Общая информация
Название Complete Data Science & Machine Learning A-Z with Python
Тип
Размер 10.80Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[TGx]Downloaded from torrentgalaxy.to .txt 585б
0 267.00Кб
1 1.83Мб
1. Accessing and Making Files Available.mp4 34.61Мб
1. Adding Columns to Pandas Data Frames.mp4 33.58Мб
1. Classification vs Regression in Machine Learning.mp4 19.89Мб
1. Competitions on Kaggle Lesson 1.mp4 188.17Мб
1. Complete Data Science & Machine Learning A-Z with Python.html 266б
1. Concatenating Pandas Dataframes Concat Function.mp4 63.84Мб
1. Courses in Kaggle.mp4 52.14Мб
1. Creating a Pandas Series with a List.mp4 39.19Мб
1. Creating NumPy Array with The Array() Function.mp4 29.50Мб
1. Creating Pandas DataFrame with List.mp4 22.57Мб
1. Datasets on Kaggle.mp4 133.23Мб
1. Data Types in Python.mp4 47.07Мб
1. Data Visualisation - Matplotlib Files.html 170б
1. Decision Tree Algorithm Theory.mp4 35.75Мб
1. Dropping Columns with Low Correlation.mp4 26.83Мб
1. Element Selection Operations in Pandas DataFrames Lesson 1.mp4 29.90Мб
1. Examining Missing Values.mp4 45.79Мб
1. Examining the Code Section in Kaggle Lesson 1.mp4 79.53Мб
1. Examining the Data Set 3.mp4 39.11Мб
1. First Step to the Hearth Attack Prediction Project.mp4 117.14Мб
1. Hierarchical Clustering Algorithm Theory.mp4 28.55Мб
1. Hyperparameter Optimization Theory.mp4 33.14Мб
1. Indexing Numpy Arrays,.mp4 26.56Мб
1. Installing Anaconda Distribution for Windows.mp4 118.32Мб
1. Introduction to Data Visualization with Python.mp4 12.85Мб
1. Introduction to NumPy Library.mp4 45.27Мб
1. Introduction to Pandas Library.mp4 33.93Мб
1. K-Fold Cross-Validation Theory.mp4 17.45Мб
1. K Means Clustering Algorithm Theory.mp4 17.13Мб
1. K Nearest Neighbors Algorithm Theory.mp4 28.66Мб
1. Linear Regression Algorithm Theory in Machine Learning A-Z.mp4 34.06Мб
1. Loading a Dataset from the Seaborn Library.mp4 37.72Мб
1. Logic of Object Oriented Programming.mp4 17.38Мб
1. Logistic Regression.mp4 29.34Мб
1. Multi-Index and Index Hierarchy in Pandas DataFrames.mp4 42.66Мб
1. Numeric Variables (Analysis with Distplot) Lesson 1.mp4 80.35Мб
1. Numeric Variables – Target Variable (Analysis with FacetGrid) Lesson 1.mp4 49.37Мб
1. Operations with Comparison Operators.mp4 21.14Мб
1. Principal Component Analysis (PCA) Theory.mp4 37.96Мб
1. Project Conclusion and Sharing.mp4 28.66Мб
1. Random Forest Algorithm Theory.mp4 22.89Мб
1. Required Python Libraries.mp4 63.55Мб
1. Reshaping a NumPy Array Reshape() Function.mp4 26.16Мб
1. Support Vector Machine Algorithm Theory.mp4 21.84Мб
1. Unsupervised Learning Overview.mp4 16.91Мб
1. User Page Review on Kaggle.mp4 81.50Мб
1. What is Bias Variance Trade-Off.mp4 55.03Мб
1. What is Discussion on Kaggle.mp4 40.63Мб
1. What is Geoplotlib.mp4 34.18Мб
1. What is Kaggle.mp4 129.67Мб
1. What is Logistic Regression Algorithm in Machine Learning.mp4 27.84Мб
1. What is Machine Learning.mp4 27.58Мб
1. What is Matplotlib.mp4 19.06Мб
1. What is Seaborn.mp4 13.59Мб
1. What is Supervised Learning in Machine Learning.mp4 31.69Мб
1. What is the Recommender System Part 1.mp4 23.04Мб
10 848.25Кб
10. Exercise - Solution in Python.mp4 51.89Мб
10. Feature Scaling with the Robust Scaler Method for Machine Learning Algorithms.mp4 11.45Мб
10. Numerical - Categorical Variables (Analysis with Swarm Plot) Lesson 2.mp4 68.08Мб
10. Quiz.html 205б
10. Quiz.html 205б
10. Quiz.html 205б
100 1.15Мб
101 1.32Мб
102 1.37Мб
103 309.59Кб
104 669.79Кб
105 831.77Кб
106 912.72Кб
107 1.15Мб
108 1.28Мб
109 1.39Мб
11 986.47Кб
11. Numerical - Categorical Variables (Analysis with Box Plot) Lesson 1.mp4 38.07Мб
11. Quiz.html 205б
11. Separating Data into Test and Training Set.mp4 29.75Мб
110 1.64Мб
111 1.71Мб
112 1.80Мб
113 1.93Мб
114 41.38Кб
115 284.32Кб
116 455.71Кб
117 768.65Кб
118 1.64Мб
119 1.76Мб
12 1.06Мб
12. Numerical - Categorical Variables (Analysis with Box Plot) Lesson 2.mp4 35.47Мб
12. Quiz.html 205б
120 1.94Мб
121 164.19Кб
122 252.49Кб
123 276.16Кб
124 293.71Кб
125 311.69Кб
126 373.42Кб
127 423.68Кб
128 494.34Кб
129 546.29Кб
13 191.13Кб
13. Relationships between variables (Analysis with Heatmap) Lesson 1.mp4 36.36Мб
130 619.41Кб
131 820.34Кб
132 989.96Кб
133 1.11Мб
134 1.23Мб
135 1.33Мб
136 1.39Мб
137 1.42Мб
138 1.46Мб
139 1.73Мб
14 1.07Мб
14. Relationships between variables (Analysis with Heatmap) Lesson 2.mp4 90.67Мб
140 1.82Мб
141 1.94Мб
142 69.17Кб
143 426.89Кб
144 880.54Кб
145 1.33Мб
146 1.98Мб
147 165.72Кб
148 322.09Кб
149 482.45Кб
15 1.74Мб
15. Quiz.html 205б
150 602.33Кб
151 618.01Кб
152 764.37Кб
153 1.45Мб
154 1.79Мб
155 45.58Кб
156 104.83Кб
157 114.93Кб
158 225.64Кб
159 252.55Кб
16 1.16Мб
160 365.79Кб
161 512.72Кб
162 676.39Кб
163 800.91Кб
164 990.45Кб
165 1.07Мб
166 1.11Мб
167 1.34Мб
168 1.34Мб
169 1.45Мб
17 1.76Мб
170 1.63Мб
171 1.69Мб
172 1.78Мб
173 166.37Кб
174 251.17Кб
175 430.23Кб
176 638.92Кб
177 1.17Мб
178 1.44Мб
179 1.84Мб
18 641.91Кб
180 1.98Мб
181 57.82Кб
182 304.77Кб
183 847.48Кб
184 924.31Кб
185 1.42Мб
186 1.48Мб
187 1.55Мб
188 1.80Мб
189 1.85Мб
19 1.31Мб
190 1.91Мб
191 1.94Мб
192 1.99Мб
193 56.19Кб
194 114.99Кб
195 984.28Кб
196 1.11Мб
197 1.43Мб
198 1.73Мб
199 1.89Мб
2 110.81Кб
2. Arithmetic Operations in Numpy.mp4 71.82Мб
2. Competitions on Kaggle Lesson 2.mp4 191.68Мб
2. Constructor in Object Oriented Programming (OOP).mp4 35.84Мб
2. Controlling Figure Aesthetics in Seaborn.mp4 41.82Мб
2. Creating a Pandas Series with a Dictionary.mp4 18.29Мб
2. Creating NumPy Array with Zeros() Function.mp4 24.06Мб
2. Creating Pandas DataFrame with NumPy Array.mp4 12.10Мб
2. Cross Validation.mp4 30.21Мб
2. Data Entry with Csv and Txt Files.mp4 64.34Мб
2. Data Visualisation - Seaborn Files.html 170б
2. Decision Tree Algorithm with Python Part 1.mp4 31.53Мб
2. Element Selection in Multi-Indexed DataFrames.mp4 24.58Мб
2. Element Selection Operations in Pandas DataFrames Lesson 2.mp4 31.84Мб
2. Examining the Code Section in Kaggle Lesson 2.mp4 105.81Мб
2. Examining the Data Set 1.mp4 42.90Мб
2. Examining Unique Values.mp4 44.54Мб
2. Example - 1.mp4 38.85Мб
2. FAQ about Kaggle.html 10.94Кб
2. FAQ about Machine Learning, Data Science.html 15.29Кб
2. FAQ regarding Data Visualization, Python.html 8.59Кб
2. Hierarchical Clustering Algorithm with Python Part 2.mp4 35.52Мб
2. Hyperparameter Optimization with Python.mp4 47.47Мб
2. Identifying the Largest Element of a Numpy Array.mp4 15.12Мб
2. K-Fold Cross-Validation with Python.mp4 34.67Мб
2. K Means Clustering Algorithm with Python Part 1.mp4 29.96Мб
2. K Nearest Neighbors Algorithm with Python Part 1.mp4 35.03Мб
2. Linear Regression Algorithm With Python Part 1.mp4 76.17Мб
2. Loading the Statistics Dataset in Data Science.mp4 10.00Мб
2. Logistic Regression Algorithm with Python Part 1.mp4 72.22Мб
2. Machine Learning Model Performance Evaluation Classification Error Metrics.mp4 100.26Мб
2. Machine Learning Terminology.mp4 14.03Мб
2. Merge Pandas Dataframes Merge() Function Lesson 1.mp4 57.29Мб
2. Notebook Project Files Link regarding NumPy Python Programming Language Library.html 155б
2. Numeric Variables (Analysis with Distplot) Lesson 2.mp4 19.75Мб
2. Numeric Variables – Target Variable (Analysis with FacetGrid) Lesson 2.mp4 35.64Мб
2. Operators in Python.mp4 35.71Мб
2. Pandas Project Files Link.html 180б
2. Pivot Tables in Pandas Library.mp4 54.23Мб
2. Principal Component Analysis (PCA) with Python Part 1.mp4 26.02Мб
2. Quiz.html 205б
2. Quiz.html 205б
2. Quiz.html 205б
2. Quiz.html 205б
2. Quiz.html 205б
2. Random Forest Algorithm with Pyhon Part 1.mp4 38.61Мб
2. Ranking Among Users on Kaggle.mp4 107.04Мб
2. Removing Rows and Columns from Pandas Data frames.mp4 15.56Мб
2. Slicing One-Dimensional Numpy Arrays.mp4 22.27Мб
2. Support Vector Machine Algorithm with Python Part 1.mp4 35.59Мб
2. The Power of NumPy.mp4 59.87Мб
2. Treasure in The Kaggle.mp4 74.64Мб
2. Using Pyplot.mp4 28.22Мб
2. Visualizing Outliers.mp4 34.89Мб
2. What is the Recommender System Part 2.mp4 17.96Мб
20 1.33Мб
200 23.90Кб
201 161.56Кб
202 164.19Кб
203 875.85Кб
204 1.10Мб
205 1.51Мб
206 109.79Кб
207 261.07Кб
208 267.33Кб
209 434.91Кб
21 5.05Кб
210 960.57Кб
211 1.06Мб
212 1.71Мб
213 1.80Мб
214 40.42Кб
215 565.19Кб
216 630.45Кб
217 891.30Кб
218 1000.74Кб
219 1.09Мб
22 1.88Мб
220 1.54Мб
221 122.86Кб
222 161.05Кб
223 198.82Кб
224 454.09Кб
225 905.46Кб
226 1.28Мб
227 1.97Мб
228 416.65Кб
229 1.15Мб
23 1.94Мб
230 1.35Мб
231 1.45Мб
232 1.90Мб
233 1.90Мб
234 30.80Кб
235 566.28Кб
236 837.92Кб
237 1.83Мб
238 2.04Кб
239 1.54Мб
24 508.79Кб
240 1.58Мб
25 555.72Кб
26 882.98Кб
27 1.65Мб
28 480.94Кб
29 1.49Мб
3 790.26Кб
3. Aggregation Functions in Pandas DataFrames.mp4 90.69Мб
3. Blog and Documentation Sections.mp4 40.85Мб
3. Categoric Variables (Analysis with Pie Chart) Lesson 1.mp4 74.74Мб
3. Categoric Variables – Target Variable (Analysis with Count Plot) Lesson 1.mp4 24.15Мб
3. Conditionals in Python.mp4 41.23Мб
3. Creating NumPy Array with Ones() Function.mp4 15.88Мб
3. Creating Pandas DataFrame with Dictionary.mp4 15.84Мб
3. Creating Pandas Series with NumPy Array.mp4 11.97Мб
3. Data Entry with Excel Files.mp4 21.84Мб
3. Data Visualisation - Geoplotlib.html 168б
3. Dealing with Outliers – Trtbps Variable Lesson 1.mp4 42.82Мб
3. Decision Tree Algorithm with Python Part 2.mp4 48.92Мб
3. Detecting Least Element of Numpy Array Min(), Ar.mp4 10.17Мб
3. Evaluating Performance Regression Error Metrics in Python.mp4 45.70Мб
3. Examining the Code Section in Kaggle Lesson 3.mp4 159.89Мб
3. Example - 2.mp4 81.14Мб
3. Example in Seaborn.mp4 54.90Мб
3. Hierarchical Clustering Algorithm with Python Part 2.mp4 28.89Мб
3. Initial analysis on the dataset.mp4 63.96Мб
3. Installing Anaconda Distribution for MacOs.mp4 46.31Мб
3. K Means Clustering Algorithm with Python Part 2.mp4 29.64Мб
3. K Nearest Neighbors Algorithm with Python Part 2.mp4 59.37Мб
3. Linear Regression Algorithm With Python Part 2.mp4 106.94Мб
3. Logistic Regression Algorithm with Python Part 2.mp4 81.46Мб
3. Machine Learning Project Files.html 254б
3. Merge Pandas Dataframes Merge() Function Lesson 2.mp4 30.55Мб
3. Methods in Object Oriented Programming (OOP).mp4 25.10Мб
3. Notebook Design to be Used in the Project.mp4 104.93Мб
3. Null Values in Pandas Dataframes.mp4 66.96Мб
3. Principal Component Analysis (PCA) with Python Part 2.mp4 8.42Мб
3. Publishing Notebooks on Kaggle.mp4 38.20Мб
3. Pyplot – Pylab - Matplotlib.mp4 28.37Мб
3. Quiz.html 205б
3. Quiz.html 205б
3. Quiz.html 205б
3. Random Forest Algorithm with Pyhon Part 2.mp4 38.72Мб
3. Registering on Kaggle and Member Login Procedures.mp4 43.48Мб
3. Roc Curve and Area Under Curve (AUC).mp4 41.71Мб
3. Selecting Elements Using the xs() Function in Multi-Indexed DataFrames.mp4 31.25Мб
3. Separating variables (Numeric or Categorical).mp4 15.81Мб
3. Slicing Two-Dimensional Numpy Arrays.mp4 34.27Мб
3. Statistical Operations in Numpy.mp4 32.02Мб
3. Support Vector Machine Algorithm with Python Part 2.mp4 41.72Мб
3. Top Level Element Selection in Pandas DataFramesLesson 1.mp4 38.29Мб
30 1.83Мб
31 686.80Кб
32 1.26Мб
33 1.36Мб
34 1.78Мб
35 185.58Кб
36 1.72Мб
37 117.35Кб
38 1.92Мб
39 1.04Мб
4 341.19Кб
4. 6 Article Advice And Links about Numpy, Numpy Pyhon.html 4.19Кб
4. Assigning Value to One-Dimensional Arrays.mp4 18.20Мб
4. Categoric Variables (Analysis with Pie Chart) Lesson 2.mp4 84.06Мб
4. Categoric Variables – Target Variable (Analysis with Count Plot) Lesson 2.mp4 56.27Мб
4. Color Palettes in Seaborn.mp4 48.32Мб
4. Concatenating Numpy Arrays Concatenate() Functio.mp4 38.36Мб
4. Creating NumPy Array with Full() Function.mp4 11.18Мб
4. Dealing with Outliers – Trtbps Variable Lesson 2.mp4 43.91Мб
4. Decision Tree Algorithm with Python Part 3.mp4 14.72Мб
4. Dropping Null Values Dropna() Function.mp4 34.54Мб
4. Examining Statistics of Variables.mp4 91.37Мб
4. Examining the Data Set 2.mp4 46.58Мб
4. Examining the Properties of Pandas DataFrames.mp4 25.94Мб
4. Example - 3.mp4 51.28Мб
4. FAQ regarding Python.html 6.23Кб
4. Figure, Subplot and Axex.mp4 69.89Мб
4. Hyperparameter Optimization (with GridSearchCV).mp4 58.77Мб
4. Inheritance in Object Oriented Programming (OOP).mp4 34.58Мб
4. K Means Clustering Algorithm with Python Part 3.mp4 27.75Мб
4. K Nearest Neighbors Algorithm with Python Part 3.mp4 31.40Мб
4. Linear Regression Algorithm With Python Part 3.mp4 70.28Мб
4. Logistic Regression Algorithm with Python Part 3.mp4 47.35Мб
4. Loops in Python.mp4 58.81Мб
4. Machine Learning With Python.mp4 92.24Мб
4. Merge Pandas Dataframes Merge() Function Lesson 3.mp4 60.17Мб
4. Object Types in Series.mp4 19.58Мб
4. Outputting as an CSV Extension.mp4 35.70Мб
4. Principal Component Analysis (PCA) with Python Part 3.mp4 37.25Мб
4. Project Link File - Hearth Attack Prediction Project, Machine Learning.html 108б
4. Project Link File - Hearth Attack Prediction Project, Machine Learning.html 97б
4. Quiz.html 205б
4. Quiz.html 205б
4. Quiz.html 205б
4. Quiz.html 205б
4. Solving Second-Degree Equations with NumPy.mp4 24.20Мб
4. Support Vector Machine Algorithm with Python Part 3.mp4 34.77Мб
4. Top Level Element Selection in Pandas DataFramesLesson 2.mp4 31.41Мб
4. What Should Be Done to Achieve Success in Kaggle.mp4 58.48Мб
40 1.66Мб
41 44.45Кб
42 164.06Кб
43 455.96Кб
44 724.81Кб
45 1.30Мб
46 1.83Мб
47 1.90Мб
48 137.74Кб
49 642.38Кб
5 1.13Мб
5. Assigning Value to Two-Dimensional Array.mp4 35.40Мб
5. Basic Plots in Seaborn.mp4 98.84Мб
5. Coordinated Use of Grouping and Aggregation Functions in Pandas Dataframes.mp4 88.12Мб
5. Creating NumPy Array with Arange() Function.mp4 12.10Мб
5. Dealing with Outliers – Thalach Variable.mp4 36.24Мб
5. Decision Tree Algorithm.mp4 25.70Мб
5. Decision Tree Algorithm with Python Part 4.mp4 42.49Мб
5. Examining Numeric Variables Among Themselves (Analysis with Pair Plot) Lesson 1.mp4 28.31Мб
5. Examining the Missing Data According to the Analysis Result.mp4 53.78Мб
5. Examining the Primary Features of the Pandas Seri.mp4 18.94Мб
5. Examining the Project Topic.mp4 76.51Мб
5. FAQ regarding Machine Learning.html 6.59Кб
5. Figure Customization.mp4 63.29Мб
5. Filling Null Values Fillna() Function.mp4 51.62Мб
5. Getting to Know the Kaggle Homepage.mp4 122.93Мб
5. Installing Anaconda Distribution for Linux.mp4 114.75Мб
5. K Means Clustering Algorithm with Python Part 4.mp4 29.03Мб
5. Linear Regression Algorithm With Python Part 4.mp4 90.00Мб
5. Lists, Tuples, Dictionaries and Sets in pyhton.mp4 75.33Мб
5. Logistic Regression Algorithm with Python Part 4.mp4 47.17Мб
5. Merge Pandas Dataframes Merge() Function Lesson 4.mp4 40.68Мб
5. Outputting as an Excel File.mp4 19.74Мб
5. Overriding and Overloading in Object Oriented Programming (OOP).mp4 62.70Мб
5. Quiz.html 205б
5. Quiz.html 205б
5. Quiz.html 205б
5. Quiz.html 205б
5. Quiz.html 205б
5. Quiz.html 205б
5. Splitting One-Dimensional Numpy Arrays The Split.mp4 20.90Мб
5. Support Vector Machine Algorithm with Python Part 4.mp4 37.55Мб
5. Top Level Element Selection in Pandas DataFramesLesson 3.mp4 22.11Мб
50 1.19Мб
51 1.23Мб
52 1.52Мб
53 723.58Кб
54 1.73Мб
55 1.95Мб
56 991.04Кб
57 1.10Мб
58 1.18Мб
59 1.77Мб
6 1.07Мб
6. Advanced Aggregation Functions Aggregate() Function.mp4 29.22Мб
6. Creating NumPy Array with Eye() Function.mp4 12.55Мб
6. Data Type Operators and Methods in Python.mp4 43.86Мб
6. Dealing with Outliers – Oldpeak Variable.mp4 36.06Мб
6. Decision Tree Algorithm with Python Part 5.mp4 32.67Мб
6. Element Selection with Conditional Operations in.mp4 46.37Мб
6. Examining Numeric Variables Among Themselves (Analysis with Pair Plot) Lesson 2.mp4 47.14Мб
6. Fancy Indexing of One-Dimensional Arrrays.mp4 20.49Мб
6. Joining Pandas Dataframes Join() Function.mp4 56.05Мб
6. Logistic Regression Algorithm with Python Part 5.mp4 39.35Мб
6. Most Applied Methods on Pandas Series.mp4 48.21Мб
6. Multi-Plots in Seaborn.mp4 42.98Мб
6. Plot Customization.mp4 27.38Мб
6. quiz.html 205б
6. Quiz.html 205б
6. Quiz.html 205б
6. Quiz.html 205б
6. Quiz.html 205б
6. Quiz.html 205б
6. Quiz.html 205б
6. Recognizing Variables In Dataset.mp4 126.87Мб
6. Setting Index in Pandas DataFrames.mp4 39.70Мб
6. Splitting Two-Dimensional Numpy Arrays Split(),.mp4 35.73Мб
6. Support Vector Machine Algorithm.mp4 24.52Мб
60 229.28Кб
61 1.11Мб
62 1.35Мб
63 1.86Мб
64 117.15Кб
65 385.56Кб
66 739.66Кб
67 649.26Кб
68 1.08Мб
69 1.68Мб
7 1.68Мб
7. Advanced Aggregation Functions Filter() Function.mp4 24.45Мб
7. Creating NumPy Array with Linspace() Function.mp4 7.34Мб
7. Determining Distributions of Numeric Variables.mp4 25.17Мб
7. Fancy Indexing of Two-Dimensional Arrrays.mp4 45.75Мб
7. Feature Scaling with the Robust Scaler Method.mp4 35.20Мб
7. Grid, Spines, Ticks.mp4 23.89Мб
7. Indexing and Slicing Pandas Series.mp4 29.89Мб
7. Modules in Python.mp4 23.95Мб
7. Quiz.html 205б
7. Quiz.html 205б
7. Quiz.html 205б
7. Quiz.html 205б
7. Quiz.html 205б
7. Quiz.html 205б
7. Random Forest Algorithm.mp4 29.78Мб
7. Regression Plots and Squarify in Seaborn.mp4 60.10Мб
7. Sorting Numpy Arrays Sort() Function.mp4 17.02Мб
70 1.79Мб
71 545.10Кб
72 666.54Кб
73 853.54Кб
74 878.24Кб
75 932.77Кб
76 957.13Кб
77 1.42Мб
78 1.63Мб
79 1.69Мб
8 884.22Кб
8. Advanced Aggregation Functions Transform() Function.mp4 47.09Мб
8. Basic Plots in Matplotlib I.mp4 111.17Мб
8. Combining Fancy Index with Normal Indexing.mp4 12.65Мб
8. Creating a New DataFrame with the Melt() Function.mp4 52.89Мб
8. Creating NumPy Array with Random() Function.mp4 43.30Мб
8. Functions in Python.mp4 28.93Мб
8. Hyperparameter Optimization (with GridSearchCV).mp4 52.65Мб
8. Quiz.html 205б
8. Quiz.html 205б
8. Quiz.html 205б
8. Transformation Operations on Unsymmetrical Data.mp4 24.01Мб
80 216.61Кб
81 259.36Кб
82 305.68Кб
83 750.92Кб
84 1.46Мб
85 89.20Кб
86 143.50Кб
87 527.40Кб
88 719.29Кб
89 1.02Мб
9 1.25Мб
9. Advanced Aggregation Functions Apply() Function.mp4 41.42Мб
9. Applying One Hot Encoding Method to Categorical Variables.mp4 24.09Мб
9. Basic Plots in Matplotlib II.mp4 54.82Мб
9. Combining Fancy Index with Normal Slicing.mp4 16.46Мб
9. Exercise - Analyse in Python.mp4 8.46Мб
9. Numerical - Categorical Variables (Analysis with Swarm Plot) Lesson 1.mp4 41.72Мб
9. Properties of NumPy Array.mp4 21.98Мб
9. Quiz.html 205б
90 1.10Мб
91 1.18Мб
92 1.34Мб
93 1.51Мб
94 187.42Кб
95 285.38Кб
96 291.36Кб
97 292.83Кб
98 592.01Кб
99 784.06Кб
TutsNode.net.txt 63б
Статистика распространения по странам
США (US) 3
Зимбабве (ZW) 2
Индия (IN) 2
Турция (TR) 1
Колумбия (CO) 1
Уганда (UG) 1
Филиппины (PH) 1
Всего 11
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент