Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
[CourseClub.Me].url |
122б |
[FreeCourseSite.com].url |
127б |
[GigaCourse.Com].url |
49б |
100 - Optimizers comparison.mp4 |
97.29Мб |
100 - Optimizers comparison English.vtt |
12.71Кб |
100 - Optimizers comparison Vietnamese.vtt |
15.91Кб |
101 - CodeChallenge Optimizers and something.mp4 |
54.40Мб |
101 - CodeChallenge Optimizers and something English.vtt |
8.19Кб |
101 - CodeChallenge Optimizers and something Vietnamese.vtt |
10.39Кб |
102 - CodeChallenge Adam with L2 regularization.mp4 |
61.08Мб |
102 - CodeChallenge Adam with L2 regularization English.vtt |
9.04Кб |
102 - CodeChallenge Adam with L2 regularization Vietnamese.vtt |
11.01Кб |
103 - Learning rate decay.mp4 |
107.19Мб |
103 - Learning rate decay English.vtt |
15.45Кб |
103 - Learning rate decay Vietnamese.vtt |
19.76Кб |
104 - How to pick the right metaparameters.mp4 |
36.80Мб |
104 - How to pick the right metaparameters English.vtt |
14.61Кб |
104 - How to pick the right metaparameters Vietnamese.vtt |
18.85Кб |
105 - What are fullyconnected and feedforward networks.mp4 |
17.84Мб |
105 - What are fullyconnected and feedforward networks English.vtt |
6.11Кб |
105 - What are fullyconnected and feedforward networks Vietnamese.vtt |
7.91Кб |
106 - The MNIST dataset.mp4 |
135.66Мб |
106 - The MNIST dataset English.vtt |
15.97Кб |
106 - The MNIST dataset Vietnamese.vtt |
19.93Кб |
107 - FFN to classify digits.mp4 |
178.30Мб |
107 - FFN to classify digits English.vtt |
28.31Кб |
107 - FFN to classify digits Vietnamese.vtt |
35.46Кб |
108 - CodeChallenge Binarized MNIST images.mp4 |
44.55Мб |
108 - CodeChallenge Binarized MNIST images English.vtt |
6.42Кб |
108 - CodeChallenge Binarized MNIST images Vietnamese.vtt |
8.12Кб |
109 - CodeChallenge Data normalization.mp4 |
104.14Мб |
109 - CodeChallenge Data normalization English.vtt |
21.17Кб |
109 - CodeChallenge Data normalization Vietnamese.vtt |
26.72Кб |
10 - Should you watch the Python tutorial.mp4 |
13.79Мб |
10 - Should you watch the Python tutorial English.vtt |
5.39Кб |
10 - Should you watch the Python tutorial Vietnamese.vtt |
6.58Кб |
110 - Distributions of weights pre and postlearning.mp4 |
141.80Мб |
110 - Distributions of weights pre and postlearning English.vtt |
18.77Кб |
110 - Distributions of weights pre and postlearning Vietnamese.vtt |
23.88Кб |
111 - CodeChallenge MNIST and breadth vs depth.mp4 |
140.35Мб |
111 - CodeChallenge MNIST and breadth vs depth English.vtt |
15.43Кб |
111 - CodeChallenge MNIST and breadth vs depth Vietnamese.vtt |
19.02Кб |
112 - CodeChallenge Optimizers and MNIST.mp4 |
50.72Мб |
112 - CodeChallenge Optimizers and MNIST English.vtt |
8.67Кб |
112 - CodeChallenge Optimizers and MNIST Vietnamese.vtt |
10.77Кб |
113 - Scrambled MNIST.mp4 |
60.17Мб |
113 - Scrambled MNIST English.vtt |
9.78Кб |
113 - Scrambled MNIST Vietnamese.vtt |
12.51Кб |
114 - Shifted MNIST.mp4 |
86.36Мб |
114 - Shifted MNIST English.vtt |
14.23Кб |
114 - Shifted MNIST Vietnamese.vtt |
18.65Кб |
115 - CodeChallenge The mystery of the missing 7.mp4 |
80.88Мб |
115 - CodeChallenge The mystery of the missing 7 English.vtt |
13.61Кб |
115 - CodeChallenge The mystery of the missing 7 Vietnamese.vtt |
17.14Кб |
116 - Universal approximation theorem.mp4 |
34.23Мб |
116 - Universal approximation theorem English.vtt |
10.23Кб |
116 - Universal approximation theorem Vietnamese.vtt |
12.69Кб |
117 - Anatomy of a torch dataset and dataloader.mp4 |
151.86Мб |
117 - Anatomy of a torch dataset and dataloader English.vtt |
22.69Кб |
117 - Anatomy of a torch dataset and dataloader Vietnamese.vtt |
29.05Кб |
118 - Data size and network size.mp4 |
149.51Мб |
118 - Data size and network size English.vtt |
20.30Кб |
118 - Data size and network size Vietnamese.vtt |
25.32Кб |
119 - CodeChallenge unbalanced data.mp4 |
183.43Мб |
119 - CodeChallenge unbalanced data English.vtt |
25.26Кб |
119 - CodeChallenge unbalanced data Vietnamese.vtt |
32.39Кб |
11 - PyTorch or TensorFlow.html |
1.07Кб |
120 - What to do about unbalanced designs.mp4 |
29.78Мб |
120 - What to do about unbalanced designs English.vtt |
9.70Кб |
120 - What to do about unbalanced designs Vietnamese.vtt |
12.39Кб |
121 - Data oversampling in MNIST.mp4 |
136.13Мб |
121 - Data oversampling in MNIST English.vtt |
20.84Кб |
121 - Data oversampling in MNIST Vietnamese.vtt |
26.45Кб |
122 - Data noise augmentation with devsettest.mp4 |
117.64Мб |
122 - Data noise augmentation with devsettest English.vtt |
16.15Кб |
122 - Data noise augmentation with devsettest Vietnamese.vtt |
20.27Кб |
123 - Data feature augmentation.mp4 |
176.25Мб |
123 - Data feature augmentation English.vtt |
24.60Кб |
123 - Data feature augmentation Vietnamese.vtt |
30.79Кб |
124 - Getting data into colab.mp4 |
48.76Мб |
124 - Getting data into colab English.vtt |
7.71Кб |
124 - Getting data into colab Vietnamese.vtt |
9.90Кб |
125 - Save and load trained models.mp4 |
61.58Мб |
125 - Save and load trained models English.vtt |
7.78Кб |
125 - Save and load trained models Vietnamese.vtt |
10.08Кб |
126 - Save the bestperforming model.mp4 |
139.86Мб |
126 - Save the bestperforming model English.vtt |
18.96Кб |
126 - Save the bestperforming model Vietnamese.vtt |
24.33Кб |
127 - Where to find online datasets.mp4 |
46.09Мб |
127 - Where to find online datasets English.vtt |
7.16Кб |
127 - Where to find online datasets Vietnamese.vtt |
8.89Кб |
128 - Two perspectives of the world.mp4 |
26.81Мб |
128 - Two perspectives of the world English.vtt |
8.91Кб |
128 - Two perspectives of the world Vietnamese.vtt |
11.44Кб |
129 - Accuracy precision recall F1.mp4 |
90.68Мб |
129 - Accuracy precision recall F1 English.vtt |
15.63Кб |
129 - Accuracy precision recall F1 Vietnamese.vtt |
18.80Кб |
12 - Introduction to this section.mp4 |
6.56Мб |
12 - Introduction to this section English.vtt |
2.55Кб |
12 - Introduction to this section Vietnamese.vtt |
3.18Кб |
130 - APRF in code.mp4 |
61.06Мб |
130 - APRF in code English.vtt |
8.17Кб |
130 - APRF in code Vietnamese.vtt |
10.24Кб |
131 - APRF example 1 wine quality.mp4 |
162.71Мб |
131 - APRF example 1 wine quality English.vtt |
16.62Кб |
131 - APRF example 1 wine quality Vietnamese.vtt |
21.52Кб |
132 - APRF example 2 MNIST.mp4 |
150.26Мб |
132 - APRF example 2 MNIST English.vtt |
14.85Кб |
132 - APRF example 2 MNIST Vietnamese.vtt |
18.68Кб |
133 - CodeChallenge MNIST with unequal groups.mp4 |
91.45Мб |
133 - CodeChallenge MNIST with unequal groups English.vtt |
11.13Кб |
133 - CodeChallenge MNIST with unequal groups Vietnamese.vtt |
13.75Кб |
134 - Computation time.mp4 |
110.41Мб |
134 - Computation time English.vtt |
12.37Кб |
134 - Computation time Vietnamese.vtt |
15.39Кб |
135 - Better performance in test than train.mp4 |
26.26Мб |
135 - Better performance in test than train English.vtt |
10.53Кб |
135 - Better performance in test than train Vietnamese.vtt |
13.28Кб |
136 - Project 1 A gratuitously complex adding machine.mp4 |
37.39Мб |
136 - Project 1 A gratuitously complex adding machine English.vtt |
9.34Кб |
136 - Project 1 A gratuitously complex adding machine Vietnamese.vtt |
11.77Кб |
137 - Project 1 My solution.mp4 |
109.53Мб |
137 - Project 1 My solution English.vtt |
14.55Кб |
137 - Project 1 My solution Vietnamese.vtt |
18.42Кб |
138 - Project 2 Predicting heart disease.mp4 |
35.56Мб |
138 - Project 2 Predicting heart disease English.vtt |
9.55Кб |
138 - Project 2 Predicting heart disease Vietnamese.vtt |
11.81Кб |
139 - Project 2 My solution.mp4 |
155.73Мб |
139 - Project 2 My solution English.vtt |
23.79Кб |
139 - Project 2 My solution Vietnamese.vtt |
29.77Кб |
13 - Spectral theories in mathematics.mp4 |
64.49Мб |
13 - Spectral theories in mathematics English.vtt |
11.86Кб |
13 - Spectral theories in mathematics Vietnamese.vtt |
14.79Кб |
140 - Project 3 FFN for missing data interpolation.mp4 |
27.39Мб |
140 - Project 3 FFN for missing data interpolation English.vtt |
12.49Кб |
140 - Project 3 FFN for missing data interpolation Vietnamese.vtt |
15.95Кб |
141 - Project 3 My solution.mp4 |
83.52Мб |
141 - Project 3 My solution English.vtt |
10.28Кб |
141 - Project 3 My solution Vietnamese.vtt |
13.09Кб |
142 - Explanation of weight matrix sizes.mp4 |
89.58Мб |
142 - Explanation of weight matrix sizes English.vtt |
14.93Кб |
142 - Explanation of weight matrix sizes Vietnamese.vtt |
18.01Кб |
143 - A surprising demo of weight initializations.mp4 |
132.78Мб |
143 - A surprising demo of weight initializations English.vtt |
20.66Кб |
143 - A surprising demo of weight initializations Vietnamese.vtt |
26.53Кб |
144 - Theory Why and how to initialize weights.mp4 |
107.92Мб |
144 - Theory Why and how to initialize weights English.vtt |
15.92Кб |
144 - Theory Why and how to initialize weights Vietnamese.vtt |
19.85Кб |
145 - CodeChallenge Weight variance inits.mp4 |
112.85Мб |
145 - CodeChallenge Weight variance inits English.vtt |
16.03Кб |
145 - CodeChallenge Weight variance inits Vietnamese.vtt |
20.11Кб |
146 - Xavier and Kaiming initializations.mp4 |
148.87Мб |
146 - Xavier and Kaiming initializations English.vtt |
19.56Кб |
146 - Xavier and Kaiming initializations Vietnamese.vtt |
24.64Кб |
147 - CodeChallenge Xavier vs Kaiming.mp4 |
169.10Мб |
147 - CodeChallenge Xavier vs Kaiming English.vtt |
21.24Кб |
147 - CodeChallenge Xavier vs Kaiming Vietnamese.vtt |
27.00Кб |
148 - CodeChallenge Identically random weights.mp4 |
96.12Мб |
148 - CodeChallenge Identically random weights English.vtt |
15.55Кб |
148 - CodeChallenge Identically random weights Vietnamese.vtt |
19.76Кб |
149 - Freezing weights during learning.mp4 |
137.77Мб |
149 - Freezing weights during learning English.vtt |
16.69Кб |
149 - Freezing weights during learning Vietnamese.vtt |
21.12Кб |
14 - Terms and datatypes in math and computers.mp4 |
22.68Мб |
14 - Terms and datatypes in math and computers English.vtt |
9.23Кб |
14 - Terms and datatypes in math and computers Vietnamese.vtt |
11.46Кб |
150 - Learningrelated changes in weights.mp4 |
161.55Мб |
150 - Learningrelated changes in weights English.vtt |
28.30Кб |
150 - Learningrelated changes in weights Vietnamese.vtt |
34.89Кб |
151 - Use default inits or apply your own.mp4 |
16.76Мб |
151 - Use default inits or apply your own English.vtt |
5.58Кб |
151 - Use default inits or apply your own Vietnamese.vtt |
6.98Кб |
152 - What are autoencoders and what do they do.mp4 |
29.40Мб |
152 - What are autoencoders and what do they do English.vtt |
14.69Кб |
152 - What are autoencoders and what do they do Vietnamese.vtt |
18.47Кб |
153 - Denoising MNIST.mp4 |
134.22Мб |
153 - Denoising MNIST English.vtt |
19.65Кб |
153 - Denoising MNIST Vietnamese.vtt |
24.44Кб |
154 - CodeChallenge How many units.mp4 |
148.39Мб |
154 - CodeChallenge How many units English.vtt |
25.01Кб |
154 - CodeChallenge How many units Vietnamese.vtt |
30.78Кб |
155 - AEs for occlusion.mp4 |
138.20Мб |
155 - AEs for occlusion English.vtt |
21.99Кб |
155 - AEs for occlusion Vietnamese.vtt |
27.71Кб |
156 - The latent code of MNIST.mp4 |
182.10Мб |
156 - The latent code of MNIST English.vtt |
27.32Кб |
156 - The latent code of MNIST Vietnamese.vtt |
33.77Кб |
157 - Autoencoder with tied weights.mp4 |
200.67Мб |
157 - Autoencoder with tied weights English.vtt |
30.00Кб |
157 - Autoencoder with tied weights Vietnamese.vtt |
38.36Кб |
158 - What is a GPU and why use it.mp4 |
69.22Мб |
158 - What is a GPU and why use it English.vtt |
19.39Кб |
158 - What is a GPU and why use it Vietnamese.vtt |
23.74Кб |
159 - Implementation.mp4 |
60.70Мб |
159 - Implementation English.vtt |
12.79Кб |
159 - Implementation Vietnamese.vtt |
16.14Кб |
15 - Converting reality to numbers.mp4 |
19.72Мб |
15 - Converting reality to numbers English.vtt |
8.32Кб |
15 - Converting reality to numbers Vietnamese.vtt |
10.76Кб |
160 - CodeChallenge Run an experiment on the GPU.mp4 |
59.16Мб |
160 - CodeChallenge Run an experiment on the GPU English.vtt |
8.48Кб |
160 - CodeChallenge Run an experiment on the GPU Vietnamese.vtt |
10.04Кб |
161 - Convolution concepts.mp4 |
126.08Мб |
161 - Convolution concepts English.vtt |
27.96Кб |
161 - Convolution concepts Vietnamese.vtt |
34.53Кб |
162 - Feature maps and convolution kernels.mp4 |
83.22Мб |
162 - Feature maps and convolution kernels English.vtt |
12.14Кб |
162 - Feature maps and convolution kernels Vietnamese.vtt |
15.01Кб |
163 - Convolution in code.mp4 |
258.22Мб |
163 - Convolution in code English.vtt |
26.37Кб |
163 - Convolution in code Vietnamese.vtt |
32.94Кб |
164 - Convolution parameters stride padding.mp4 |
38.86Мб |
164 - Convolution parameters stride padding English.vtt |
15.64Кб |
164 - Convolution parameters stride padding Vietnamese.vtt |
19.26Кб |
165 - The Conv2 class in PyTorch.mp4 |
113.43Мб |
165 - The Conv2 class in PyTorch English.vtt |
16.32Кб |
165 - The Conv2 class in PyTorch Vietnamese.vtt |
20.39Кб |
166 - CodeChallenge Choose the parameters.mp4 |
31.01Мб |
166 - CodeChallenge Choose the parameters English.vtt |
8.85Кб |
166 - CodeChallenge Choose the parameters Vietnamese.vtt |
11.19Кб |
167 - Transpose convolution.mp4 |
102.82Мб |
167 - Transpose convolution English.vtt |
17.25Кб |
167 - Transpose convolution Vietnamese.vtt |
21.38Кб |
168 - Maxmean pooling.mp4 |
69.37Мб |
168 - Maxmean pooling English.vtt |
23.12Кб |
168 - Maxmean pooling Vietnamese.vtt |
29.34Кб |
169 - Pooling in PyTorch.mp4 |
64.25Мб |
169 - Pooling in PyTorch English.vtt |
17.34Кб |
169 - Pooling in PyTorch Vietnamese.vtt |
21.71Кб |
16 - Vector and matrix transpose.mp4 |
26.18Мб |
16 - Vector and matrix transpose English.vtt |
8.68Кб |
16 - Vector and matrix transpose Vietnamese.vtt |
10.92Кб |
170 - To pool or to stride.mp4 |
70.79Мб |
170 - To pool or to stride English.vtt |
12.62Кб |
170 - To pool or to stride Vietnamese.vtt |
16.06Кб |
171 - Image transforms.mp4 |
192.95Мб |
171 - Image transforms English.vtt |
20.48Кб |
171 - Image transforms Vietnamese.vtt |
26.16Кб |
172 - Creating and using custom DataLoaders.mp4 |
154.12Мб |
172 - Creating and using custom DataLoaders English.vtt |
22.85Кб |
172 - Creating and using custom DataLoaders Vietnamese.vtt |
29.37Кб |
173 - The canonical CNN architecture.mp4 |
33.16Мб |
173 - The canonical CNN architecture English.vtt |
13.68Кб |
173 - The canonical CNN architecture Vietnamese.vtt |
17.01Кб |
174 - CNN to classify MNIST digits.mp4 |
217.84Мб |
174 - CNN to classify MNIST digits English.vtt |
32.79Кб |
174 - CNN to classify MNIST digits Vietnamese.vtt |
40.74Кб |
175 - CNN on shifted MNIST.mp4 |
63.47Мб |
175 - CNN on shifted MNIST English.vtt |
10.53Кб |
175 - CNN on shifted MNIST Vietnamese.vtt |
13.73Кб |
176 - Classify Gaussian blurs.mp4 |
279.72Мб |
176 - Classify Gaussian blurs English.vtt |
29.64Кб |
176 - Classify Gaussian blurs Vietnamese.vtt |
36.52Кб |
177 - Examine feature map activations.mp4 |
412.18Мб |
177 - Examine feature map activations English.vtt |
34.96Кб |
177 - Examine feature map activations Vietnamese.vtt |
44.07Кб |
178 - CodeChallenge Softcode internal parameters.mp4 |
176.05Мб |
178 - CodeChallenge Softcode internal parameters English.vtt |
21.73Кб |
178 - CodeChallenge Softcode internal parameters Vietnamese.vtt |
27.06Кб |
179 - CodeChallenge How wide the FC.mp4 |
144.65Мб |
179 - CodeChallenge How wide the FC English.vtt |
14.60Кб |
179 - CodeChallenge How wide the FC Vietnamese.vtt |
18.06Кб |
17 - OMG its the dot product.mp4 |
28.73Мб |
17 - OMG its the dot product English.vtt |
12.11Кб |
17 - OMG its the dot product Vietnamese.vtt |
14.35Кб |
180 - Do autoencoders clean Gaussians.mp4 |
206.11Мб |
180 - Do autoencoders clean Gaussians English.vtt |
21.15Кб |
180 - Do autoencoders clean Gaussians Vietnamese.vtt |
26.28Кб |
181 - CodeChallenge AEs and occluded Gaussians.mp4 |
128.09Мб |
181 - CodeChallenge AEs and occluded Gaussians English.vtt |
12.12Кб |
181 - CodeChallenge AEs and occluded Gaussians Vietnamese.vtt |
15.20Кб |
182 - CodeChallenge Custom loss functions.mp4 |
154.88Мб |
182 - CodeChallenge Custom loss functions English.vtt |
25.77Кб |
182 - CodeChallenge Custom loss functions Vietnamese.vtt |
31.62Кб |
183 - Discover the Gaussian parameters.mp4 |
136.65Мб |
183 - Discover the Gaussian parameters English.vtt |
20.21Кб |
183 - Discover the Gaussian parameters Vietnamese.vtt |
24.89Кб |
184 - The EMNIST dataset letter recognition.mp4 |
219.98Мб |
184 - The EMNIST dataset letter recognition English.vtt |
31.08Кб |
184 - The EMNIST dataset letter recognition Vietnamese.vtt |
38.59Кб |
185 - Dropout in CNNs.mp4 |
104.23Мб |
185 - Dropout in CNNs English.vtt |
12.44Кб |
185 - Dropout in CNNs Vietnamese.vtt |
15.46Кб |
186 - CodeChallenge How low can you go.mp4 |
60.23Мб |
186 - CodeChallenge How low can you go English.vtt |
8.66Кб |
186 - CodeChallenge How low can you go Vietnamese.vtt |
10.85Кб |
187 - CodeChallenge Varying number of channels.mp4 |
99.83Мб |
187 - CodeChallenge Varying number of channels English.vtt |
17.12Кб |
187 - CodeChallenge Varying number of channels Vietnamese.vtt |
21.03Кб |
188 - So many possibilities How to create a CNN.mp4 |
12.93Мб |
188 - So many possibilities How to create a CNN English.vtt |
5.68Кб |
188 - So many possibilities How to create a CNN Vietnamese.vtt |
7.10Кб |
189 - Project 1 Import and classify CIFAR10.mp4 |
53.17Мб |
189 - Project 1 Import and classify CIFAR10 English.vtt |
9.25Кб |
189 - Project 1 Import and classify CIFAR10 Vietnamese.vtt |
11.89Кб |
18 - Matrix multiplication.mp4 |
66.71Мб |
18 - Matrix multiplication English.vtt |
17.86Кб |
18 - Matrix multiplication Vietnamese.vtt |
21.74Кб |
190 - Project 1 My solution.mp4 |
130.03Мб |
190 - Project 1 My solution English.vtt |
14.98Кб |
190 - Project 1 My solution Vietnamese.vtt |
18.91Кб |
191 - Project 2 CIFARautoencoder.mp4 |
45.25Мб |
191 - Project 2 CIFARautoencoder English.vtt |
6.11Кб |
191 - Project 2 CIFARautoencoder Vietnamese.vtt |
7.40Кб |
192 - Project 3 FMNIST.mp4 |
28.84Мб |
192 - Project 3 FMNIST English.vtt |
4.55Кб |
192 - Project 3 FMNIST Vietnamese.vtt |
5.62Кб |
193 - Project 4 Psychometric functions in CNNs.mp4 |
76.46Мб |
193 - Project 4 Psychometric functions in CNNs English.vtt |
14.69Кб |
193 - Project 4 Psychometric functions in CNNs Vietnamese.vtt |
18.54Кб |
194 - Transfer learning What why and when.mp4 |
58.18Мб |
194 - Transfer learning What why and when English.vtt |
21.50Кб |
194 - Transfer learning What why and when Vietnamese.vtt |
27.01Кб |
195 - Transfer learning MNIST FMNIST.mp4 |
121.34Мб |
195 - Transfer learning MNIST FMNIST English.vtt |
12.60Кб |
195 - Transfer learning MNIST FMNIST Vietnamese.vtt |
15.55Кб |
196 - CodeChallenge letters to numbers.mp4 |
131.86Мб |
196 - CodeChallenge letters to numbers English.vtt |
18.61Кб |
196 - CodeChallenge letters to numbers Vietnamese.vtt |
23.30Кб |
197 - Famous CNN architectures.mp4 |
32.95Мб |
197 - Famous CNN architectures English.vtt |
7.63Кб |
197 - Famous CNN architectures Vietnamese.vtt |
9.07Кб |
198 - Transfer learning with ResNet18.mp4 |
201.17Мб |
198 - Transfer learning with ResNet18 English.vtt |
21.15Кб |
198 - Transfer learning with ResNet18 Vietnamese.vtt |
26.50Кб |
199 - CodeChallenge VGG16.mp4 |
20.28Мб |
199 - CodeChallenge VGG16 English.vtt |
4.43Кб |
199 - CodeChallenge VGG16 Vietnamese.vtt |
5.34Кб |
19 - Softmax.mp4 |
101.37Мб |
19 - Softmax English.vtt |
24.02Кб |
19 - Softmax Vietnamese.vtt |
29.23Кб |
1 - How to learn from this course.mp4 |
54.97Мб |
1 - How to learn from this course English.vtt |
11.34Кб |
1 - How to learn from this course Vietnamese.vtt |
13.97Кб |
200 - Pretraining with autoencoders.mp4 |
208.64Мб |
200 - Pretraining with autoencoders English.vtt |
24.91Кб |
200 - Pretraining with autoencoders Vietnamese.vtt |
32.53Кб |
201 - CIFAR10 with autoencoderpretrained model.mp4 |
166.90Мб |
201 - CIFAR10 with autoencoderpretrained model English.vtt |
22.42Кб |
201 - CIFAR10 with autoencoderpretrained model Vietnamese.vtt |
28.33Кб |
202 - What is style transfer and how does it work.mp4 |
28.14Мб |
202 - What is style transfer and how does it work English.vtt |
5.52Кб |
202 - What is style transfer and how does it work Vietnamese.vtt |
7.00Кб |
203 - The Gram matrix feature activation covariance.mp4 |
66.49Мб |
203 - The Gram matrix feature activation covariance English.vtt |
14.63Кб |
203 - The Gram matrix feature activation covariance Vietnamese.vtt |
18.10Кб |
204 - The style transfer algorithm.mp4 |
40.70Мб |
204 - The style transfer algorithm English.vtt |
13.10Кб |
204 - The style transfer algorithm Vietnamese.vtt |
16.46Кб |
205 - Transferring the screaming bathtub.mp4 |
344.76Мб |
205 - Transferring the screaming bathtub English.vtt |
27.78Кб |
205 - Transferring the screaming bathtub Vietnamese.vtt |
34.69Кб |
206 - CodeChallenge Style transfer with AlexNet.mp4 |
81.43Мб |
206 - CodeChallenge Style transfer with AlexNet English.vtt |
9.11Кб |
206 - CodeChallenge Style transfer with AlexNet Vietnamese.vtt |
11.20Кб |
207 - GAN What why and how.mp4 |
57.48Мб |
207 - GAN What why and how English.vtt |
20.49Кб |
207 - GAN What why and how Vietnamese.vtt |
26.24Кб |
208 - Linear GAN with MNIST.mp4 |
188.18Мб |
208 - Linear GAN with MNIST English.vtt |
27.51Кб |
208 - Linear GAN with MNIST Vietnamese.vtt |
34.79Кб |
209 - CodeChallenge Linear GAN with FMNIST.mp4 |
86.47Мб |
209 - CodeChallenge Linear GAN with FMNIST English.vtt |
12.10Кб |
209 - CodeChallenge Linear GAN with FMNIST Vietnamese.vtt |
15.40Кб |
20 - Logarithms.mp4 |
29.20Мб |
20 - Logarithms English.vtt |
9.98Кб |
20 - Logarithms Vietnamese.vtt |
12.01Кб |
210 - CNN GAN with Gaussians.mp4 |
214.18Мб |
210 - CNN GAN with Gaussians English.vtt |
19.08Кб |
210 - CNN GAN with Gaussians Vietnamese.vtt |
23.76Кб |
211 - CodeChallenge Gaussians with fewer layers.mp4 |
84.33Мб |
211 - CodeChallenge Gaussians with fewer layers English.vtt |
7.77Кб |
211 - CodeChallenge Gaussians with fewer layers Vietnamese.vtt |
9.60Кб |
212 - CNN GAN with FMNIST.mp4 |
74.70Мб |
212 - CNN GAN with FMNIST English.vtt |
8.02Кб |
212 - CNN GAN with FMNIST Vietnamese.vtt |
9.99Кб |
213 - CodeChallenge CNN GAN with CIFAR.mp4 |
69.56Мб |
213 - CodeChallenge CNN GAN with CIFAR English.vtt |
10.14Кб |
213 - CodeChallenge CNN GAN with CIFAR Vietnamese.vtt |
12.88Кб |
214 - Leveraging sequences in deep learning.mp4 |
91.62Мб |
214 - Leveraging sequences in deep learning English.vtt |
16.32Кб |
214 - Leveraging sequences in deep learning Vietnamese.vtt |
20.46Кб |
215 - How RNNs work.mp4 |
45.65Мб |
215 - How RNNs work English.vtt |
18.87Кб |
215 - How RNNs work Vietnamese.vtt |
23.64Кб |
216 - The RNN class in PyTorch.mp4 |
134.69Мб |
216 - The RNN class in PyTorch English.vtt |
23.25Кб |
216 - The RNN class in PyTorch Vietnamese.vtt |
29.01Кб |
217 - Predicting alternating sequences.mp4 |
247.11Мб |
217 - Predicting alternating sequences English.vtt |
24.90Кб |
217 - Predicting alternating sequences Vietnamese.vtt |
32.07Кб |
218 - CodeChallenge sine wave extrapolation.mp4 |
259.88Мб |
218 - CodeChallenge sine wave extrapolation English.vtt |
33.55Кб |
218 - CodeChallenge sine wave extrapolation Vietnamese.vtt |
41.84Кб |
219 - More on RNNs Hidden states embeddings.mp4 |
94.25Мб |
219 - More on RNNs Hidden states embeddings English.vtt |
19.88Кб |
219 - More on RNNs Hidden states embeddings Vietnamese.vtt |
24.52Кб |
21 - Entropy and crossentropy.mp4 |
85.39Мб |
21 - Entropy and crossentropy English.vtt |
21.92Кб |
21 - Entropy and crossentropy Vietnamese.vtt |
27.01Кб |
220 - GRU and LSTM.mp4 |
137.50Мб |
220 - GRU and LSTM English.vtt |
28.86Кб |
220 - GRU and LSTM Vietnamese.vtt |
35.58Кб |
221 - The LSTM and GRU classes.mp4 |
132.45Мб |
221 - The LSTM and GRU classes English.vtt |
17.15Кб |
221 - The LSTM and GRU classes Vietnamese.vtt |
21.26Кб |
222 - Lorem ipsum.mp4 |
215.70Мб |
222 - Lorem ipsum English.vtt |
32.20Кб |
222 - Lorem ipsum Vietnamese.vtt |
39.77Кб |
223 - Will AI save us or destroy us.mp4 |
37.16Мб |
223 - Will AI save us or destroy us English.vtt |
12.48Кб |
223 - Will AI save us or destroy us Vietnamese.vtt |
15.33Кб |
224 - Example case studies.mp4 |
62.37Мб |
224 - Example case studies English.vtt |
8.01Кб |
224 - Example case studies Vietnamese.vtt |
10.17Кб |
225 - Some other possible ethical scenarios.mp4 |
84.33Мб |
225 - Some other possible ethical scenarios English.vtt |
13.25Кб |
225 - Some other possible ethical scenarios Vietnamese.vtt |
17.13Кб |
226 - Will deep learning take our jobs.mp4 |
53.00Мб |
226 - Will deep learning take our jobs English.vtt |
12.94Кб |
226 - Will deep learning take our jobs Vietnamese.vtt |
16.48Кб |
227 - Accountability and making ethical AI.mp4 |
88.45Мб |
227 - Accountability and making ethical AI English.vtt |
14.53Кб |
227 - Accountability and making ethical AI Vietnamese.vtt |
18.87Кб |
228 - How to learn topic X in deep learning.mp4 |
25.30Мб |
228 - How to learn topic X in deep learning English.vtt |
10.75Кб |
228 - How to learn topic X in deep learning Vietnamese.vtt |
13.24Кб |
229 - How to read academic DL papers.mp4 |
222.01Мб |
229 - How to read academic DL papers English.vtt |
21.91Кб |
229 - How to read academic DL papers Vietnamese.vtt |
28.12Кб |
22 - Minmax and argminargmax.mp4 |
68.97Мб |
22 - Minmax and argminargmax English.vtt |
15.75Кб |
22 - Minmax and argminargmax Vietnamese.vtt |
19.95Кб |
230 - How to learn from the Python tutorial.mp4 |
17.53Мб |
230 - How to learn from the Python tutorial English.vtt |
4.28Кб |
230 - How to learn from the Python tutorial Vietnamese.vtt |
5.17Кб |
231 - Variables.mp4 |
57.77Мб |
231 - Variables English.vtt |
23.34Кб |
231 - Variables Vietnamese.vtt |
29.34Кб |
232 - Math and printing.mp4 |
51.13Мб |
232 - Math and printing English.vtt |
22.90Кб |
232 - Math and printing Vietnamese.vtt |
28.43Кб |
233 - Lists 1 of 2.mp4 |
35.09Мб |
233 - Lists 1 of 2 English.vtt |
17.46Кб |
233 - Lists 1 of 2 Vietnamese.vtt |
22.00Кб |
234 - Lists 2 of 2.mp4 |
33.47Мб |
234 - Lists 2 of 2 English.vtt |
12.52Кб |
234 - Lists 2 of 2 Vietnamese.vtt |
15.93Кб |
235 - Tuples.mp4 |
22.17Мб |
235 - Tuples English.vtt |
10.30Кб |
235 - Tuples Vietnamese.vtt |
13.15Кб |
236 - Booleans.mp4 |
64.57Мб |
236 - Booleans English.vtt |
23.59Кб |
236 - Booleans Vietnamese.vtt |
29.35Кб |
237 - Dictionaries.mp4 |
33.00Мб |
237 - Dictionaries English.vtt |
14.55Кб |
237 - Dictionaries Vietnamese.vtt |
18.71Кб |
238 - Indexing.mp4 |
32.92Мб |
238 - Indexing English.vtt |
15.59Кб |
238 - Indexing Vietnamese.vtt |
20.38Кб |
239 - Slicing.mp4 |
39.95Мб |
239 - Slicing English.vtt |
15.41Кб |
239 - Slicing Vietnamese.vtt |
19.96Кб |
23 - Mean and variance.mp4 |
47.05Мб |
23 - Mean and variance English.vtt |
19.54Кб |
23 - Mean and variance Vietnamese.vtt |
24.70Кб |
240 - Inputs and outputs.mp4 |
19.14Мб |
240 - Inputs and outputs English.vtt |
9.18Кб |
240 - Inputs and outputs Vietnamese.vtt |
11.68Кб |
241 - Python libraries numpy.mp4 |
39.84Мб |
241 - Python libraries numpy English.vtt |
17.30Кб |
241 - Python libraries numpy Vietnamese.vtt |
21.94Кб |
242 - Python libraries pandas.mp4 |
91.23Мб |
242 - Python libraries pandas English.vtt |
17.45Кб |
242 - Python libraries pandas Vietnamese.vtt |
21.88Кб |
243 - Getting help on functions.mp4 |
37.33Мб |
243 - Getting help on functions English.vtt |
9.63Кб |
243 - Getting help on functions Vietnamese.vtt |
12.17Кб |
244 - Creating functions.mp4 |
57.33Мб |
244 - Creating functions English.vtt |
26.51Кб |
244 - Creating functions Vietnamese.vtt |
33.24Кб |
245 - Global and local variable scopes.mp4 |
54.83Мб |
245 - Global and local variable scopes English.vtt |
16.95Кб |
245 - Global and local variable scopes Vietnamese.vtt |
20.80Кб |
246 - Copies and referents of variables.mp4 |
15.07Мб |
246 - Copies and referents of variables English.vtt |
6.35Кб |
246 - Copies and referents of variables Vietnamese.vtt |
8.19Кб |
247 - Classes and objectoriented programming.mp4 |
88.49Мб |
247 - Classes and objectoriented programming English.vtt |
22.98Кб |
247 - Classes and objectoriented programming Vietnamese.vtt |
29.11Кб |
248 - Ifelse statements.mp4 |
43.21Мб |
248 - Ifelse statements English.vtt |
18.56Кб |
248 - Ifelse statements Vietnamese.vtt |
23.08Кб |
249 - Ifelse statements part 2.mp4 |
76.31Мб |
249 - Ifelse statements part 2 English.vtt |
19.71Кб |
249 - Ifelse statements part 2 Vietnamese.vtt |
24.78Кб |
24 - Random sampling and sampling variability.mp4 |
63.20Мб |
24 - Random sampling and sampling variability English.vtt |
14.18Кб |
24 - Random sampling and sampling variability Vietnamese.vtt |
17.87Кб |
250 - For loops.mp4 |
64.36Мб |
250 - For loops English.vtt |
21.74Кб |
250 - For loops Vietnamese.vtt |
26.93Кб |
251 - Enumerate and zip.mp4 |
58.59Мб |
251 - Enumerate and zip English.vtt |
13.81Кб |
251 - Enumerate and zip Vietnamese.vtt |
17.78Кб |
252 - Continue.mp4 |
20.68Мб |
252 - Continue English.vtt |
8.76Кб |
252 - Continue Vietnamese.vtt |
11.00Кб |
253 - Initializing variables.mp4 |
67.39Мб |
253 - Initializing variables English.vtt |
22.09Кб |
253 - Initializing variables Vietnamese.vtt |
28.66Кб |
254 - Singleline loops list comprehension.mp4 |
61.91Мб |
254 - Singleline loops list comprehension English.vtt |
18.72Кб |
254 - Singleline loops list comprehension Vietnamese.vtt |
23.68Кб |
255 - while loops.mp4 |
68.40Мб |
255 - while loops English.vtt |
24.05Кб |
255 - while loops Vietnamese.vtt |
29.67Кб |
256 - Broadcasting in numpy.mp4 |
52.46Мб |
256 - Broadcasting in numpy English.vtt |
18.35Кб |
256 - Broadcasting in numpy Vietnamese.vtt |
22.99Кб |
257 - Function error checking and handling.mp4 |
111.63Мб |
257 - Function error checking and handling English.vtt |
21.84Кб |
257 - Function error checking and handling Vietnamese.vtt |
27.51Кб |
258 - Printing and string interpolation.mp4 |
69.01Мб |
258 - Printing and string interpolation English.vtt |
20.99Кб |
258 - Printing and string interpolation Vietnamese.vtt |
26.36Кб |
259 - Plotting dots and lines.mp4 |
40.07Мб |
259 - Plotting dots and lines English.vtt |
15.24Кб |
259 - Plotting dots and lines Vietnamese.vtt |
19.80Кб |
25 - Reproducible randomness via seeding.mp4 |
75.55Мб |
25 - Reproducible randomness via seeding English.vtt |
10.23Кб |
25 - Reproducible randomness via seeding Vietnamese.vtt |
13.07Кб |
260 - Subplot geometry.mp4 |
70.36Мб |
260 - Subplot geometry English.vtt |
19.88Кб |
260 - Subplot geometry Vietnamese.vtt |
25.30Кб |
261 - Making the graphs look nicer.mp4 |
87.10Мб |
261 - Making the graphs look nicer English.vtt |
23.25Кб |
261 - Making the graphs look nicer Vietnamese.vtt |
29.22Кб |
262 - Seaborn.mp4 |
50.90Мб |
262 - Seaborn English.vtt |
13.67Кб |
262 - Seaborn Vietnamese.vtt |
17.64Кб |
263 - Images.mp4 |
104.10Мб |
263 - Images English.vtt |
22.06Кб |
263 - Images Vietnamese.vtt |
27.48Кб |
264 - Export plots in low and high resolution.mp4 |
56.25Мб |
264 - Export plots in low and high resolution English.vtt |
9.83Кб |
264 - Export plots in low and high resolution Vietnamese.vtt |
12.57Кб |
265 - Bonus content.html |
3.83Кб |
26 - The ttest.mp4 |
88.25Мб |
26 - The ttest English.vtt |
16.88Кб |
26 - The ttest Vietnamese.vtt |
21.31Кб |
27 - Derivatives intuition and polynomials.mp4 |
46.22Мб |
27 - Derivatives intuition and polynomials English.vtt |
21.00Кб |
27 - Derivatives intuition and polynomials Vietnamese.vtt |
25.00Кб |
28 - Derivatives find minima.mp4 |
26.02Мб |
28 - Derivatives find minima English.vtt |
10.54Кб |
28 - Derivatives find minima Vietnamese.vtt |
12.92Кб |
29 - Derivatives product and chain rules.mp4 |
37.03Мб |
29 - Derivatives product and chain rules English.vtt |
11.80Кб |
29 - Derivatives product and chain rules Vietnamese.vtt |
14.20Кб |
2 - Using Udemy like a pro.mp4 |
38.09Мб |
2 - Using Udemy like a pro English.vtt |
10.64Кб |
2 - Using Udemy like a pro Vietnamese.vtt |
13.72Кб |
30 - Overview of gradient descent.mp4 |
54.34Мб |
30 - Overview of gradient descent English.vtt |
18.04Кб |
30 - Overview of gradient descent Vietnamese.vtt |
22.28Кб |
31 - What about local minima.mp4 |
38.09Мб |
31 - What about local minima English.vtt |
14.92Кб |
31 - What about local minima Vietnamese.vtt |
19.02Кб |
32 - Gradient descent in 1D.mp4 |
131.39Мб |
32 - Gradient descent in 1D English.vtt |
21.23Кб |
32 - Gradient descent in 1D Vietnamese.vtt |
26.70Кб |
33 - CodeChallenge unfortunate starting value.mp4 |
85.91Мб |
33 - CodeChallenge unfortunate starting value English.vtt |
13.76Кб |
33 - CodeChallenge unfortunate starting value Vietnamese.vtt |
17.24Кб |
34 - Gradient descent in 2D.mp4 |
96.38Мб |
34 - Gradient descent in 2D English.vtt |
18.66Кб |
34 - Gradient descent in 2D Vietnamese.vtt |
22.56Кб |
35 - CodeChallenge 2D gradient ascent.mp4 |
43.38Мб |
35 - CodeChallenge 2D gradient ascent English.vtt |
6.54Кб |
35 - CodeChallenge 2D gradient ascent Vietnamese.vtt |
8.23Кб |
36 - Parametric experiments on gd.mp4 |
151.40Мб |
36 - Parametric experiments on gd English.vtt |
23.56Кб |
36 - Parametric experiments on gd Vietnamese.vtt |
29.85Кб |
37 - CodeChallenge fixed vs dynamic learning rate.mp4 |
126.18Мб |
37 - CodeChallenge fixed vs dynamic learning rate English.vtt |
20.21Кб |
37 - CodeChallenge fixed vs dynamic learning rate Vietnamese.vtt |
25.18Кб |
38 - Vanishing and exploding gradients.mp4 |
31.70Мб |
38 - Vanishing and exploding gradients English.vtt |
7.85Кб |
38 - Vanishing and exploding gradients Vietnamese.vtt |
10.21Кб |
39 - Tangent Notebook revision history.mp4 |
25.15Мб |
39 - Tangent Notebook revision history English.vtt |
2.41Кб |
39 - Tangent Notebook revision history Vietnamese.vtt |
3.07Кб |
3 - Code on my github site.txt |
61б |
3 - Downloading and using the code.mp4 |
52.56Мб |
3 - Downloading and using the code English.vtt |
8.17Кб |
3 - Downloading and using the code Vietnamese.vtt |
9.64Кб |
3 - DUDL-PythonCode.zip |
1.34Мб |
40 - The perceptron and ANN architecture.mp4 |
50.73Мб |
40 - The perceptron and ANN architecture English.vtt |
24.18Кб |
40 - The perceptron and ANN architecture Vietnamese.vtt |
30.54Кб |
41 - A geometric view of ANNs.mp4 |
42.91Мб |
41 - A geometric view of ANNs English.vtt |
16.83Кб |
41 - A geometric view of ANNs Vietnamese.vtt |
20.98Кб |
42 - ANN math part 1 forward prop.mp4 |
43.94Мб |
42 - ANN math part 1 forward prop English.vtt |
19.28Кб |
42 - ANN math part 1 forward prop Vietnamese.vtt |
23.92Кб |
43 - ANN math part 2 errors loss cost.mp4 |
52.20Мб |
43 - ANN math part 2 errors loss cost English.vtt |
12.13Кб |
43 - ANN math part 2 errors loss cost Vietnamese.vtt |
14.81Кб |
44 - ANN math part 3 backprop.mp4 |
37.62Мб |
44 - ANN math part 3 backprop English.vtt |
13.36Кб |
44 - ANN math part 3 backprop Vietnamese.vtt |
16.35Кб |
45 - ANN for regression.mp4 |
105.27Мб |
45 - ANN for regression English.vtt |
30.97Кб |
45 - ANN for regression Vietnamese.vtt |
39.46Кб |
46 - CodeChallenge manipulate regression slopes.mp4 |
150.19Мб |
46 - CodeChallenge manipulate regression slopes English.vtt |
24.46Кб |
46 - CodeChallenge manipulate regression slopes Vietnamese.vtt |
30.57Кб |
47 - ANN for classifying qwerties.mp4 |
196.24Мб |
47 - ANN for classifying qwerties English.vtt |
29.72Кб |
47 - ANN for classifying qwerties Vietnamese.vtt |
37.47Кб |
48 - Learning rates comparison.mp4 |
168.64Мб |
48 - Learning rates comparison English.vtt |
31.13Кб |
48 - Learning rates comparison Vietnamese.vtt |
39.38Кб |
49 - Multilayer ANN.mp4 |
160.21Мб |
49 - Multilayer ANN English.vtt |
25.33Кб |
49 - Multilayer ANN Vietnamese.vtt |
30.89Кб |
4 - My policy on codesharing.mp4 |
5.63Мб |
4 - My policy on codesharing English.vtt |
2.20Кб |
4 - My policy on codesharing Vietnamese.vtt |
2.73Кб |
50 - Linear solutions to linear problems.mp4 |
54.56Мб |
50 - Linear solutions to linear problems English.vtt |
10.62Кб |
50 - Linear solutions to linear problems Vietnamese.vtt |
13.69Кб |
51 - Why multilayer linear models dont exist.mp4 |
27.20Мб |
51 - Why multilayer linear models dont exist English.vtt |
8.01Кб |
51 - Why multilayer linear models dont exist Vietnamese.vtt |
9.93Кб |
52 - Multioutput ANN iris dataset.mp4 |
215.05Мб |
52 - Multioutput ANN iris dataset English.vtt |
34.55Кб |
52 - Multioutput ANN iris dataset Vietnamese.vtt |
42.64Кб |
53 - CodeChallenge more qwerties.mp4 |
127.13Мб |
53 - CodeChallenge more qwerties English.vtt |
15.41Кб |
53 - CodeChallenge more qwerties Vietnamese.vtt |
18.72Кб |
54 - Comparing the number of hidden units.mp4 |
49.40Мб |
54 - Comparing the number of hidden units English.vtt |
12.64Кб |
54 - Comparing the number of hidden units Vietnamese.vtt |
15.54Кб |
55 - Depth vs breadth number of parameters.mp4 |
149.11Мб |
55 - Depth vs breadth number of parameters English.vtt |
22.16Кб |
55 - Depth vs breadth number of parameters Vietnamese.vtt |
27.34Кб |
56 - Defining models using sequential vs class.mp4 |
97.84Мб |
56 - Defining models using sequential vs class English.vtt |
16.59Кб |
56 - Defining models using sequential vs class Vietnamese.vtt |
20.79Кб |
57 - Model depth vs breadth.mp4 |
177.40Мб |
57 - Model depth vs breadth English.vtt |
26.63Кб |
57 - Model depth vs breadth Vietnamese.vtt |
32.86Кб |
58 - CodeChallenge convert sequential to class.mp4 |
57.09Мб |
58 - CodeChallenge convert sequential to class English.vtt |
8.45Кб |
58 - CodeChallenge convert sequential to class Vietnamese.vtt |
10.48Кб |
59 - Diversity of ANN visual representations.html |
517б |
5 - What is an artificial neural network.mp4 |
40.10Мб |
5 - What is an artificial neural network English.vtt |
18.58Кб |
5 - What is an artificial neural network Vietnamese.vtt |
23.27Кб |
60 - Reflection Are DL models understandable yet.mp4 |
76.81Мб |
60 - Reflection Are DL models understandable yet English.vtt |
10.89Кб |
60 - Reflection Are DL models understandable yet Vietnamese.vtt |
13.88Кб |
61 - What is overfitting and is it as bad as they say.mp4 |
76.96Мб |
61 - What is overfitting and is it as bad as they say English.vtt |
15.93Кб |
61 - What is overfitting and is it as bad as they say Vietnamese.vtt |
20.67Кб |
62 - Crossvalidation.mp4 |
68.26Мб |
62 - Crossvalidation English.vtt |
21.66Кб |
62 - Crossvalidation Vietnamese.vtt |
27.94Кб |
63 - Generalization.mp4 |
18.95Мб |
63 - Generalization English.vtt |
7.72Кб |
63 - Generalization Vietnamese.vtt |
9.78Кб |
64 - Crossvalidation manual separation.mp4 |
108.70Мб |
64 - Crossvalidation manual separation English.vtt |
16.07Кб |
64 - Crossvalidation manual separation Vietnamese.vtt |
20.67Кб |
65 - Crossvalidation scikitlearn.mp4 |
159.59Мб |
65 - Crossvalidation scikitlearn English.vtt |
26.26Кб |
65 - Crossvalidation scikitlearn Vietnamese.vtt |
34.06Кб |
66 - Crossvalidation DataLoader.mp4 |
188.55Мб |
66 - Crossvalidation DataLoader English.vtt |
24.71Кб |
66 - Crossvalidation DataLoader Vietnamese.vtt |
32.71Кб |
67 - Splitting data into train devset test.mp4 |
86.95Мб |
67 - Splitting data into train devset test English.vtt |
12.00Кб |
67 - Splitting data into train devset test Vietnamese.vtt |
15.19Кб |
68 - Crossvalidation on regression.mp4 |
41.13Мб |
68 - Crossvalidation on regression English.vtt |
10.37Кб |
68 - Crossvalidation on regression Vietnamese.vtt |
13.14Кб |
69 - Regularization Concept and methods.mp4 |
88.60Мб |
69 - Regularization Concept and methods English.vtt |
16.63Кб |
69 - Regularization Concept and methods Vietnamese.vtt |
20.89Кб |
6 - How models learn.mp4 |
51.11Мб |
6 - How models learn English.vtt |
16.29Кб |
6 - How models learn Vietnamese.vtt |
20.63Кб |
70 - train and eval modes.mp4 |
22.80Мб |
70 - train and eval modes English.vtt |
8.91Кб |
70 - train and eval modes Vietnamese.vtt |
10.97Кб |
71 - Dropout regularization.mp4 |
151.92Мб |
71 - Dropout regularization English.vtt |
27.35Кб |
71 - Dropout regularization Vietnamese.vtt |
35.28Кб |
72 - Dropout regularization in practice.mp4 |
201.41Мб |
72 - Dropout regularization in practice English.vtt |
28.83Кб |
72 - Dropout regularization in practice Vietnamese.vtt |
36.31Кб |
73 - Dropout example 2.mp4 |
60.78Мб |
73 - Dropout example 2 English.vtt |
7.97Кб |
73 - Dropout example 2 Vietnamese.vtt |
9.94Кб |
74 - Weight regularization L1L2 math.mp4 |
65.46Мб |
74 - Weight regularization L1L2 math English.vtt |
23.45Кб |
74 - Weight regularization L1L2 math Vietnamese.vtt |
29.01Кб |
75 - L2 regularization in practice.mp4 |
123.28Мб |
75 - L2 regularization in practice English.vtt |
16.45Кб |
75 - L2 regularization in practice Vietnamese.vtt |
20.82Кб |
76 - L1 regularization in practice.mp4 |
110.09Мб |
76 - L1 regularization in practice English.vtt |
15.11Кб |
76 - L1 regularization in practice Vietnamese.vtt |
19.13Кб |
77 - Training in minibatches.mp4 |
35.41Мб |
77 - Training in minibatches English.vtt |
14.59Кб |
77 - Training in minibatches Vietnamese.vtt |
18.51Кб |
78 - Batch training in action.mp4 |
120.24Мб |
78 - Batch training in action English.vtt |
13.54Кб |
78 - Batch training in action Vietnamese.vtt |
17.03Кб |
79 - The importance of equal batch sizes.mp4 |
82.14Мб |
79 - The importance of equal batch sizes English.vtt |
8.24Кб |
79 - The importance of equal batch sizes Vietnamese.vtt |
10.40Кб |
7 - The role of DL in science and knowledge.mp4 |
127.10Мб |
7 - The role of DL in science and knowledge English.vtt |
20.29Кб |
7 - The role of DL in science and knowledge Vietnamese.vtt |
25.90Кб |
80 - CodeChallenge Effects of minibatch size.mp4 |
130.36Мб |
80 - CodeChallenge Effects of minibatch size English.vtt |
15.68Кб |
80 - CodeChallenge Effects of minibatch size Vietnamese.vtt |
19.75Кб |
81 - What are metaparameters.mp4 |
18.66Мб |
81 - What are metaparameters English.vtt |
6.47Кб |
81 - What are metaparameters Vietnamese.vtt |
7.95Кб |
82 - The wine quality dataset.mp4 |
194.40Мб |
82 - The wine quality dataset English.vtt |
22.28Кб |
82 - The wine quality dataset Vietnamese.vtt |
28.19Кб |
83 - CodeChallenge Minibatch size in the wine dataset.mp4 |
160.37Мб |
83 - CodeChallenge Minibatch size in the wine dataset English.vtt |
20.03Кб |
83 - CodeChallenge Minibatch size in the wine dataset Vietnamese.vtt |
25.39Кб |
84 - Data normalization.mp4 |
62.45Мб |
84 - Data normalization English.vtt |
17.07Кб |
84 - Data normalization Vietnamese.vtt |
21.57Кб |
85 - The importance of data normalization.mp4 |
72.74Мб |
85 - The importance of data normalization English.vtt |
12.02Кб |
85 - The importance of data normalization Vietnamese.vtt |
15.01Кб |
86 - Batch normalization.mp4 |
54.45Мб |
86 - Batch normalization English.vtt |
16.35Кб |
86 - Batch normalization Vietnamese.vtt |
20.47Кб |
87 - Batch normalization in practice.mp4 |
70.03Мб |
87 - Batch normalization in practice English.vtt |
9.61Кб |
87 - Batch normalization in practice Vietnamese.vtt |
12.13Кб |
88 - CodeChallenge Batchnormalize the qwerties.mp4 |
64.88Мб |
88 - CodeChallenge Batchnormalize the qwerties English.vtt |
6.52Кб |
88 - CodeChallenge Batchnormalize the qwerties Vietnamese.vtt |
8.24Кб |
89 - Activation functions.mp4 |
121.06Мб |
89 - Activation functions English.vtt |
23.00Кб |
89 - Activation functions Vietnamese.vtt |
28.24Кб |
8 - Running experiments to understand DL.mp4 |
74.84Мб |
8 - Running experiments to understand DL English.vtt |
16.76Кб |
8 - Running experiments to understand DL Vietnamese.vtt |
21.04Кб |
90 - Activation functions in PyTorch.mp4 |
101.28Мб |
90 - Activation functions in PyTorch English.vtt |
14.80Кб |
90 - Activation functions in PyTorch Vietnamese.vtt |
18.54Кб |
91 - Activation functions comparison.mp4 |
112.74Мб |
91 - Activation functions comparison English.vtt |
11.79Кб |
91 - Activation functions comparison Vietnamese.vtt |
14.88Кб |
92 - CodeChallenge Compare relu variants.mp4 |
63.97Мб |
92 - CodeChallenge Compare relu variants English.vtt |
9.82Кб |
92 - CodeChallenge Compare relu variants Vietnamese.vtt |
12.24Кб |
93 - CodeChallenge Predict sugar.mp4 |
134.25Мб |
93 - CodeChallenge Predict sugar English.vtt |
21.64Кб |
93 - CodeChallenge Predict sugar Vietnamese.vtt |
27.71Кб |
94 - Loss functions.mp4 |
96.20Мб |
94 - Loss functions English.vtt |
21.12Кб |
94 - Loss functions Vietnamese.vtt |
25.56Кб |
95 - Loss functions in PyTorch.mp4 |
154.73Мб |
95 - Loss functions in PyTorch English.vtt |
23.15Кб |
95 - Loss functions in PyTorch Vietnamese.vtt |
28.93Кб |
96 - More practice with multioutput ANNs.mp4 |
109.96Мб |
96 - More practice with multioutput ANNs English.vtt |
17.60Кб |
96 - More practice with multioutput ANNs Vietnamese.vtt |
21.86Кб |
97 - Optimizers minibatch momentum.mp4 |
59.43Мб |
97 - Optimizers minibatch momentum English.vtt |
23.78Кб |
97 - Optimizers minibatch momentum Vietnamese.vtt |
30.52Кб |
98 - SGD with momentum.mp4 |
62.10Мб |
98 - SGD with momentum English.vtt |
9.97Кб |
98 - SGD with momentum Vietnamese.vtt |
12.92Кб |
99 - Optimizers RMSprop Adam.mp4 |
52.52Мб |
99 - Optimizers RMSprop Adam English.vtt |
19.10Кб |
99 - Optimizers RMSprop Adam Vietnamese.vtt |
24.11Кб |
9 - Are artificial neurons like biological neurons.mp4 |
85.20Мб |
9 - Are artificial neurons like biological neurons English.vtt |
20.98Кб |
9 - Are artificial neurons like biological neurons Vietnamese.vtt |
27.44Кб |