Общая информация
Название College Level Neural Nets [I] - Basic Nets Math & Practice!
Тип
Размер 4.39Гб
Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[TGx]Downloaded from torrentgalaxy.to .txt 585б
1. Class Imbalance - Why Is Accuracy Not Always The Best Metric .mp4 44.30Мб
1. Class Imbalance - Why Is Accuracy Not Always The Best Metric .srt 9.52Кб
1. Derivation Of Back Propagation - Part 1.mp4 51.12Мб
1. Derivation Of Back Propagation - Part 1.srt 7.98Кб
1. Get My Other Courses !.html 1.88Кб
1. Gradient Descent With Momentum - Part 1.mp4 45.78Мб
1. Gradient Descent With Momentum - Part 1.srt 11.93Кб
1. Introduction To Batch Normalization - Part 1.mp4 61.82Мб
1. Introduction To Batch Normalization - Part 1.srt 15.08Кб
1. Introduction To Multi-Layer Perceptrons.mp4 97.61Мб
1. Introduction To Multi-Layer Perceptrons.srt 18.29Кб
1. Introduction To The Classification Problem.mp4 38.31Мб
1. Introduction To The Classification Problem.srt 8.56Кб
1. Promo Video.mp4 33.92Мб
1. Promo Video.srt 1.99Кб
1. Regression, Overfitting, And Underfitting.mp4 76.96Мб
1. Regression, Overfitting, And Underfitting.srt 21.92Кб
1. Source Of Those Lectures.html 256б
1. The Error Function.mp4 61.42Мб
1. The Error Function.srt 11.92Кб
1. The Perceptron Learning Rule - Part 1.mp4 22.47Мб
1. The Perceptron Learning Rule - Part 1.srt 6.69Кб
1. The Sigmoid And Bernoulli Distribution.mp4 45.10Мб
1. The Sigmoid And Bernoulli Distribution.srt 7.93Кб
10. Changing Activation Functions - Tanh - Relu - LeakyRelu.mp4 83.41Мб
10. Changing Activation Functions - Tanh - Relu - LeakyRelu.srt 18.78Кб
10. Types Of Machine Learning.mp4 54.94Мб
10. Types Of Machine Learning.srt 11.91Кб
11. Solved Example (I) Single Layer Perceptron Designed Graphically.mp4 84.11Мб
11. Solved Example (I) Single Layer Perceptron Designed Graphically.srt 15.22Кб
2.1 WrittenNotes.rar 13.15Мб
2. A Simple Glimpse Of Overfitting.mp4 26.15Мб
2. A Simple Glimpse Of Overfitting.srt 5.88Кб
2. Derivation Of Back Propagation - Part 2.mp4 117.32Мб
2. Derivation Of Back Propagation - Part 2.srt 14.68Кб
2. Gradient Descent With Momentum - Part 2.mp4 59.47Мб
2. Gradient Descent With Momentum - Part 2.srt 15.97Кб
2. Introduction To Batch Normalization - Part 2.mp4 36.34Мб
2. Introduction To Batch Normalization - Part 2.srt 8.01Кб
2. Introduction To Machine Learning.mp4 36.62Мб
2. Introduction To Machine Learning.srt 10.90Кб
2. Introduction To Reglarization.mp4 69.84Мб
2. Introduction To Reglarization.srt 12.04Кб
2. Maximum Likelihood Estimation - Quick Overview.mp4 47.21Мб
2. Maximum Likelihood Estimation - Quick Overview.srt 12.94Кб
2. Precision - Recall , And F1 Score.mp4 38.81Мб
2. Precision - Recall , And F1 Score.srt 7.65Кб
2. Solved Example (II) MLP Design Graphically.mp4 111.76Мб
2. Solved Example (II) MLP Design Graphically.srt 16.54Кб
2. The Cross Entropy Cost Function - Derivation.mp4 73.42Мб
2. The Cross Entropy Cost Function - Derivation.srt 16.39Кб
2. The Perceptron Learning Rule - Part 2.mp4 53.44Мб
2. The Perceptron Learning Rule - Part 2.srt 13.14Кб
2. The Sigmoid Activation Function Again.mp4 53.77Мб
2. The Sigmoid Activation Function Again.srt 10.42Кб
3. Adagrad And RMSProb.mp4 61.16Мб
3. Adagrad And RMSProb.srt 14.44Кб
3. Derivation Of Back Propagation - Part 3.mp4 127.44Мб
3. Derivation Of Back Propagation - Part 3.srt 16.91Кб
3. Deriving The Gradient Descent Algorithm.mp4 47.76Мб
3. Deriving The Gradient Descent Algorithm.srt 11.15Кб
3. Different Ways For Regularization.mp4 35.73Мб
3. Different Ways For Regularization.srt 6.50Кб
3. F1 Score vs Simple Average.mp4 26.62Мб
3. F1 Score vs Simple Average.srt 7.02Кб
3. Forward Pass Equations For Batch Normalization.mp4 55.84Мб
3. Forward Pass Equations For Batch Normalization.srt 14.00Кб
3. Intuition Of Multi-Layer Perceptrons - Part 1.mp4 69.82Мб
3. Intuition Of Multi-Layer Perceptrons - Part 1.srt 13.88Кб
3. Maximum Likelihood Estimation Of Gaussian Distribution Parameters.mp4 60.00Мб
3. Maximum Likelihood Estimation Of Gaussian Distribution Parameters.srt 10.53Кб
3. Proof Perceptron Convergence Theorem - Part 1.mp4 101.96Мб
3. Proof Perceptron Convergence Theorem - Part 1.srt 17.80Кб
3. The Cross Entropy & The Vanishing Gradient Problem.mp4 45.63Мб
3. The Cross Entropy & The Vanishing Gradient Problem.srt 9.78Кб
3. The Perceptron Equation.mp4 42.41Мб
3. The Perceptron Equation.srt 9.40Кб
4. Adam And Learning Rate Decay.mp4 65.60Мб
4. Adam And Learning Rate Decay.srt 15.14Кб
4. Batch Normalization Inference.mp4 57.62Мб
4. Batch Normalization Inference.srt 10.11Кб
4. Cross Entropy In Multi-Class Problems.mp4 55.93Мб
4. Cross Entropy In Multi-Class Problems.srt 12.38Кб
4. Intuition Of Multi-Layer Perceptrons - Part 2.mp4 68.05Мб
4. Intuition Of Multi-Layer Perceptrons - Part 2.srt 11.31Кб
4. L1 vs L2 Regularization - Part 1 - Gradient Descent.mp4 42.44Мб
4. L1 vs L2 Regularization - Part 1 - Gradient Descent.srt 8.65Кб
4. Notes About Gradient Descent.mp4 29.69Мб
4. Notes About Gradient Descent.srt 6.56Кб
4. Precision-Recall Curve.mp4 38.50Мб
4. Precision-Recall Curve.srt 9.01Кб
4. Proof Perceptron Convergence Theorem - Part 2.mp4 22.93Мб
4. Proof Perceptron Convergence Theorem - Part 2.srt 5.97Кб
4. Vectorization Of BackPropagation - Part 1.mp4 40.05Мб
4. Vectorization Of BackPropagation - Part 1.srt 6.01Кб
4. Visualization Of The Perceptron Equation.mp4 27.12Мб
4. Visualization Of The Perceptron Equation.srt 5.53Кб
5. Derivation Of Back Propagation Through Batch Normalization - Part (I).mp4 77.41Мб
5. Derivation Of Back Propagation Through Batch Normalization - Part (I).srt 15.11Кб
5. L1 vs L2 Regularization -Part 2 - Numerical, Intuitive, And Graphical Comparison.mp4 107.01Мб
5. L1 vs L2 Regularization -Part 2 - Numerical, Intuitive, And Graphical Comparison.srt 22.85Кб
5. More Notes And filling Up.mp4 68.25Мб
5. More Notes And filling Up.srt 12.85Кб
5. Proof Perceptron Convergence Theorem - Part 3.mp4 48.07Мб
5. Proof Perceptron Convergence Theorem - Part 3.srt 7.60Кб
5. Proof Weight Vector Is Perpendicular To The Decision Boundary.mp4 57.60Мб
5. Proof Weight Vector Is Perpendicular To The Decision Boundary.srt 9.37Кб
5. ROC and AUC.mp4 86.58Мб
5. ROC and AUC.srt 18.13Кб
5. The Softmax Activation Function.mp4 27.38Мб
5. The Softmax Activation Function.srt 5.00Кб
5. The Vanishing Gradient Problem.mp4 46.87Мб
5. The Vanishing Gradient Problem.srt 8.04Кб
5. The XOR Problem - Part 1.mp4 93.19Мб
5. The XOR Problem - Part 1.srt 19.42Кб
5. Vectorization Of BackPropagation - Part 2.mp4 56.54Мб
5. Vectorization Of BackPropagation - Part 2.srt 10.53Кб
6. BackPropagation Derivation For The Softmax Activation Function.mp4 107.45Мб
6. BackPropagation Derivation For The Softmax Activation Function.srt 18.11Кб
6. Derivation Of Back Propagation Though Batch Normalization - Part 2.mp4 110.40Мб
6. Derivation Of Back Propagation Though Batch Normalization - Part 2.srt 17.54Кб
6. Dropout ! - Intuition.mp4 68.73Мб
6. Dropout ! - Intuition.srt 11.96Кб
6. Input Centering And Normalization - Part 1.mp4 25.23Мб
6. Input Centering And Normalization - Part 1.srt 6.69Кб
6. More Visualization For The Perceptron Weights - I.mp4 66.69Мб
6. More Visualization For The Perceptron Weights - I.srt 14.52Кб
6. Solved Example (III) Gradient Descent Convergence.mp4 66.31Мб
6. Solved Example (III) Gradient Descent Convergence.srt 14.90Кб
6. The XOR Problem - Part 2.mp4 33.33Мб
6. The XOR Problem - Part 2.srt 6.94Кб
6. Three Main Problems Of The Threshold Perceptron.mp4 30.16Мб
6. Three Main Problems Of The Threshold Perceptron.srt 7.67Кб
6. Vectorization Of BackPropagation - Part 3.mp4 35.90Мб
6. Vectorization Of BackPropagation - Part 3.srt 5.80Кб
7. Dropout vs Inverted Dropout.mp4 47.80Мб
7. Dropout vs Inverted Dropout.srt 6.26Кб
7. Input Centering And Normalization - Part 2.mp4 40.33Мб
7. Input Centering And Normalization - Part 2.srt 10.17Кб
7. More Visualization Of The Perceptron Weights - II.mp4 114.75Мб
7. More Visualization Of The Perceptron Weights - II.srt 18.27Кб
7. MultiClass Classification And The Sigmoid Activation.mp4 92.16Мб
7. MultiClass Classification And The Sigmoid Activation.srt 17.59Кб
7. Notes About Softmax.html 1.55Кб
7. Solved Example (IIII) MLP With Linear Activations.mp4 26.41Мб
7. Solved Example (IIII) MLP With Linear Activations.srt 4.52Кб
7. Vectorization Of BackPropagation - Part 4.mp4 20.10Мб
7. Vectorization Of BackPropagation - Part 4.srt 3.36Кб
8. Activation Functions.mp4 18.00Мб
8. Activation Functions.srt 4.84Кб
8. Dropout in a nutshell.html 326б
8. Vectorization Of BackPropagation - Part 5 - Batch Vectorization.mp4 76.11Мб
8. Vectorization Of BackPropagation - Part 5 - Batch Vectorization.srt 15.62Кб
8. Vectorized Notation And The Weight Matrix.mp4 26.67Мб
8. Vectorized Notation And The Weight Matrix.srt 3.15Кб
8. Weight Initialization - Part 1 - The Symmetry Problem.mp4 41.14Мб
8. Weight Initialization - Part 1 - The Symmetry Problem.srt 9.97Кб
9. Cross-Validation How Do I Know I Am Overfitting Or Underfitting .mp4 50.68Мб
9. Cross-Validation How Do I Know I Am Overfitting Or Underfitting .srt 13.52Кб
9. Graphical Representation Of A Neural Network.mp4 24.37Мб
9. Graphical Representation Of A Neural Network.srt 6.16Кб
9. Weight Initialization - Part 2.mp4 42.08Мб
9. Weight Initialization - Part 2.srt 9.93Кб
TutsNode.com.txt 63б
Статистика распространения по странам
Великобритания (GB) 1
Всего 1
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент