised Machine Learning Process.mp4 71.41Мб
4. Supervised Machine Learning Process.srt 19.76Кб
5. Categorical Plots - Statistics within Categories - Understanding Plot Types.mp4 21.86Мб
5. Categorical Plots - Statistics within Categories - Understanding Plot Types.srt 8.80Кб
5. Companion Book - Introduction to Statistical Learning.mp4 19.29Мб
5. Companion Book - Introduction to Statistical Learning.srt 4.66Кб
5. DataFrames - Part Two - Basic Properties.mp4 53.91Мб
5. DataFrames - Part Two - Basic Properties.srt 13.28Кб
5. Linear Regression - Gradient Descent.mp4 65.04Мб
5. Linear Regression - Gradient Descent.srt 16.73Кб
5. Matplotlib - Figure Parameters.mp4 23.75Мб
5. Matplotlib - Figure Parameters.srt 7.65Кб
5. NumPy Operations.mp4 48.59Мб
5. NumPy Operations.srt 12.05Кб
5. Python Crash Course - Exercise Questions.mp4 5.00Мб
5. Python Crash Course - Exercise Questions.srt 2.53Кб
6. Categorical Plots - Statistics within Categories - Coding with Seaborn.mp4 55.00Мб
6. Categorical Plots - Statistics within Categories - Coding with Seaborn.srt 14.61Кб
6. DataFrames - Part Three - Working with Columns.mp4 89.30Мб
6. DataFrames - Part Three - Working with Columns.srt 20.61Кб
6. Matplotlib - Subplots Functionality.mp4 96.18Мб
6. Matplotlib - Subplots Functionality.srt 28.63Кб
6. NumPy Exercises.mp4 11.52Мб
6. NumPy Exercises.srt 2.07Кб
6. Python coding Simple Linear Regression.mp4 91.92Мб
6. Python coding Simple Linear Regression.srt 28.14Кб
6. Python Crash Course - Exercise Solutions.mp4 25.10Мб
6. Python Crash Course - Exercise Solutions.srt 13.43Кб
7. Categorical Plots - Distributions within Categories - Understanding Plot Types.mp4 61.09Мб
7. Categorical Plots - Distributions within Categories - Understanding Plot Types.srt 20.10Кб
7. DataFrames - Part Four - Working with Rows.mp4 96.71Мб
7. DataFrames - Part Four - Working with Rows.srt 21.08Кб
7. Matplotlib Styling - Legends.mp4 34.09Мб
7. Matplotlib Styling - Legends.srt 10.35Кб
7. Numpy Exercises - Solutions.mp4 48.56Мб
7. Numpy Exercises - Solutions.srt 10.87Кб
7. Overview of Scikit-Learn and Python.mp4 45.61Мб
7. Overview of Scikit-Learn and Python.srt 12.34Кб
8. Categorical Plots - Distributions within Categories - Coding with Seaborn.mp4 111.24Мб
8. Categorical Plots - Distributions within Categories - Coding with Seaborn.srt 28.26Кб
8. Linear Regression - Scikit-Learn Train Test Split.mp4 82.93Мб
8. Linear Regression - Scikit-Learn Train Test Split.srt 23.78Кб
8. Matplotlib Styling - Colors and Styles.mp4 81.19Мб
8. Matplotlib Styling - Colors and Styles.srt 21.04Кб
8. Pandas - Conditional Filtering.mp4 90.04Мб
8. Pandas - Conditional Filtering.srt 27.14Кб
9. Advanced Matplotlib Commands (Optional).mp4 40.44Мб
9. Advanced Matplotlib Commands (Optional).srt 6.49Кб
9. Linear Regression - Scikit-Learn Performance Evaluation - Regression.mp4 73.64Мб
9. Linear Regression - Scikit-Learn Performance Evaluation - Regression.srt 22.83Кб
9. Pandas - Useful Methods - Apply on Single Column.mp4 73.05Мб
9. Pandas - Useful Methods - Apply on Single Column.srt 20.23Кб
9. Seaborn - Comparison Plots - Understanding the Plot Types.mp4 23.35Мб
9. Seaborn - Comparison Plots - Understanding the Plot Types.srt 8.73Кб
Статистика распространения по странам
Всего 0
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент