Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
[CourseClub.Me].url |
122б |
[CourseClub.Me].url |
122б |
[CourseClub.Me].url |
122б |
[CourseClub.Me].url |
122б |
[FreeCourseSite.com].url |
127б |
[FreeCourseSite.com].url |
127б |
[FreeCourseSite.com].url |
127б |
[FreeCourseSite.com].url |
127б |
[GigaCourse.Com].url |
49б |
[GigaCourse.Com].url |
49б |
[GigaCourse.Com].url |
49б |
[GigaCourse.Com].url |
49б |
1.1 Data Links.html |
157б |
1.2 Github Link.html |
145б |
1. Anaconda Environment Setup.mp4 |
52.64Мб |
1. Anaconda Environment Setup.srt |
20.13Кб |
1. Beginner's Corner Section Introduction.mp4 |
49.75Мб |
1. Beginner's Corner Section Introduction.srt |
15.06Кб |
1. Data Links.html |
256б |
1. Fine-Tuning Section Introduction.mp4 |
20.16Мб |
1. Fine-Tuning Section Introduction.srt |
6.14Кб |
1. Get Your Hands Dirty, Practical Coding Experience, Data Links.mp4 |
43.55Мб |
1. Get Your Hands Dirty, Practical Coding Experience, Data Links.srt |
11.99Кб |
1. How to Code by Yourself (part 1).mp4 |
71.84Мб |
1. How to Code by Yourself (part 1).srt |
23.13Кб |
1. How to Succeed in this Course (Long Version).mp4 |
17.87Мб |
1. How to Succeed in this Course (Long Version).srt |
14.55Кб |
1. Implementation Section Introduction.mp4 |
25.60Мб |
1. Implementation Section Introduction.srt |
8.49Кб |
1. Introduction.mp4 |
34.60Мб |
1. Introduction.srt |
5.63Кб |
1. Question-Answering Section Introduction.mp4 |
21.52Мб |
1. Question-Answering Section Introduction.srt |
6.11Кб |
1. Theory Section Introduction.mp4 |
17.14Мб |
1. Theory Section Introduction.srt |
6.88Кб |
1. Token Classification Section Introduction.mp4 |
35.82Мб |
1. Token Classification Section Introduction.srt |
9.59Кб |
1. Translation Section Introduction.mp4 |
18.20Мб |
1. Translation Section Introduction.srt |
6.35Кб |
1. What is the Appendix.mp4 |
16.37Мб |
1. What is the Appendix.srt |
3.88Кб |
10. Decoder Architecture.mp4 |
49.61Мб |
10. Decoder Architecture.srt |
14.61Кб |
10. Fine-Tuning Transformers with Custom Dataset.mp4 |
106.85Мб |
10. Fine-Tuning Transformers with Custom Dataset.srt |
15.10Кб |
10. How to Train a Causal Language Model From Scratch.mp4 |
120.37Мб |
10. How to Train a Causal Language Model From Scratch.srt |
20.12Кб |
10. Metrics (Code).mp4 |
39.34Мб |
10. Metrics (Code).srt |
6.09Кб |
10. Named Entity Recognition (NER) in Python.mp4 |
70.24Мб |
10. Named Entity Recognition (NER) in Python.srt |
9.63Кб |
10. Question-Answering Metrics.mp4 |
16.50Мб |
10. Question-Answering Metrics.srt |
4.71Кб |
10. Train & Evaluate (Code Preparation).mp4 |
21.27Мб |
10. Train & Evaluate (Code Preparation).srt |
5.62Кб |
11. Encoder-Decoder Architecture.mp4 |
39.70Мб |
11. Encoder-Decoder Architecture.srt |
11.36Кб |
11. Hugging Face AutoConfig.mp4 |
40.86Мб |
11. Hugging Face AutoConfig.srt |
6.03Кб |
11. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 1).mp4 |
93.99Мб |
11. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 1).srt |
13.39Кб |
11. Model and Trainer (Code Preparation).mp4 |
10.79Мб |
11. Model and Trainer (Code Preparation).srt |
2.91Кб |
11. Question-Answering Metrics in Python.mp4 |
22.88Мб |
11. Question-Answering Metrics in Python.srt |
2.98Кб |
11. Text Summarization.mp4 |
24.15Мб |
11. Text Summarization.srt |
7.08Кб |
11. Train & Evaluate (Code).mp4 |
35.74Мб |
11. Train & Evaluate (Code).srt |
4.64Кб |
12. BERT.mp4 |
23.25Мб |
12. BERT.srt |
6.12Кб |
12. Fine-Tuning with Multiple Inputs (Textual Entailment).mp4 |
28.42Мб |
12. Fine-Tuning with Multiple Inputs (Textual Entailment).srt |
10.32Кб |
12. From Logits to Answers.mp4 |
95.56Мб |
12. From Logits to Answers.srt |
27.71Кб |
12. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 2).mp4 |
95.19Мб |
12. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 2).srt |
14.97Кб |
12. Model and Trainer (Code).mp4 |
22.18Мб |
12. Model and Trainer (Code).srt |
3.12Кб |
12. Text Summarization in Python.mp4 |
45.47Мб |
12. Text Summarization in Python.srt |
7.55Кб |
12. Translation Section Summary.mp4 |
9.77Мб |
12. Translation Section Summary.srt |
3.30Кб |
13. Fine-Tuning Transformers with Multiple Inputs in Python.mp4 |
56.66Мб |
13. Fine-Tuning Transformers with Multiple Inputs in Python.srt |
6.62Кб |
13. From Logits to Answers in Python.mp4 |
120.62Мб |
13. From Logits to Answers in Python.srt |
16.89Кб |
13. GPT.mp4 |
31.17Мб |
13. GPT.srt |
8.65Кб |
13. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 3).mp4 |
108.62Мб |
13. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 3).srt |
17.47Кб |
13. Neural Machine Translation.mp4 |
28.10Мб |
13. Neural Machine Translation.srt |
8.15Кб |
13. POS Tagging & Custom Datasets (Exercise Prompt).mp4 |
21.33Мб |
13. POS Tagging & Custom Datasets (Exercise Prompt).srt |
6.85Кб |
14. Computing Metrics.mp4 |
24.94Мб |
14. Computing Metrics.srt |
6.62Кб |
14. Fine-Tuning Section Summary.mp4 |
15.78Мб |
14. Fine-Tuning Section Summary.srt |
4.11Кб |
14. GPT-2.mp4 |
29.67Мб |
14. GPT-2.srt |
8.27Кб |
14. Implementation Section Summary.mp4 |
10.59Мб |
14. Implementation Section Summary.srt |
1.99Кб |
14. Neural Machine Translation in Python.mp4 |
64.10Мб |
14. Neural Machine Translation in Python.srt |
9.72Кб |
14. POS Tagging & Custom Datasets (Solution).mp4 |
115.13Мб |
14. POS Tagging & Custom Datasets (Solution).srt |
17.90Кб |
15. Computing Metrics in Python.mp4 |
44.26Мб |
15. Computing Metrics in Python.srt |
6.08Кб |
15. GPT-3.mp4 |
23.99Мб |
15. GPT-3.srt |
6.57Кб |
15. Question Answering.mp4 |
40.10Мб |
15. Question Answering.srt |
10.03Кб |
15. Token Classification Section Summary.mp4 |
8.04Мб |
15. Token Classification Section Summary.srt |
2.60Кб |
16. Question Answering in Python.mp4 |
48.15Мб |
16. Question Answering in Python.srt |
6.97Кб |
16. Theory Section Summary.mp4 |
21.00Мб |
16. Theory Section Summary.srt |
6.29Кб |
16. Train and Evaluate.mp4 |
14.07Мб |
16. Train and Evaluate.srt |
3.32Кб |
17. Train and Evaluate in Python.mp4 |
37.80Мб |
17. Train and Evaluate in Python.srt |
4.67Кб |
17. Zero-Shot Classification.mp4 |
30.12Мб |
17. Zero-Shot Classification.srt |
7.60Кб |
18. Question-Answering Section Summary.mp4 |
14.24Мб |
18. Question-Answering Section Summary.srt |
5.04Кб |
18. Zero-Shot Classification in Python.mp4 |
87.61Мб |
18. Zero-Shot Classification in Python.srt |
16.41Кб |
19. Beginner's Corner Section Summary.mp4 |
23.18Мб |
19. Beginner's Corner Section Summary.srt |
6.39Кб |
2. Basic Self-Attention.mp4 |
36.97Мб |
2. Basic Self-Attention.srt |
12.44Кб |
2. BONUS.mp4 |
39.92Мб |
2. BONUS.srt |
7.94Кб |
2. Data & Tokenizer (Code Preparation).mp4 |
19.34Мб |
2. Data & Tokenizer (Code Preparation).mp4 |
24.53Мб |
2. Data & Tokenizer (Code Preparation).srt |
6.81Кб |
2. Data & Tokenizer (Code Preparation).srt |
7.50Кб |
2. Encoder Implementation Plan & Outline.mp4 |
23.02Мб |
2. Encoder Implementation Plan & Outline.srt |
8.37Кб |
2. Exploring the Dataset (SQuAD).mp4 |
20.16Мб |
2. Exploring the Dataset (SQuAD).srt |
5.68Кб |
2. From RNNs to Attention and Transformers - Intuition.mp4 |
78.20Мб |
2. From RNNs to Attention and Transformers - Intuition.srt |
24.01Кб |
2. How to Code by Yourself (part 2).mp4 |
49.14Мб |
2. How to Code by Yourself (part 2).srt |
13.24Кб |
2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4 |
43.61Мб |
2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt |
15.81Кб |
2. How to use Github & Extra Coding Tips (Optional).mp4 |
63.90Мб |
2. How to use Github & Extra Coding Tips (Optional).srt |
15.71Кб |
2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 |
38.96Мб |
2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt |
32.69Кб |
2. Outline.mp4 |
50.65Мб |
2. Outline.srt |
13.51Кб |
2. Text Preprocessing and Tokenization Review.mp4 |
63.16Мб |
2. Text Preprocessing and Tokenization Review.srt |
18.22Кб |
20. Suggestion Box.mp4 |
27.17Мб |
20. Suggestion Box.srt |
4.82Кб |
3.1 Code Link.html |
125б |
3.2 Data Links.html |
157б |
3.3 Github Link.html |
145б |
3. Data & Tokenizer (Code).mp4 |
42.75Мб |
3. Data & Tokenizer (Code).srt |
9.20Кб |
3. Exploring the Dataset (SQuAD) in Python.mp4 |
39.85Мб |
3. Exploring the Dataset (SQuAD) in Python.srt |
4.66Кб |
3. How to Implement Multihead Attention From Scratch.mp4 |
93.41Мб |
3. How to Implement Multihead Attention From Scratch.srt |
15.50Кб |
3. Machine Learning and AI Prerequisite Roadmap (pt 1).mp4 |
79.66Мб |
3. Machine Learning and AI Prerequisite Roadmap (pt 1).srt |
17.14Кб |
3. Models and Tokenizers.mp4 |
64.57Мб |
3. Models and Tokenizers.srt |
20.60Кб |
3. Proof that using Jupyter Notebook is the same as not using it.mp4 |
69.42Мб |
3. Proof that using Jupyter Notebook is the same as not using it.srt |
14.92Кб |
3. Self-Attention & Scaled Dot-Product Attention.mp4 |
64.27Мб |
3. Self-Attention & Scaled Dot-Product Attention.srt |
23.94Кб |
3. Sentiment Analysis.mp4 |
53.60Мб |
3. Sentiment Analysis.srt |
14.55Кб |
3. Things Move Fast.mp4 |
6.09Мб |
3. Things Move Fast.srt |
2.36Кб |
3. Where to get the code, notebooks, and data.mp4 |
17.77Мб |
3. Where to get the code, notebooks, and data.srt |
4.29Кб |
4. Are You Beginner, Intermediate, or Advanced All are OK!.mp4 |
26.74Мб |
4. Are You Beginner, Intermediate, or Advanced All are OK!.srt |
7.14Кб |
4. Attention Efficiency.mp4 |
21.57Мб |
4. Attention Efficiency.srt |
5.86Кб |
4. Data & Tokenizer (Code).mp4 |
34.12Мб |
4. Data & Tokenizer (Code).srt |
6.44Кб |
4. How to Implement the Transformer Block From Scratch.mp4 |
14.94Мб |
4. How to Implement the Transformer Block From Scratch.srt |
2.36Кб |
4. Machine Learning and AI Prerequisite Roadmap (pt 2).mp4 |
108.17Мб |
4. Machine Learning and AI Prerequisite Roadmap (pt 2).srt |
23.93Кб |
4. Models and Tokenizers in Python.mp4 |
84.26Мб |
4. Models and Tokenizers in Python.srt |
14.12Кб |
4. Sentiment Analysis in Python.mp4 |
97.05Мб |
4. Sentiment Analysis in Python.srt |
21.12Кб |
4. Target Alignment (Code Preparation).mp4 |
43.02Мб |
4. Target Alignment (Code Preparation).srt |
13.76Кб |
4. Using the Tokenizer.mp4 |
34.52Мб |
4. Using the Tokenizer.srt |
10.82Кб |
5. Aside Seq2Seq Basics (Optional).mp4 |
37.06Мб |
5. Aside Seq2Seq Basics (Optional).srt |
15.25Кб |
5. Attention Mask.mp4 |
15.11Мб |
5. Attention Mask.srt |
5.04Кб |
5. Create Tokenized Dataset (Code Preparation).mp4 |
18.34Мб |
5. Create Tokenized Dataset (Code Preparation).srt |
5.00Кб |
5. How to Implement Positional Encoding From Scratch.mp4 |
35.87Мб |
5. How to Implement Positional Encoding From Scratch.srt |
6.26Кб |
5. How to Succeed in This Course.mp4 |
41.19Мб |
5. How to Succeed in This Course.srt |
13.03Кб |
5. Text Generation.mp4 |
57.10Мб |
5. Text Generation.srt |
15.45Кб |
5. Transfer Learning & Fine-Tuning (pt 1).mp4 |
59.83Мб |
5. Transfer Learning & Fine-Tuning (pt 1).srt |
12.69Кб |
5. Using the Tokenizer in Python.mp4 |
72.13Мб |
5. Using the Tokenizer in Python.srt |
13.08Кб |
6. Aligning the Targets.mp4 |
69.08Мб |
6. Aligning the Targets.srt |
19.33Кб |
6. How to Implement Transformer Encoder From Scratch.mp4 |
27.03Мб |
6. How to Implement Transformer Encoder From Scratch.srt |
4.82Кб |
6. Model Inputs (Code Preparation).mp4 |
32.41Мб |
6. Model Inputs (Code Preparation).srt |
11.21Кб |
6. Multi-Head Attention.mp4 |
33.71Мб |
6. Multi-Head Attention.srt |
9.35Кб |
6. Target Alignment (Code).mp4 |
61.65Мб |
6. Target Alignment (Code).srt |
11.86Кб |
6. Text Generation in Python.mp4 |
86.35Мб |
6. Text Generation in Python.srt |
14.92Кб |
6. Transfer Learning & Fine-Tuning (pt 2).mp4 |
49.31Мб |
6. Transfer Learning & Fine-Tuning (pt 2).srt |
14.58Кб |
7. Aligning the Targets in Python.mp4 |
103.33Мб |
7. Aligning the Targets in Python.srt |
18.83Кб |
7. Data Collator (Code Preparation).mp4 |
22.10Мб |
7. Data Collator (Code Preparation).srt |
4.92Кб |
7. Masked Language Modeling (Article Spinner).mp4 |
67.29Мб |
7. Masked Language Modeling (Article Spinner).srt |
16.12Кб |
7. Model Inputs (Code).mp4 |
51.41Мб |
7. Model Inputs (Code).srt |
7.78Кб |
7. Train and Evaluate Encoder From Scratch.mp4 |
89.33Мб |
7. Train and Evaluate Encoder From Scratch.srt |
12.30Кб |
7. Transfer Learning & Fine-Tuning (pt 3).mp4 |
56.66Мб |
7. Transfer Learning & Fine-Tuning (pt 3).srt |
13.67Кб |
7. Transformer Block.mp4 |
29.50Мб |
7. Transformer Block.srt |
9.53Кб |
8. Applying the Tokenizer.mp4 |
45.05Мб |
8. Applying the Tokenizer.srt |
12.29Кб |
8. Data Collator (Code).mp4 |
16.94Мб |
8. Data Collator (Code).srt |
3.70Кб |
8. Fine-Tuning Sentiment Analysis and the GLUE Benchmark.mp4 |
58.43Мб |
8. Fine-Tuning Sentiment Analysis and the GLUE Benchmark.srt |
16.85Кб |
8. How to Implement Causal Self-Attention From Scratch.mp4 |
39.20Мб |
8. How to Implement Causal Self-Attention From Scratch.srt |
5.68Кб |
8. Masked Language Modeling (Article Spinner) in Python.mp4 |
67.09Мб |
8. Masked Language Modeling (Article Spinner) in Python.srt |
9.24Кб |
8. Positional Encodings.mp4 |
29.03Мб |
8. Positional Encodings.srt |
9.46Кб |
8. Translation Metrics (BLEU Score & BERT Score) (Code Preparation).mp4 |
19.28Мб |
8. Translation Metrics (BLEU Score & BERT Score) (Code Preparation).srt |
4.96Кб |
9. Applying the Tokenizer in Python.mp4 |
76.50Мб |
9. Applying the Tokenizer in Python.srt |
12.03Кб |
9. Encoder Architecture.mp4 |
25.21Мб |
9. Encoder Architecture.srt |
8.63Кб |
9. Fine-Tuning Sentiment Analysis in Python.mp4 |
130.77Мб |
9. Fine-Tuning Sentiment Analysis in Python.srt |
19.29Кб |
9. How to Implement a Transformer Decoder (GPT) From Scratch.mp4 |
27.30Мб |
9. How to Implement a Transformer Decoder (GPT) From Scratch.srt |
4.86Кб |
9. Metrics (Code Preparation).mp4 |
33.44Мб |
9. Metrics (Code Preparation).srt |
9.13Кб |
9. Named Entity Recognition (NER).mp4 |
22.02Мб |
9. Named Entity Recognition (NER).srt |
6.24Кб |
9. Translation Metrics (BLEU Score & BERT Score) (Code).mp4 |
43.32Мб |
9. Translation Metrics (BLEU Score & BERT Score) (Code).srt |
6.33Кб |