Общая информация
Название [FreeCourseSite.com] Udemy - A deep understanding of deep learning (with Python intro)
Тип
Размер 23.65Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[CourseClub.Me].url 122б
[FreeCourseSite.com].url 127б
[GigaCourse.Com].url 49б
100 - Optimizers comparison.mp4 97.29Мб
100 - Optimizers comparison English.vtt 12.71Кб
100 - Optimizers comparison Vietnamese.vtt 15.91Кб
101 - CodeChallenge Optimizers and something.mp4 54.40Мб
101 - CodeChallenge Optimizers and something English.vtt 8.19Кб
101 - CodeChallenge Optimizers and something Vietnamese.vtt 10.39Кб
102 - CodeChallenge Adam with L2 regularization.mp4 61.08Мб
102 - CodeChallenge Adam with L2 regularization English.vtt 9.04Кб
102 - CodeChallenge Adam with L2 regularization Vietnamese.vtt 11.01Кб
103 - Learning rate decay.mp4 107.19Мб
103 - Learning rate decay English.vtt 15.45Кб
103 - Learning rate decay Vietnamese.vtt 19.76Кб
104 - How to pick the right metaparameters.mp4 36.80Мб
104 - How to pick the right metaparameters English.vtt 14.61Кб
104 - How to pick the right metaparameters Vietnamese.vtt 18.85Кб
105 - What are fullyconnected and feedforward networks.mp4 17.84Мб
105 - What are fullyconnected and feedforward networks English.vtt 6.11Кб
105 - What are fullyconnected and feedforward networks Vietnamese.vtt 7.91Кб
106 - The MNIST dataset.mp4 135.66Мб
106 - The MNIST dataset English.vtt 15.97Кб
106 - The MNIST dataset Vietnamese.vtt 19.93Кб
107 - FFN to classify digits.mp4 178.30Мб
107 - FFN to classify digits English.vtt 28.31Кб
107 - FFN to classify digits Vietnamese.vtt 35.46Кб
108 - CodeChallenge Binarized MNIST images.mp4 44.55Мб
108 - CodeChallenge Binarized MNIST images English.vtt 6.42Кб
108 - CodeChallenge Binarized MNIST images Vietnamese.vtt 8.12Кб
109 - CodeChallenge Data normalization.mp4 104.14Мб
109 - CodeChallenge Data normalization English.vtt 21.17Кб
109 - CodeChallenge Data normalization Vietnamese.vtt 26.72Кб
10 - Should you watch the Python tutorial.mp4 13.79Мб
10 - Should you watch the Python tutorial English.vtt 5.39Кб
10 - Should you watch the Python tutorial Vietnamese.vtt 6.58Кб
110 - Distributions of weights pre and postlearning.mp4 141.80Мб
110 - Distributions of weights pre and postlearning English.vtt 18.77Кб
110 - Distributions of weights pre and postlearning Vietnamese.vtt 23.88Кб
111 - CodeChallenge MNIST and breadth vs depth.mp4 140.35Мб
111 - CodeChallenge MNIST and breadth vs depth English.vtt 15.43Кб
111 - CodeChallenge MNIST and breadth vs depth Vietnamese.vtt 19.02Кб
112 - CodeChallenge Optimizers and MNIST.mp4 50.72Мб
112 - CodeChallenge Optimizers and MNIST English.vtt 8.67Кб
112 - CodeChallenge Optimizers and MNIST Vietnamese.vtt 10.77Кб
113 - Scrambled MNIST.mp4 60.17Мб
113 - Scrambled MNIST English.vtt 9.78Кб
113 - Scrambled MNIST Vietnamese.vtt 12.51Кб
114 - Shifted MNIST.mp4 86.36Мб
114 - Shifted MNIST English.vtt 14.23Кб
114 - Shifted MNIST Vietnamese.vtt 18.65Кб
115 - CodeChallenge The mystery of the missing 7.mp4 80.88Мб
115 - CodeChallenge The mystery of the missing 7 English.vtt 13.61Кб
115 - CodeChallenge The mystery of the missing 7 Vietnamese.vtt 17.14Кб
116 - Universal approximation theorem.mp4 34.23Мб
116 - Universal approximation theorem English.vtt 10.23Кб
116 - Universal approximation theorem Vietnamese.vtt 12.69Кб
117 - Anatomy of a torch dataset and dataloader.mp4 151.86Мб
117 - Anatomy of a torch dataset and dataloader English.vtt 22.69Кб
117 - Anatomy of a torch dataset and dataloader Vietnamese.vtt 29.05Кб
118 - Data size and network size.mp4 149.51Мб
118 - Data size and network size English.vtt 20.30Кб
118 - Data size and network size Vietnamese.vtt 25.32Кб
119 - CodeChallenge unbalanced data.mp4 183.43Мб
119 - CodeChallenge unbalanced data English.vtt 25.26Кб
119 - CodeChallenge unbalanced data Vietnamese.vtt 32.39Кб
11 - PyTorch or TensorFlow.html 1.07Кб
120 - What to do about unbalanced designs.mp4 29.78Мб
120 - What to do about unbalanced designs English.vtt 9.70Кб
120 - What to do about unbalanced designs Vietnamese.vtt 12.39Кб
121 - Data oversampling in MNIST.mp4 136.13Мб
121 - Data oversampling in MNIST English.vtt 20.84Кб
121 - Data oversampling in MNIST Vietnamese.vtt 26.45Кб
122 - Data noise augmentation with devsettest.mp4 117.64Мб
122 - Data noise augmentation with devsettest English.vtt 16.15Кб
122 - Data noise augmentation with devsettest Vietnamese.vtt 20.27Кб
123 - Data feature augmentation.mp4 176.25Мб
123 - Data feature augmentation English.vtt 24.60Кб
123 - Data feature augmentation Vietnamese.vtt 30.79Кб
124 - Getting data into colab.mp4 48.76Мб
124 - Getting data into colab English.vtt 7.71Кб
124 - Getting data into colab Vietnamese.vtt 9.90Кб
125 - Save and load trained models.mp4 61.58Мб
125 - Save and load trained models English.vtt 7.78Кб
125 - Save and load trained models Vietnamese.vtt 10.08Кб
126 - Save the bestperforming model.mp4 139.86Мб
126 - Save the bestperforming model English.vtt 18.96Кб
126 - Save the bestperforming model Vietnamese.vtt 24.33Кб
127 - Where to find online datasets.mp4 46.09Мб
127 - Where to find online datasets English.vtt 7.16Кб
127 - Where to find online datasets Vietnamese.vtt 8.89Кб
128 - Two perspectives of the world.mp4 26.81Мб
128 - Two perspectives of the world English.vtt 8.91Кб
128 - Two perspectives of the world Vietnamese.vtt 11.44Кб
129 - Accuracy precision recall F1.mp4 90.68Мб
129 - Accuracy precision recall F1 English.vtt 15.63Кб
129 - Accuracy precision recall F1 Vietnamese.vtt 18.80Кб
12 - Introduction to this section.mp4 6.56Мб
12 - Introduction to this section English.vtt 2.55Кб
12 - Introduction to this section Vietnamese.vtt 3.18Кб
130 - APRF in code.mp4 61.06Мб
130 - APRF in code English.vtt 8.17Кб
130 - APRF in code Vietnamese.vtt 10.24Кб
131 - APRF example 1 wine quality.mp4 162.71Мб
131 - APRF example 1 wine quality English.vtt 16.62Кб
131 - APRF example 1 wine quality Vietnamese.vtt 21.52Кб
132 - APRF example 2 MNIST.mp4 150.26Мб
132 - APRF example 2 MNIST English.vtt 14.85Кб
132 - APRF example 2 MNIST Vietnamese.vtt 18.68Кб
133 - CodeChallenge MNIST with unequal groups.mp4 91.45Мб
133 - CodeChallenge MNIST with unequal groups English.vtt 11.13Кб
133 - CodeChallenge MNIST with unequal groups Vietnamese.vtt 13.75Кб
134 - Computation time.mp4 110.41Мб
134 - Computation time English.vtt 12.37Кб
134 - Computation time Vietnamese.vtt 15.39Кб
135 - Better performance in test than train.mp4 26.26Мб
135 - Better performance in test than train English.vtt 10.53Кб
135 - Better performance in test than train Vietnamese.vtt 13.28Кб
136 - Project 1 A gratuitously complex adding machine.mp4 37.39Мб
136 - Project 1 A gratuitously complex adding machine English.vtt 9.34Кб
136 - Project 1 A gratuitously complex adding machine Vietnamese.vtt 11.77Кб
137 - Project 1 My solution.mp4 109.53Мб
137 - Project 1 My solution English.vtt 14.55Кб
137 - Project 1 My solution Vietnamese.vtt 18.42Кб
138 - Project 2 Predicting heart disease.mp4 35.56Мб
138 - Project 2 Predicting heart disease English.vtt 9.55Кб
138 - Project 2 Predicting heart disease Vietnamese.vtt 11.81Кб
139 - Project 2 My solution.mp4 155.73Мб
139 - Project 2 My solution English.vtt 23.79Кб
139 - Project 2 My solution Vietnamese.vtt 29.77Кб
13 - Spectral theories in mathematics.mp4 64.49Мб
13 - Spectral theories in mathematics English.vtt 11.86Кб
13 - Spectral theories in mathematics Vietnamese.vtt 14.79Кб
140 - Project 3 FFN for missing data interpolation.mp4 27.39Мб
140 - Project 3 FFN for missing data interpolation English.vtt 12.49Кб
140 - Project 3 FFN for missing data interpolation Vietnamese.vtt 15.95Кб
141 - Project 3 My solution.mp4 83.52Мб
141 - Project 3 My solution English.vtt 10.28Кб
141 - Project 3 My solution Vietnamese.vtt 13.09Кб
142 - Explanation of weight matrix sizes.mp4 89.58Мб
142 - Explanation of weight matrix sizes English.vtt 14.93Кб
142 - Explanation of weight matrix sizes Vietnamese.vtt 18.01Кб
143 - A surprising demo of weight initializations.mp4 132.78Мб
143 - A surprising demo of weight initializations English.vtt 20.66Кб
143 - A surprising demo of weight initializations Vietnamese.vtt 26.53Кб
144 - Theory Why and how to initialize weights.mp4 107.92Мб
144 - Theory Why and how to initialize weights English.vtt 15.92Кб
144 - Theory Why and how to initialize weights Vietnamese.vtt 19.85Кб
145 - CodeChallenge Weight variance inits.mp4 112.85Мб
145 - CodeChallenge Weight variance inits English.vtt 16.03Кб
145 - CodeChallenge Weight variance inits Vietnamese.vtt 20.11Кб
146 - Xavier and Kaiming initializations.mp4 148.87Мб
146 - Xavier and Kaiming initializations English.vtt 19.56Кб
146 - Xavier and Kaiming initializations Vietnamese.vtt 24.64Кб
147 - CodeChallenge Xavier vs Kaiming.mp4 169.10Мб
147 - CodeChallenge Xavier vs Kaiming English.vtt 21.24Кб
147 - CodeChallenge Xavier vs Kaiming Vietnamese.vtt 27.00Кб
148 - CodeChallenge Identically random weights.mp4 96.12Мб
148 - CodeChallenge Identically random weights English.vtt 15.55Кб
148 - CodeChallenge Identically random weights Vietnamese.vtt 19.76Кб
149 - Freezing weights during learning.mp4 137.77Мб
149 - Freezing weights during learning English.vtt 16.69Кб
149 - Freezing weights during learning Vietnamese.vtt 21.12Кб
14 - Terms and datatypes in math and computers.mp4 22.68Мб
14 - Terms and datatypes in math and computers English.vtt 9.23Кб
14 - Terms and datatypes in math and computers Vietnamese.vtt 11.46Кб
150 - Learningrelated changes in weights.mp4 161.55Мб
150 - Learningrelated changes in weights English.vtt 28.30Кб
150 - Learningrelated changes in weights Vietnamese.vtt 34.89Кб
151 - Use default inits or apply your own.mp4 16.76Мб
151 - Use default inits or apply your own English.vtt 5.58Кб
151 - Use default inits or apply your own Vietnamese.vtt 6.98Кб
152 - What are autoencoders and what do they do.mp4 29.40Мб
152 - What are autoencoders and what do they do English.vtt 14.69Кб
152 - What are autoencoders and what do they do Vietnamese.vtt 18.47Кб
153 - Denoising MNIST.mp4 134.22Мб
153 - Denoising MNIST English.vtt 19.65Кб
153 - Denoising MNIST Vietnamese.vtt 24.44Кб
154 - CodeChallenge How many units.mp4 148.39Мб
154 - CodeChallenge How many units English.vtt 25.01Кб
154 - CodeChallenge How many units Vietnamese.vtt 30.78Кб
155 - AEs for occlusion.mp4 138.20Мб
155 - AEs for occlusion English.vtt 21.99Кб
155 - AEs for occlusion Vietnamese.vtt 27.71Кб
156 - The latent code of MNIST.mp4 182.10Мб
156 - The latent code of MNIST English.vtt 27.32Кб
156 - The latent code of MNIST Vietnamese.vtt 33.77Кб
157 - Autoencoder with tied weights.mp4 200.67Мб
157 - Autoencoder with tied weights English.vtt 30.00Кб
157 - Autoencoder with tied weights Vietnamese.vtt 38.36Кб
158 - What is a GPU and why use it.mp4 69.22Мб
158 - What is a GPU and why use it English.vtt 19.39Кб
158 - What is a GPU and why use it Vietnamese.vtt 23.74Кб
159 - Implementation.mp4 60.70Мб
159 - Implementation English.vtt 12.79Кб
159 - Implementation Vietnamese.vtt 16.14Кб
15 - Converting reality to numbers.mp4 19.72Мб
15 - Converting reality to numbers English.vtt 8.32Кб
15 - Converting reality to numbers Vietnamese.vtt 10.76Кб
160 - CodeChallenge Run an experiment on the GPU.mp4 59.16Мб
160 - CodeChallenge Run an experiment on the GPU English.vtt 8.48Кб
160 - CodeChallenge Run an experiment on the GPU Vietnamese.vtt 10.04Кб
161 - Convolution concepts.mp4 126.08Мб
161 - Convolution concepts English.vtt 27.96Кб
161 - Convolution concepts Vietnamese.vtt 34.53Кб
162 - Feature maps and convolution kernels.mp4 83.22Мб
162 - Feature maps and convolution kernels English.vtt 12.14Кб
162 - Feature maps and convolution kernels Vietnamese.vtt 15.01Кб
163 - Convolution in code.mp4 258.22Мб
163 - Convolution in code English.vtt 26.37Кб
163 - Convolution in code Vietnamese.vtt 32.94Кб
164 - Convolution parameters stride padding.mp4 38.86Мб
164 - Convolution parameters stride padding English.vtt 15.64Кб
164 - Convolution parameters stride padding Vietnamese.vtt 19.26Кб
165 - The Conv2 class in PyTorch.mp4 113.43Мб
165 - The Conv2 class in PyTorch English.vtt 16.32Кб
165 - The Conv2 class in PyTorch Vietnamese.vtt 20.39Кб
166 - CodeChallenge Choose the parameters.mp4 31.01Мб
166 - CodeChallenge Choose the parameters English.vtt 8.85Кб
166 - CodeChallenge Choose the parameters Vietnamese.vtt 11.19Кб
167 - Transpose convolution.mp4 102.82Мб
167 - Transpose convolution English.vtt 17.25Кб
167 - Transpose convolution Vietnamese.vtt 21.38Кб
168 - Maxmean pooling.mp4 69.37Мб
168 - Maxmean pooling English.vtt 23.12Кб
168 - Maxmean pooling Vietnamese.vtt 29.34Кб
169 - Pooling in PyTorch.mp4 64.25Мб
169 - Pooling in PyTorch English.vtt 17.34Кб
169 - Pooling in PyTorch Vietnamese.vtt 21.71Кб
16 - Vector and matrix transpose.mp4 26.18Мб
16 - Vector and matrix transpose English.vtt 8.68Кб
16 - Vector and matrix transpose Vietnamese.vtt 10.92Кб
170 - To pool or to stride.mp4 70.79Мб
170 - To pool or to stride English.vtt 12.62Кб
170 - To pool or to stride Vietnamese.vtt 16.06Кб
171 - Image transforms.mp4 192.95Мб
171 - Image transforms English.vtt 20.48Кб
171 - Image transforms Vietnamese.vtt 26.16Кб
172 - Creating and using custom DataLoaders.mp4 154.12Мб
172 - Creating and using custom DataLoaders English.vtt 22.85Кб
172 - Creating and using custom DataLoaders Vietnamese.vtt 29.37Кб
173 - The canonical CNN architecture.mp4 33.16Мб
173 - The canonical CNN architecture English.vtt 13.68Кб
173 - The canonical CNN architecture Vietnamese.vtt 17.01Кб
174 - CNN to classify MNIST digits.mp4 217.84Мб
174 - CNN to classify MNIST digits English.vtt 32.79Кб
174 - CNN to classify MNIST digits Vietnamese.vtt 40.74Кб
175 - CNN on shifted MNIST.mp4 63.47Мб
175 - CNN on shifted MNIST English.vtt 10.53Кб
175 - CNN on shifted MNIST Vietnamese.vtt 13.73Кб
176 - Classify Gaussian blurs.mp4 279.72Мб
176 - Classify Gaussian blurs English.vtt 29.64Кб
176 - Classify Gaussian blurs Vietnamese.vtt 36.52Кб
177 - Examine feature map activations.mp4 412.18Мб
177 - Examine feature map activations English.vtt 34.96Кб
177 - Examine feature map activations Vietnamese.vtt 44.07Кб
178 - CodeChallenge Softcode internal parameters.mp4 176.05Мб
178 - CodeChallenge Softcode internal parameters English.vtt 21.73Кб
178 - CodeChallenge Softcode internal parameters Vietnamese.vtt 27.06Кб
179 - CodeChallenge How wide the FC.mp4 144.65Мб
179 - CodeChallenge How wide the FC English.vtt 14.60Кб
179 - CodeChallenge How wide the FC Vietnamese.vtt 18.06Кб
17 - OMG its the dot product.mp4 28.73Мб
17 - OMG its the dot product English.vtt 12.11Кб
17 - OMG its the dot product Vietnamese.vtt 14.35Кб
180 - Do autoencoders clean Gaussians.mp4 206.11Мб
180 - Do autoencoders clean Gaussians English.vtt 21.15Кб
180 - Do autoencoders clean Gaussians Vietnamese.vtt 26.28Кб
181 - CodeChallenge AEs and occluded Gaussians.mp4 128.09Мб
181 - CodeChallenge AEs and occluded Gaussians English.vtt 12.12Кб
181 - CodeChallenge AEs and occluded Gaussians Vietnamese.vtt 15.20Кб
182 - CodeChallenge Custom loss functions.mp4 154.88Мб
182 - CodeChallenge Custom loss functions English.vtt 25.77Кб
182 - CodeChallenge Custom loss functions Vietnamese.vtt 31.62Кб
183 - Discover the Gaussian parameters.mp4 136.65Мб
183 - Discover the Gaussian parameters English.vtt 20.21Кб
183 - Discover the Gaussian parameters Vietnamese.vtt 24.89Кб
184 - The EMNIST dataset letter recognition.mp4 219.98Мб
184 - The EMNIST dataset letter recognition English.vtt 31.08Кб
184 - The EMNIST dataset letter recognition Vietnamese.vtt 38.59Кб
185 - Dropout in CNNs.mp4 104.23Мб
185 - Dropout in CNNs English.vtt 12.44Кб
185 - Dropout in CNNs Vietnamese.vtt 15.46Кб
186 - CodeChallenge How low can you go.mp4 60.23Мб
186 - CodeChallenge How low can you go English.vtt 8.66Кб
186 - CodeChallenge How low can you go Vietnamese.vtt 10.85Кб
187 - CodeChallenge Varying number of channels.mp4 99.83Мб
187 - CodeChallenge Varying number of channels English.vtt 17.12Кб
187 - CodeChallenge Varying number of channels Vietnamese.vtt 21.03Кб
188 - So many possibilities How to create a CNN.mp4 12.93Мб
188 - So many possibilities How to create a CNN English.vtt 5.68Кб
188 - So many possibilities How to create a CNN Vietnamese.vtt 7.10Кб
189 - Project 1 Import and classify CIFAR10.mp4 53.17Мб
189 - Project 1 Import and classify CIFAR10 English.vtt 9.25Кб
189 - Project 1 Import and classify CIFAR10 Vietnamese.vtt 11.89Кб
18 - Matrix multiplication.mp4 66.71Мб
18 - Matrix multiplication English.vtt 17.86Кб
18 - Matrix multiplication Vietnamese.vtt 21.74Кб
190 - Project 1 My solution.mp4 130.03Мб
190 - Project 1 My solution English.vtt 14.98Кб
190 - Project 1 My solution Vietnamese.vtt 18.91Кб
191 - Project 2 CIFARautoencoder.mp4 45.25Мб
191 - Project 2 CIFARautoencoder English.vtt 6.11Кб
191 - Project 2 CIFARautoencoder Vietnamese.vtt 7.40Кб
192 - Project 3 FMNIST.mp4 28.84Мб
192 - Project 3 FMNIST English.vtt 4.55Кб
192 - Project 3 FMNIST Vietnamese.vtt 5.62Кб
193 - Project 4 Psychometric functions in CNNs.mp4 76.46Мб
193 - Project 4 Psychometric functions in CNNs English.vtt 14.69Кб
193 - Project 4 Psychometric functions in CNNs Vietnamese.vtt 18.54Кб
194 - Transfer learning What why and when.mp4 58.18Мб
194 - Transfer learning What why and when English.vtt 21.50Кб
194 - Transfer learning What why and when Vietnamese.vtt 27.01Кб
195 - Transfer learning MNIST FMNIST.mp4 121.34Мб
195 - Transfer learning MNIST FMNIST English.vtt 12.60Кб
195 - Transfer learning MNIST FMNIST Vietnamese.vtt 15.55Кб
196 - CodeChallenge letters to numbers.mp4 131.86Мб
196 - CodeChallenge letters to numbers English.vtt 18.61Кб
196 - CodeChallenge letters to numbers Vietnamese.vtt 23.30Кб
197 - Famous CNN architectures.mp4 32.95Мб
197 - Famous CNN architectures English.vtt 7.63Кб
197 - Famous CNN architectures Vietnamese.vtt 9.07Кб
198 - Transfer learning with ResNet18.mp4 201.17Мб
198 - Transfer learning with ResNet18 English.vtt 21.15Кб
198 - Transfer learning with ResNet18 Vietnamese.vtt 26.50Кб
199 - CodeChallenge VGG16.mp4 20.28Мб
199 - CodeChallenge VGG16 English.vtt 4.43Кб
199 - CodeChallenge VGG16 Vietnamese.vtt 5.34Кб
19 - Softmax.mp4 101.37Мб
19 - Softmax English.vtt 24.02Кб
19 - Softmax Vietnamese.vtt 29.23Кб
1 - How to learn from this course.mp4 54.97Мб
1 - How to learn from this course English.vtt 11.34Кб
1 - How to learn from this course Vietnamese.vtt 13.97Кб
200 - Pretraining with autoencoders.mp4 208.64Мб
200 - Pretraining with autoencoders English.vtt 24.91Кб
200 - Pretraining with autoencoders Vietnamese.vtt 32.53Кб
201 - CIFAR10 with autoencoderpretrained model.mp4 166.90Мб
201 - CIFAR10 with autoencoderpretrained model English.vtt 22.42Кб
201 - CIFAR10 with autoencoderpretrained model Vietnamese.vtt 28.33Кб
202 - What is style transfer and how does it work.mp4 28.14Мб
202 - What is style transfer and how does it work English.vtt 5.52Кб
202 - What is style transfer and how does it work Vietnamese.vtt 7.00Кб
203 - The Gram matrix feature activation covariance.mp4 66.49Мб
203 - The Gram matrix feature activation covariance English.vtt 14.63Кб
203 - The Gram matrix feature activation covariance Vietnamese.vtt 18.10Кб
204 - The style transfer algorithm.mp4 40.70Мб
204 - The style transfer algorithm English.vtt 13.10Кб
204 - The style transfer algorithm Vietnamese.vtt 16.46Кб
205 - Transferring the screaming bathtub.mp4 344.76Мб
205 - Transferring the screaming bathtub English.vtt 27.78Кб
205 - Transferring the screaming bathtub Vietnamese.vtt 34.69Кб
206 - CodeChallenge Style transfer with AlexNet.mp4 81.43Мб
206 - CodeChallenge Style transfer with AlexNet English.vtt 9.11Кб
206 - CodeChallenge Style transfer with AlexNet Vietnamese.vtt 11.20Кб
207 - GAN What why and how.mp4 57.48Мб
207 - GAN What why and how English.vtt 20.49Кб
207 - GAN What why and how Vietnamese.vtt 26.24Кб
208 - Linear GAN with MNIST.mp4 188.18Мб
208 - Linear GAN with MNIST English.vtt 27.51Кб
208 - Linear GAN with MNIST Vietnamese.vtt 34.79Кб
209 - CodeChallenge Linear GAN with FMNIST.mp4 86.47Мб
209 - CodeChallenge Linear GAN with FMNIST English.vtt 12.10Кб
209 - CodeChallenge Linear GAN with FMNIST Vietnamese.vtt 15.40Кб
20 - Logarithms.mp4 29.20Мб
20 - Logarithms English.vtt 9.98Кб
20 - Logarithms Vietnamese.vtt 12.01Кб
210 - CNN GAN with Gaussians.mp4 214.18Мб
210 - CNN GAN with Gaussians English.vtt 19.08Кб
210 - CNN GAN with Gaussians Vietnamese.vtt 23.76Кб
211 - CodeChallenge Gaussians with fewer layers.mp4 84.33Мб
211 - CodeChallenge Gaussians with fewer layers English.vtt 7.77Кб
211 - CodeChallenge Gaussians with fewer layers Vietnamese.vtt 9.60Кб
212 - CNN GAN with FMNIST.mp4 74.70Мб
212 - CNN GAN with FMNIST English.vtt 8.02Кб
212 - CNN GAN with FMNIST Vietnamese.vtt 9.99Кб
213 - CodeChallenge CNN GAN with CIFAR.mp4 69.56Мб
213 - CodeChallenge CNN GAN with CIFAR English.vtt 10.14Кб
213 - CodeChallenge CNN GAN with CIFAR Vietnamese.vtt 12.88Кб
214 - Leveraging sequences in deep learning.mp4 91.62Мб
214 - Leveraging sequences in deep learning English.vtt 16.32Кб
214 - Leveraging sequences in deep learning Vietnamese.vtt 20.46Кб
215 - How RNNs work.mp4 45.65Мб
215 - How RNNs work English.vtt 18.87Кб
215 - How RNNs work Vietnamese.vtt 23.64Кб
216 - The RNN class in PyTorch.mp4 134.69Мб
216 - The RNN class in PyTorch English.vtt 23.25Кб
216 - The RNN class in PyTorch Vietnamese.vtt 29.01Кб
217 - Predicting alternating sequences.mp4 247.11Мб
217 - Predicting alternating sequences English.vtt 24.90Кб
217 - Predicting alternating sequences Vietnamese.vtt 32.07Кб
218 - CodeChallenge sine wave extrapolation.mp4 259.88Мб
218 - CodeChallenge sine wave extrapolation English.vtt 33.55Кб
218 - CodeChallenge sine wave extrapolation Vietnamese.vtt 41.84Кб
219 - More on RNNs Hidden states embeddings.mp4 94.25Мб
219 - More on RNNs Hidden states embeddings English.vtt 19.88Кб
219 - More on RNNs Hidden states embeddings Vietnamese.vtt 24.52Кб
21 - Entropy and crossentropy.mp4 85.39Мб
21 - Entropy and crossentropy English.vtt 21.92Кб
21 - Entropy and crossentropy Vietnamese.vtt 27.01Кб
220 - GRU and LSTM.mp4 137.50Мб
220 - GRU and LSTM English.vtt 28.86Кб
220 - GRU and LSTM Vietnamese.vtt 35.58Кб
221 - The LSTM and GRU classes.mp4 132.45Мб
221 - The LSTM and GRU classes English.vtt 17.15Кб
221 - The LSTM and GRU classes Vietnamese.vtt 21.26Кб
222 - Lorem ipsum.mp4 215.70Мб
222 - Lorem ipsum English.vtt 32.20Кб
222 - Lorem ipsum Vietnamese.vtt 39.77Кб
223 - Will AI save us or destroy us.mp4 37.16Мб
223 - Will AI save us or destroy us English.vtt 12.48Кб
223 - Will AI save us or destroy us Vietnamese.vtt 15.33Кб
224 - Example case studies.mp4 62.37Мб
224 - Example case studies English.vtt 8.01Кб
224 - Example case studies Vietnamese.vtt 10.17Кб
225 - Some other possible ethical scenarios.mp4 84.33Мб
225 - Some other possible ethical scenarios English.vtt 13.25Кб
225 - Some other possible ethical scenarios Vietnamese.vtt 17.13Кб
226 - Will deep learning take our jobs.mp4 53.00Мб
226 - Will deep learning take our jobs English.vtt 12.94Кб
226 - Will deep learning take our jobs Vietnamese.vtt 16.48Кб
227 - Accountability and making ethical AI.mp4 88.45Мб
227 - Accountability and making ethical AI English.vtt 14.53Кб
227 - Accountability and making ethical AI Vietnamese.vtt 18.87Кб
228 - How to learn topic X in deep learning.mp4 25.30Мб
228 - How to learn topic X in deep learning English.vtt 10.75Кб
228 - How to learn topic X in deep learning Vietnamese.vtt 13.24Кб
229 - How to read academic DL papers.mp4 222.01Мб
229 - How to read academic DL papers English.vtt 21.91Кб
229 - How to read academic DL papers Vietnamese.vtt 28.12Кб
22 - Minmax and argminargmax.mp4 68.97Мб
22 - Minmax and argminargmax English.vtt 15.75Кб
22 - Minmax and argminargmax Vietnamese.vtt 19.95Кб
230 - How to learn from the Python tutorial.mp4 17.53Мб
230 - How to learn from the Python tutorial English.vtt 4.28Кб
230 - How to learn from the Python tutorial Vietnamese.vtt 5.17Кб
231 - Variables.mp4 57.77Мб
231 - Variables English.vtt 23.34Кб
231 - Variables Vietnamese.vtt 29.34Кб
232 - Math and printing.mp4 51.13Мб
232 - Math and printing English.vtt 22.90Кб
232 - Math and printing Vietnamese.vtt 28.43Кб
233 - Lists 1 of 2.mp4 35.09Мб
233 - Lists 1 of 2 English.vtt 17.46Кб
233 - Lists 1 of 2 Vietnamese.vtt 22.00Кб
234 - Lists 2 of 2.mp4 33.47Мб
234 - Lists 2 of 2 English.vtt 12.52Кб
234 - Lists 2 of 2 Vietnamese.vtt 15.93Кб
235 - Tuples.mp4 22.17Мб
235 - Tuples English.vtt 10.30Кб
235 - Tuples Vietnamese.vtt 13.15Кб
236 - Booleans.mp4 64.57Мб
236 - Booleans English.vtt 23.59Кб
236 - Booleans Vietnamese.vtt 29.35Кб
237 - Dictionaries.mp4 33.00Мб
237 - Dictionaries English.vtt 14.55Кб
237 - Dictionaries Vietnamese.vtt 18.71Кб
238 - Indexing.mp4 32.92Мб
238 - Indexing English.vtt 15.59Кб
238 - Indexing Vietnamese.vtt 20.38Кб
239 - Slicing.mp4 39.95Мб
239 - Slicing English.vtt 15.41Кб
239 - Slicing Vietnamese.vtt 19.96Кб
23 - Mean and variance.mp4 47.05Мб
23 - Mean and variance English.vtt 19.54Кб
23 - Mean and variance Vietnamese.vtt 24.70Кб
240 - Inputs and outputs.mp4 19.14Мб
240 - Inputs and outputs English.vtt 9.18Кб
240 - Inputs and outputs Vietnamese.vtt 11.68Кб
241 - Python libraries numpy.mp4 39.84Мб
241 - Python libraries numpy English.vtt 17.30Кб
241 - Python libraries numpy Vietnamese.vtt 21.94Кб
242 - Python libraries pandas.mp4 91.23Мб
242 - Python libraries pandas English.vtt 17.45Кб
242 - Python libraries pandas Vietnamese.vtt 21.88Кб
243 - Getting help on functions.mp4 37.33Мб
243 - Getting help on functions English.vtt 9.63Кб
243 - Getting help on functions Vietnamese.vtt 12.17Кб
244 - Creating functions.mp4 57.33Мб
244 - Creating functions English.vtt 26.51Кб
244 - Creating functions Vietnamese.vtt 33.24Кб
245 - Global and local variable scopes.mp4 54.83Мб
245 - Global and local variable scopes English.vtt 16.95Кб
245 - Global and local variable scopes Vietnamese.vtt 20.80Кб
246 - Copies and referents of variables.mp4 15.07Мб
246 - Copies and referents of variables English.vtt 6.35Кб
246 - Copies and referents of variables Vietnamese.vtt 8.19Кб
247 - Classes and objectoriented programming.mp4 88.49Мб
247 - Classes and objectoriented programming English.vtt 22.98Кб
247 - Classes and objectoriented programming Vietnamese.vtt 29.11Кб
248 - Ifelse statements.mp4 43.21Мб
248 - Ifelse statements English.vtt 18.56Кб
248 - Ifelse statements Vietnamese.vtt 23.08Кб
249 - Ifelse statements part 2.mp4 76.31Мб
249 - Ifelse statements part 2 English.vtt 19.71Кб
249 - Ifelse statements part 2 Vietnamese.vtt 24.78Кб
24 - Random sampling and sampling variability.mp4 63.20Мб
24 - Random sampling and sampling variability English.vtt 14.18Кб
24 - Random sampling and sampling variability Vietnamese.vtt 17.87Кб
250 - For loops.mp4 64.36Мб
250 - For loops English.vtt 21.74Кб
250 - For loops Vietnamese.vtt 26.93Кб
251 - Enumerate and zip.mp4 58.59Мб
251 - Enumerate and zip English.vtt 13.81Кб
251 - Enumerate and zip Vietnamese.vtt 17.78Кб
252 - Continue.mp4 20.68Мб
252 - Continue English.vtt 8.76Кб
252 - Continue Vietnamese.vtt 11.00Кб
253 - Initializing variables.mp4 67.39Мб
253 - Initializing variables English.vtt 22.09Кб
253 - Initializing variables Vietnamese.vtt 28.66Кб
254 - Singleline loops list comprehension.mp4 61.91Мб
254 - Singleline loops list comprehension English.vtt 18.72Кб
254 - Singleline loops list comprehension Vietnamese.vtt 23.68Кб
255 - while loops.mp4 68.40Мб
255 - while loops English.vtt 24.05Кб
255 - while loops Vietnamese.vtt 29.67Кб
256 - Broadcasting in numpy.mp4 52.46Мб
256 - Broadcasting in numpy English.vtt 18.35Кб
256 - Broadcasting in numpy Vietnamese.vtt 22.99Кб
257 - Function error checking and handling.mp4 111.63Мб
257 - Function error checking and handling English.vtt 21.84Кб
257 - Function error checking and handling Vietnamese.vtt 27.51Кб
258 - Printing and string interpolation.mp4 69.01Мб
258 - Printing and string interpolation English.vtt 20.99Кб
258 - Printing and string interpolation Vietnamese.vtt 26.36Кб
259 - Plotting dots and lines.mp4 40.07Мб
259 - Plotting dots and lines English.vtt 15.24Кб
259 - Plotting dots and lines Vietnamese.vtt 19.80Кб
25 - Reproducible randomness via seeding.mp4 75.55Мб
25 - Reproducible randomness via seeding English.vtt 10.23Кб
25 - Reproducible randomness via seeding Vietnamese.vtt 13.07Кб
260 - Subplot geometry.mp4 70.36Мб
260 - Subplot geometry English.vtt 19.88Кб
260 - Subplot geometry Vietnamese.vtt 25.30Кб
261 - Making the graphs look nicer.mp4 87.10Мб
261 - Making the graphs look nicer English.vtt 23.25Кб
261 - Making the graphs look nicer Vietnamese.vtt 29.22Кб
262 - Seaborn.mp4 50.90Мб
262 - Seaborn English.vtt 13.67Кб
262 - Seaborn Vietnamese.vtt 17.64Кб
263 - Images.mp4 104.10Мб
263 - Images English.vtt 22.06Кб
263 - Images Vietnamese.vtt 27.48Кб
264 - Export plots in low and high resolution.mp4 56.25Мб
264 - Export plots in low and high resolution English.vtt 9.83Кб
264 - Export plots in low and high resolution Vietnamese.vtt 12.57Кб
265 - Bonus content.html 3.83Кб
26 - The ttest.mp4 88.25Мб
26 - The ttest English.vtt 16.88Кб
26 - The ttest Vietnamese.vtt 21.31Кб
27 - Derivatives intuition and polynomials.mp4 46.22Мб
27 - Derivatives intuition and polynomials English.vtt 21.00Кб
27 - Derivatives intuition and polynomials Vietnamese.vtt 25.00Кб
28 - Derivatives find minima.mp4 26.02Мб
28 - Derivatives find minima English.vtt 10.54Кб
28 - Derivatives find minima Vietnamese.vtt 12.92Кб
29 - Derivatives product and chain rules.mp4 37.03Мб
29 - Derivatives product and chain rules English.vtt 11.80Кб
29 - Derivatives product and chain rules Vietnamese.vtt 14.20Кб
2 - Using Udemy like a pro.mp4 38.09Мб
2 - Using Udemy like a pro English.vtt 10.64Кб
2 - Using Udemy like a pro Vietnamese.vtt 13.72Кб
30 - Overview of gradient descent.mp4 54.34Мб
30 - Overview of gradient descent English.vtt 18.04Кб
30 - Overview of gradient descent Vietnamese.vtt 22.28Кб
31 - What about local minima.mp4 38.09Мб
31 - What about local minima English.vtt 14.92Кб
31 - What about local minima Vietnamese.vtt 19.02Кб
32 - Gradient descent in 1D.mp4 131.39Мб
32 - Gradient descent in 1D English.vtt 21.23Кб
32 - Gradient descent in 1D Vietnamese.vtt 26.70Кб
33 - CodeChallenge unfortunate starting value.mp4 85.91Мб
33 - CodeChallenge unfortunate starting value English.vtt 13.76Кб
33 - CodeChallenge unfortunate starting value Vietnamese.vtt 17.24Кб
34 - Gradient descent in 2D.mp4 96.38Мб
34 - Gradient descent in 2D English.vtt 18.66Кб
34 - Gradient descent in 2D Vietnamese.vtt 22.56Кб
35 - CodeChallenge 2D gradient ascent.mp4 43.38Мб
35 - CodeChallenge 2D gradient ascent English.vtt 6.54Кб
35 - CodeChallenge 2D gradient ascent Vietnamese.vtt 8.23Кб
36 - Parametric experiments on gd.mp4 151.40Мб
36 - Parametric experiments on gd English.vtt 23.56Кб
36 - Parametric experiments on gd Vietnamese.vtt 29.85Кб
37 - CodeChallenge fixed vs dynamic learning rate.mp4 126.18Мб
37 - CodeChallenge fixed vs dynamic learning rate English.vtt 20.21Кб
37 - CodeChallenge fixed vs dynamic learning rate Vietnamese.vtt 25.18Кб
38 - Vanishing and exploding gradients.mp4 31.70Мб
38 - Vanishing and exploding gradients English.vtt 7.85Кб
38 - Vanishing and exploding gradients Vietnamese.vtt 10.21Кб
39 - Tangent Notebook revision history.mp4 25.15Мб
39 - Tangent Notebook revision history English.vtt 2.41Кб
39 - Tangent Notebook revision history Vietnamese.vtt 3.07Кб
3 - Code on my github site.txt 61б
3 - Downloading and using the code.mp4 52.56Мб
3 - Downloading and using the code English.vtt 8.17Кб
3 - Downloading and using the code Vietnamese.vtt 9.64Кб
3 - DUDL-PythonCode.zip 1.34Мб
40 - The perceptron and ANN architecture.mp4 50.73Мб
40 - The perceptron and ANN architecture English.vtt 24.18Кб
40 - The perceptron and ANN architecture Vietnamese.vtt 30.54Кб
41 - A geometric view of ANNs.mp4 42.91Мб
41 - A geometric view of ANNs English.vtt 16.83Кб
41 - A geometric view of ANNs Vietnamese.vtt 20.98Кб
42 - ANN math part 1 forward prop.mp4 43.94Мб
42 - ANN math part 1 forward prop English.vtt 19.28Кб
42 - ANN math part 1 forward prop Vietnamese.vtt 23.92Кб
43 - ANN math part 2 errors loss cost.mp4 52.20Мб
43 - ANN math part 2 errors loss cost English.vtt 12.13Кб
43 - ANN math part 2 errors loss cost Vietnamese.vtt 14.81Кб
44 - ANN math part 3 backprop.mp4 37.62Мб
44 - ANN math part 3 backprop English.vtt 13.36Кб
44 - ANN math part 3 backprop Vietnamese.vtt 16.35Кб
45 - ANN for regression.mp4 105.27Мб
45 - ANN for regression English.vtt 30.97Кб
45 - ANN for regression Vietnamese.vtt 39.46Кб
46 - CodeChallenge manipulate regression slopes.mp4 150.19Мб
46 - CodeChallenge manipulate regression slopes English.vtt 24.46Кб
46 - CodeChallenge manipulate regression slopes Vietnamese.vtt 30.57Кб
47 - ANN for classifying qwerties.mp4 196.24Мб
47 - ANN for classifying qwerties English.vtt 29.72Кб
47 - ANN for classifying qwerties Vietnamese.vtt 37.47Кб
48 - Learning rates comparison.mp4 168.64Мб
48 - Learning rates comparison English.vtt 31.13Кб
48 - Learning rates comparison Vietnamese.vtt 39.38Кб
49 - Multilayer ANN.mp4 160.21Мб
49 - Multilayer ANN English.vtt 25.33Кб
49 - Multilayer ANN Vietnamese.vtt 30.89Кб
4 - My policy on codesharing.mp4 5.63Мб
4 - My policy on codesharing English.vtt 2.20Кб
4 - My policy on codesharing Vietnamese.vtt 2.73Кб
50 - Linear solutions to linear problems.mp4 54.56Мб
50 - Linear solutions to linear problems English.vtt 10.62Кб
50 - Linear solutions to linear problems Vietnamese.vtt 13.69Кб
51 - Why multilayer linear models dont exist.mp4 27.20Мб
51 - Why multilayer linear models dont exist English.vtt 8.01Кб
51 - Why multilayer linear models dont exist Vietnamese.vtt 9.93Кб
52 - Multioutput ANN iris dataset.mp4 215.05Мб
52 - Multioutput ANN iris dataset English.vtt 34.55Кб
52 - Multioutput ANN iris dataset Vietnamese.vtt 42.64Кб
53 - CodeChallenge more qwerties.mp4 127.13Мб
53 - CodeChallenge more qwerties English.vtt 15.41Кб
53 - CodeChallenge more qwerties Vietnamese.vtt 18.72Кб
54 - Comparing the number of hidden units.mp4 49.40Мб
54 - Comparing the number of hidden units English.vtt 12.64Кб
54 - Comparing the number of hidden units Vietnamese.vtt 15.54Кб
55 - Depth vs breadth number of parameters.mp4 149.11Мб
55 - Depth vs breadth number of parameters English.vtt 22.16Кб
55 - Depth vs breadth number of parameters Vietnamese.vtt 27.34Кб
56 - Defining models using sequential vs class.mp4 97.84Мб
56 - Defining models using sequential vs class English.vtt 16.59Кб
56 - Defining models using sequential vs class Vietnamese.vtt 20.79Кб
57 - Model depth vs breadth.mp4 177.40Мб
57 - Model depth vs breadth English.vtt 26.63Кб
57 - Model depth vs breadth Vietnamese.vtt 32.86Кб
58 - CodeChallenge convert sequential to class.mp4 57.09Мб
58 - CodeChallenge convert sequential to class English.vtt 8.45Кб
58 - CodeChallenge convert sequential to class Vietnamese.vtt 10.48Кб
59 - Diversity of ANN visual representations.html 517б
5 - What is an artificial neural network.mp4 40.10Мб
5 - What is an artificial neural network English.vtt 18.58Кб
5 - What is an artificial neural network Vietnamese.vtt 23.27Кб
60 - Reflection Are DL models understandable yet.mp4 76.81Мб
60 - Reflection Are DL models understandable yet English.vtt 10.89Кб
60 - Reflection Are DL models understandable yet Vietnamese.vtt 13.88Кб
61 - What is overfitting and is it as bad as they say.mp4 76.96Мб
61 - What is overfitting and is it as bad as they say English.vtt 15.93Кб
61 - What is overfitting and is it as bad as they say Vietnamese.vtt 20.67Кб
62 - Crossvalidation.mp4 68.26Мб
62 - Crossvalidation English.vtt 21.66Кб
62 - Crossvalidation Vietnamese.vtt 27.94Кб
63 - Generalization.mp4 18.95Мб
63 - Generalization English.vtt 7.72Кб
63 - Generalization Vietnamese.vtt 9.78Кб
64 - Crossvalidation manual separation.mp4 108.70Мб
64 - Crossvalidation manual separation English.vtt 16.07Кб
64 - Crossvalidation manual separation Vietnamese.vtt 20.67Кб
65 - Crossvalidation scikitlearn.mp4 159.59Мб
65 - Crossvalidation scikitlearn English.vtt 26.26Кб
65 - Crossvalidation scikitlearn Vietnamese.vtt 34.06Кб
66 - Crossvalidation DataLoader.mp4 188.55Мб
66 - Crossvalidation DataLoader English.vtt 24.71Кб
66 - Crossvalidation DataLoader Vietnamese.vtt 32.71Кб
67 - Splitting data into train devset test.mp4 86.95Мб
67 - Splitting data into train devset test English.vtt 12.00Кб
67 - Splitting data into train devset test Vietnamese.vtt 15.19Кб
68 - Crossvalidation on regression.mp4 41.13Мб
68 - Crossvalidation on regression English.vtt 10.37Кб
68 - Crossvalidation on regression Vietnamese.vtt 13.14Кб
69 - Regularization Concept and methods.mp4 88.60Мб
69 - Regularization Concept and methods English.vtt 16.63Кб
69 - Regularization Concept and methods Vietnamese.vtt 20.89Кб
6 - How models learn.mp4 51.11Мб
6 - How models learn English.vtt 16.29Кб
6 - How models learn Vietnamese.vtt 20.63Кб
70 - train and eval modes.mp4 22.80Мб
70 - train and eval modes English.vtt 8.91Кб
70 - train and eval modes Vietnamese.vtt 10.97Кб
71 - Dropout regularization.mp4 151.92Мб
71 - Dropout regularization English.vtt 27.35Кб
71 - Dropout regularization Vietnamese.vtt 35.28Кб
72 - Dropout regularization in practice.mp4 201.41Мб
72 - Dropout regularization in practice English.vtt 28.83Кб
72 - Dropout regularization in practice Vietnamese.vtt 36.31Кб
73 - Dropout example 2.mp4 60.78Мб
73 - Dropout example 2 English.vtt 7.97Кб
73 - Dropout example 2 Vietnamese.vtt 9.94Кб
74 - Weight regularization L1L2 math.mp4 65.46Мб
74 - Weight regularization L1L2 math English.vtt 23.45Кб
74 - Weight regularization L1L2 math Vietnamese.vtt 29.01Кб
75 - L2 regularization in practice.mp4 123.28Мб
75 - L2 regularization in practice English.vtt 16.45Кб
75 - L2 regularization in practice Vietnamese.vtt 20.82Кб
76 - L1 regularization in practice.mp4 110.09Мб
76 - L1 regularization in practice English.vtt 15.11Кб
76 - L1 regularization in practice Vietnamese.vtt 19.13Кб
77 - Training in minibatches.mp4 35.41Мб
77 - Training in minibatches English.vtt 14.59Кб
77 - Training in minibatches Vietnamese.vtt 18.51Кб
78 - Batch training in action.mp4 120.24Мб
78 - Batch training in action English.vtt 13.54Кб
78 - Batch training in action Vietnamese.vtt 17.03Кб
79 - The importance of equal batch sizes.mp4 82.14Мб
79 - The importance of equal batch sizes English.vtt 8.24Кб
79 - The importance of equal batch sizes Vietnamese.vtt 10.40Кб
7 - The role of DL in science and knowledge.mp4 127.10Мб
7 - The role of DL in science and knowledge English.vtt 20.29Кб
7 - The role of DL in science and knowledge Vietnamese.vtt 25.90Кб
80 - CodeChallenge Effects of minibatch size.mp4 130.36Мб
80 - CodeChallenge Effects of minibatch size English.vtt 15.68Кб
80 - CodeChallenge Effects of minibatch size Vietnamese.vtt 19.75Кб
81 - What are metaparameters.mp4 18.66Мб
81 - What are metaparameters English.vtt 6.47Кб
81 - What are metaparameters Vietnamese.vtt 7.95Кб
82 - The wine quality dataset.mp4 194.40Мб
82 - The wine quality dataset English.vtt 22.28Кб
82 - The wine quality dataset Vietnamese.vtt 28.19Кб
83 - CodeChallenge Minibatch size in the wine dataset.mp4 160.37Мб
83 - CodeChallenge Minibatch size in the wine dataset English.vtt 20.03Кб
83 - CodeChallenge Minibatch size in the wine dataset Vietnamese.vtt 25.39Кб
84 - Data normalization.mp4 62.45Мб
84 - Data normalization English.vtt 17.07Кб
84 - Data normalization Vietnamese.vtt 21.57Кб
85 - The importance of data normalization.mp4 72.74Мб
85 - The importance of data normalization English.vtt 12.02Кб
85 - The importance of data normalization Vietnamese.vtt 15.01Кб
86 - Batch normalization.mp4 54.45Мб
86 - Batch normalization English.vtt 16.35Кб
86 - Batch normalization Vietnamese.vtt 20.47Кб
87 - Batch normalization in practice.mp4 70.03Мб
87 - Batch normalization in practice English.vtt 9.61Кб
87 - Batch normalization in practice Vietnamese.vtt 12.13Кб
88 - CodeChallenge Batchnormalize the qwerties.mp4 64.88Мб
88 - CodeChallenge Batchnormalize the qwerties English.vtt 6.52Кб
88 - CodeChallenge Batchnormalize the qwerties Vietnamese.vtt 8.24Кб
89 - Activation functions.mp4 121.06Мб
89 - Activation functions English.vtt 23.00Кб
89 - Activation functions Vietnamese.vtt 28.24Кб
8 - Running experiments to understand DL.mp4 74.84Мб
8 - Running experiments to understand DL English.vtt 16.76Кб
8 - Running experiments to understand DL Vietnamese.vtt 21.04Кб
90 - Activation functions in PyTorch.mp4 101.28Мб
90 - Activation functions in PyTorch English.vtt 14.80Кб
90 - Activation functions in PyTorch Vietnamese.vtt 18.54Кб
91 - Activation functions comparison.mp4 112.74Мб
91 - Activation functions comparison English.vtt 11.79Кб
91 - Activation functions comparison Vietnamese.vtt 14.88Кб
92 - CodeChallenge Compare relu variants.mp4 63.97Мб
92 - CodeChallenge Compare relu variants English.vtt 9.82Кб
92 - CodeChallenge Compare relu variants Vietnamese.vtt 12.24Кб
93 - CodeChallenge Predict sugar.mp4 134.25Мб
93 - CodeChallenge Predict sugar English.vtt 21.64Кб
93 - CodeChallenge Predict sugar Vietnamese.vtt 27.71Кб
94 - Loss functions.mp4 96.20Мб
94 - Loss functions English.vtt 21.12Кб
94 - Loss functions Vietnamese.vtt 25.56Кб
95 - Loss functions in PyTorch.mp4 154.73Мб
95 - Loss functions in PyTorch English.vtt 23.15Кб
95 - Loss functions in PyTorch Vietnamese.vtt 28.93Кб
96 - More practice with multioutput ANNs.mp4 109.96Мб
96 - More practice with multioutput ANNs English.vtt 17.60Кб
96 - More practice with multioutput ANNs Vietnamese.vtt 21.86Кб
97 - Optimizers minibatch momentum.mp4 59.43Мб
97 - Optimizers minibatch momentum English.vtt 23.78Кб
97 - Optimizers minibatch momentum Vietnamese.vtt 30.52Кб
98 - SGD with momentum.mp4 62.10Мб
98 - SGD with momentum English.vtt 9.97Кб
98 - SGD with momentum Vietnamese.vtt 12.92Кб
99 - Optimizers RMSprop Adam.mp4 52.52Мб
99 - Optimizers RMSprop Adam English.vtt 19.10Кб
99 - Optimizers RMSprop Adam Vietnamese.vtt 24.11Кб
9 - Are artificial neurons like biological neurons.mp4 85.20Мб
9 - Are artificial neurons like biological neurons English.vtt 20.98Кб
9 - Are artificial neurons like biological neurons Vietnamese.vtt 27.44Кб
Статистика распространения по странам
Вьетнам (VN) 1
Турция (TR) 1
Аргентина (AR) 1
Бразилия (BR) 1
Всего 4
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент