Общая информация
Название [FreeCourseSite.com] Udemy - Data Science Transformers for Natural Language Processing
Тип
Размер 5.65Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[FreeCourseSite.com].url 127б
[FreeCourseSite.com].url 127б
[FreeCourseSite.com].url 127б
[FreeCourseSite.com].url 127б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
1.1 Data Links.html 157б
1.2 Github Link.html 145б
1. Anaconda Environment Setup.mp4 52.64Мб
1. Anaconda Environment Setup.srt 20.13Кб
1. Beginner's Corner Section Introduction.mp4 49.75Мб
1. Beginner's Corner Section Introduction.srt 15.06Кб
1. Data Links.html 256б
1. Fine-Tuning Section Introduction.mp4 20.16Мб
1. Fine-Tuning Section Introduction.srt 6.14Кб
1. Get Your Hands Dirty, Practical Coding Experience, Data Links.mp4 43.55Мб
1. Get Your Hands Dirty, Practical Coding Experience, Data Links.srt 11.99Кб
1. How to Code by Yourself (part 1).mp4 71.84Мб
1. How to Code by Yourself (part 1).srt 23.13Кб
1. How to Succeed in this Course (Long Version).mp4 17.87Мб
1. How to Succeed in this Course (Long Version).srt 14.55Кб
1. Implementation Section Introduction.mp4 25.60Мб
1. Implementation Section Introduction.srt 8.49Кб
1. Introduction.mp4 34.60Мб
1. Introduction.srt 5.63Кб
1. Question-Answering Section Introduction.mp4 21.52Мб
1. Question-Answering Section Introduction.srt 6.11Кб
1. Theory Section Introduction.mp4 17.14Мб
1. Theory Section Introduction.srt 6.88Кб
1. Token Classification Section Introduction.mp4 35.82Мб
1. Token Classification Section Introduction.srt 9.59Кб
1. Translation Section Introduction.mp4 18.20Мб
1. Translation Section Introduction.srt 6.35Кб
1. What is the Appendix.mp4 16.37Мб
1. What is the Appendix.srt 3.88Кб
10. Decoder Architecture.mp4 49.61Мб
10. Decoder Architecture.srt 14.61Кб
10. Fine-Tuning Transformers with Custom Dataset.mp4 106.85Мб
10. Fine-Tuning Transformers with Custom Dataset.srt 15.10Кб
10. How to Train a Causal Language Model From Scratch.mp4 120.37Мб
10. How to Train a Causal Language Model From Scratch.srt 20.12Кб
10. Metrics (Code).mp4 39.34Мб
10. Metrics (Code).srt 6.09Кб
10. Named Entity Recognition (NER) in Python.mp4 70.24Мб
10. Named Entity Recognition (NER) in Python.srt 9.63Кб
10. Question-Answering Metrics.mp4 16.50Мб
10. Question-Answering Metrics.srt 4.71Кб
10. Train & Evaluate (Code Preparation).mp4 21.27Мб
10. Train & Evaluate (Code Preparation).srt 5.62Кб
11. Encoder-Decoder Architecture.mp4 39.70Мб
11. Encoder-Decoder Architecture.srt 11.36Кб
11. Hugging Face AutoConfig.mp4 40.86Мб
11. Hugging Face AutoConfig.srt 6.03Кб
11. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 1).mp4 93.99Мб
11. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 1).srt 13.39Кб
11. Model and Trainer (Code Preparation).mp4 10.79Мб
11. Model and Trainer (Code Preparation).srt 2.91Кб
11. Question-Answering Metrics in Python.mp4 22.88Мб
11. Question-Answering Metrics in Python.srt 2.98Кб
11. Text Summarization.mp4 24.15Мб
11. Text Summarization.srt 7.08Кб
11. Train & Evaluate (Code).mp4 35.74Мб
11. Train & Evaluate (Code).srt 4.64Кб
12. BERT.mp4 23.25Мб
12. BERT.srt 6.12Кб
12. Fine-Tuning with Multiple Inputs (Textual Entailment).mp4 28.42Мб
12. Fine-Tuning with Multiple Inputs (Textual Entailment).srt 10.32Кб
12. From Logits to Answers.mp4 95.56Мб
12. From Logits to Answers.srt 27.71Кб
12. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 2).mp4 95.19Мб
12. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 2).srt 14.97Кб
12. Model and Trainer (Code).mp4 22.18Мб
12. Model and Trainer (Code).srt 3.12Кб
12. Text Summarization in Python.mp4 45.47Мб
12. Text Summarization in Python.srt 7.55Кб
12. Translation Section Summary.mp4 9.77Мб
12. Translation Section Summary.srt 3.30Кб
13. Fine-Tuning Transformers with Multiple Inputs in Python.mp4 56.66Мб
13. Fine-Tuning Transformers with Multiple Inputs in Python.srt 6.62Кб
13. From Logits to Answers in Python.mp4 120.62Мб
13. From Logits to Answers in Python.srt 16.89Кб
13. GPT.mp4 31.17Мб
13. GPT.srt 8.65Кб
13. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 3).mp4 108.62Мб
13. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 3).srt 17.47Кб
13. Neural Machine Translation.mp4 28.10Мб
13. Neural Machine Translation.srt 8.15Кб
13. POS Tagging & Custom Datasets (Exercise Prompt).mp4 21.33Мб
13. POS Tagging & Custom Datasets (Exercise Prompt).srt 6.85Кб
14. Computing Metrics.mp4 24.94Мб
14. Computing Metrics.srt 6.62Кб
14. Fine-Tuning Section Summary.mp4 15.78Мб
14. Fine-Tuning Section Summary.srt 4.11Кб
14. GPT-2.mp4 29.67Мб
14. GPT-2.srt 8.27Кб
14. Implementation Section Summary.mp4 10.59Мб
14. Implementation Section Summary.srt 1.99Кб
14. Neural Machine Translation in Python.mp4 64.10Мб
14. Neural Machine Translation in Python.srt 9.72Кб
14. POS Tagging & Custom Datasets (Solution).mp4 115.13Мб
14. POS Tagging & Custom Datasets (Solution).srt 17.90Кб
15. Computing Metrics in Python.mp4 44.26Мб
15. Computing Metrics in Python.srt 6.08Кб
15. GPT-3.mp4 23.99Мб
15. GPT-3.srt 6.57Кб
15. Question Answering.mp4 40.10Мб
15. Question Answering.srt 10.03Кб
15. Token Classification Section Summary.mp4 8.04Мб
15. Token Classification Section Summary.srt 2.60Кб
16. Question Answering in Python.mp4 48.15Мб
16. Question Answering in Python.srt 6.97Кб
16. Theory Section Summary.mp4 21.00Мб
16. Theory Section Summary.srt 6.29Кб
16. Train and Evaluate.mp4 14.07Мб
16. Train and Evaluate.srt 3.32Кб
17. Train and Evaluate in Python.mp4 37.80Мб
17. Train and Evaluate in Python.srt 4.67Кб
17. Zero-Shot Classification.mp4 30.12Мб
17. Zero-Shot Classification.srt 7.60Кб
18. Question-Answering Section Summary.mp4 14.24Мб
18. Question-Answering Section Summary.srt 5.04Кб
18. Zero-Shot Classification in Python.mp4 87.61Мб
18. Zero-Shot Classification in Python.srt 16.41Кб
19. Beginner's Corner Section Summary.mp4 23.18Мб
19. Beginner's Corner Section Summary.srt 6.39Кб
2. Basic Self-Attention.mp4 36.97Мб
2. Basic Self-Attention.srt 12.44Кб
2. BONUS.mp4 39.92Мб
2. BONUS.srt 7.94Кб
2. Data & Tokenizer (Code Preparation).mp4 19.34Мб
2. Data & Tokenizer (Code Preparation).mp4 24.53Мб
2. Data & Tokenizer (Code Preparation).srt 6.81Кб
2. Data & Tokenizer (Code Preparation).srt 7.50Кб
2. Encoder Implementation Plan & Outline.mp4 23.02Мб
2. Encoder Implementation Plan & Outline.srt 8.37Кб
2. Exploring the Dataset (SQuAD).mp4 20.16Мб
2. Exploring the Dataset (SQuAD).srt 5.68Кб
2. From RNNs to Attention and Transformers - Intuition.mp4 78.20Мб
2. From RNNs to Attention and Transformers - Intuition.srt 24.01Кб
2. How to Code by Yourself (part 2).mp4 49.14Мб
2. How to Code by Yourself (part 2).srt 13.24Кб
2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4 43.61Мб
2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt 15.81Кб
2. How to use Github & Extra Coding Tips (Optional).mp4 63.90Мб
2. How to use Github & Extra Coding Tips (Optional).srt 15.71Кб
2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 38.96Мб
2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt 32.69Кб
2. Outline.mp4 50.65Мб
2. Outline.srt 13.51Кб
2. Text Preprocessing and Tokenization Review.mp4 63.16Мб
2. Text Preprocessing and Tokenization Review.srt 18.22Кб
20. Suggestion Box.mp4 27.17Мб
20. Suggestion Box.srt 4.82Кб
3.1 Code Link.html 125б
3.2 Data Links.html 157б
3.3 Github Link.html 145б
3. Data & Tokenizer (Code).mp4 42.75Мб
3. Data & Tokenizer (Code).srt 9.20Кб
3. Exploring the Dataset (SQuAD) in Python.mp4 39.85Мб
3. Exploring the Dataset (SQuAD) in Python.srt 4.66Кб
3. How to Implement Multihead Attention From Scratch.mp4 93.41Мб
3. How to Implement Multihead Attention From Scratch.srt 15.50Кб
3. Machine Learning and AI Prerequisite Roadmap (pt 1).mp4 79.66Мб
3. Machine Learning and AI Prerequisite Roadmap (pt 1).srt 17.14Кб
3. Models and Tokenizers.mp4 64.57Мб
3. Models and Tokenizers.srt 20.60Кб
3. Proof that using Jupyter Notebook is the same as not using it.mp4 69.42Мб
3. Proof that using Jupyter Notebook is the same as not using it.srt 14.92Кб
3. Self-Attention & Scaled Dot-Product Attention.mp4 64.27Мб
3. Self-Attention & Scaled Dot-Product Attention.srt 23.94Кб
3. Sentiment Analysis.mp4 53.60Мб
3. Sentiment Analysis.srt 14.55Кб
3. Things Move Fast.mp4 6.09Мб
3. Things Move Fast.srt 2.36Кб
3. Where to get the code, notebooks, and data.mp4 17.77Мб
3. Where to get the code, notebooks, and data.srt 4.29Кб
4. Are You Beginner, Intermediate, or Advanced All are OK!.mp4 26.74Мб
4. Are You Beginner, Intermediate, or Advanced All are OK!.srt 7.14Кб
4. Attention Efficiency.mp4 21.57Мб
4. Attention Efficiency.srt 5.86Кб
4. Data & Tokenizer (Code).mp4 34.12Мб
4. Data & Tokenizer (Code).srt 6.44Кб
4. How to Implement the Transformer Block From Scratch.mp4 14.94Мб
4. How to Implement the Transformer Block From Scratch.srt 2.36Кб
4. Machine Learning and AI Prerequisite Roadmap (pt 2).mp4 108.17Мб
4. Machine Learning and AI Prerequisite Roadmap (pt 2).srt 23.93Кб
4. Models and Tokenizers in Python.mp4 84.26Мб
4. Models and Tokenizers in Python.srt 14.12Кб
4. Sentiment Analysis in Python.mp4 97.05Мб
4. Sentiment Analysis in Python.srt 21.12Кб
4. Target Alignment (Code Preparation).mp4 43.02Мб
4. Target Alignment (Code Preparation).srt 13.76Кб
4. Using the Tokenizer.mp4 34.52Мб
4. Using the Tokenizer.srt 10.82Кб
5. Aside Seq2Seq Basics (Optional).mp4 37.06Мб
5. Aside Seq2Seq Basics (Optional).srt 15.25Кб
5. Attention Mask.mp4 15.11Мб
5. Attention Mask.srt 5.04Кб
5. Create Tokenized Dataset (Code Preparation).mp4 18.34Мб
5. Create Tokenized Dataset (Code Preparation).srt 5.00Кб
5. How to Implement Positional Encoding From Scratch.mp4 35.87Мб
5. How to Implement Positional Encoding From Scratch.srt 6.26Кб
5. How to Succeed in This Course.mp4 41.19Мб
5. How to Succeed in This Course.srt 13.03Кб
5. Text Generation.mp4 57.10Мб
5. Text Generation.srt 15.45Кб
5. Transfer Learning & Fine-Tuning (pt 1).mp4 59.83Мб
5. Transfer Learning & Fine-Tuning (pt 1).srt 12.69Кб
5. Using the Tokenizer in Python.mp4 72.13Мб
5. Using the Tokenizer in Python.srt 13.08Кб
6. Aligning the Targets.mp4 69.08Мб
6. Aligning the Targets.srt 19.33Кб
6. How to Implement Transformer Encoder From Scratch.mp4 27.03Мб
6. How to Implement Transformer Encoder From Scratch.srt 4.82Кб
6. Model Inputs (Code Preparation).mp4 32.41Мб
6. Model Inputs (Code Preparation).srt 11.21Кб
6. Multi-Head Attention.mp4 33.71Мб
6. Multi-Head Attention.srt 9.35Кб
6. Target Alignment (Code).mp4 61.65Мб
6. Target Alignment (Code).srt 11.86Кб
6. Text Generation in Python.mp4 86.35Мб
6. Text Generation in Python.srt 14.92Кб
6. Transfer Learning & Fine-Tuning (pt 2).mp4 49.31Мб
6. Transfer Learning & Fine-Tuning (pt 2).srt 14.58Кб
7. Aligning the Targets in Python.mp4 103.33Мб
7. Aligning the Targets in Python.srt 18.83Кб
7. Data Collator (Code Preparation).mp4 22.10Мб
7. Data Collator (Code Preparation).srt 4.92Кб
7. Masked Language Modeling (Article Spinner).mp4 67.29Мб
7. Masked Language Modeling (Article Spinner).srt 16.12Кб
7. Model Inputs (Code).mp4 51.41Мб
7. Model Inputs (Code).srt 7.78Кб
7. Train and Evaluate Encoder From Scratch.mp4 89.33Мб
7. Train and Evaluate Encoder From Scratch.srt 12.30Кб
7. Transfer Learning & Fine-Tuning (pt 3).mp4 56.66Мб
7. Transfer Learning & Fine-Tuning (pt 3).srt 13.67Кб
7. Transformer Block.mp4 29.50Мб
7. Transformer Block.srt 9.53Кб
8. Applying the Tokenizer.mp4 45.05Мб
8. Applying the Tokenizer.srt 12.29Кб
8. Data Collator (Code).mp4 16.94Мб
8. Data Collator (Code).srt 3.70Кб
8. Fine-Tuning Sentiment Analysis and the GLUE Benchmark.mp4 58.43Мб
8. Fine-Tuning Sentiment Analysis and the GLUE Benchmark.srt 16.85Кб
8. How to Implement Causal Self-Attention From Scratch.mp4 39.20Мб
8. How to Implement Causal Self-Attention From Scratch.srt 5.68Кб
8. Masked Language Modeling (Article Spinner) in Python.mp4 67.09Мб
8. Masked Language Modeling (Article Spinner) in Python.srt 9.24Кб
8. Positional Encodings.mp4 29.03Мб
8. Positional Encodings.srt 9.46Кб
8. Translation Metrics (BLEU Score & BERT Score) (Code Preparation).mp4 19.28Мб
8. Translation Metrics (BLEU Score & BERT Score) (Code Preparation).srt 4.96Кб
9. Applying the Tokenizer in Python.mp4 76.50Мб
9. Applying the Tokenizer in Python.srt 12.03Кб
9. Encoder Architecture.mp4 25.21Мб
9. Encoder Architecture.srt 8.63Кб
9. Fine-Tuning Sentiment Analysis in Python.mp4 130.77Мб
9. Fine-Tuning Sentiment Analysis in Python.srt 19.29Кб
9. How to Implement a Transformer Decoder (GPT) From Scratch.mp4 27.30Мб
9. How to Implement a Transformer Decoder (GPT) From Scratch.srt 4.86Кб
9. Metrics (Code Preparation).mp4 33.44Мб
9. Metrics (Code Preparation).srt 9.13Кб
9. Named Entity Recognition (NER).mp4 22.02Мб
9. Named Entity Recognition (NER).srt 6.24Кб
9. Translation Metrics (BLEU Score & BERT Score) (Code).mp4 43.32Мб
9. Translation Metrics (BLEU Score & BERT Score) (Code).srt 6.33Кб
Статистика распространения по странам
Россия (RU) 4
Индия (IN) 3
Израиль (IL) 1
США (US) 1
Пакистан (PK) 1
Япония (JP) 1
Всего 11
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент