Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
[CourseClub.Me].url |
48б |
[CourseClub.Me].url |
48б |
[CourseClub.Me].url |
48б |
[CourseClub.Me].url |
48б |
[CourseClub.Me].url |
48б |
[CourseClub.Me].url |
48б |
[DesireCourse.Net].url |
51б |
[DesireCourse.Net].url |
51б |
[DesireCourse.Net].url |
51б |
[DesireCourse.Net].url |
51б |
[DesireCourse.Net].url |
51б |
[DesireCourse.Net].url |
51б |
1.1 2.13. Practical example. Descriptive statistics_lesson.xlsx |
146.51Кб |
1.1 3.17. Practical example. Confidence intervals_lesson.xlsx |
1.74Мб |
1.1 4.10.Hypothesis-testing-section-practical-example.xlsx |
51.90Кб |
1.1 5 Files Needed to Deploy the Model.html |
134б |
1.1 Absenteeism_data.csv |
32.05Кб |
1.1 Absenteeism_preprocessed.csv |
29.13Кб |
1.1 Arithmetic Operators - Resources.html |
134б |
1.1 Audiobooks_data.csv |
710.77Кб |
1.1 Bais NN Example Part 1.html |
136б |
1.1 Business Case Exploring the Dataset.html |
134б |
1.1 Comparison Operators - Resources.html |
134б |
1.1 Course_Notes_Cluster_Analysis.pdf |
208.65Кб |
1.1 Course_Notes_Logistic_Regression.pdf |
335.17Кб |
1.1 Course notes_descriptive_statistics.pdf |
482.21Кб |
1.1 Course notes_descriptive_statistics.pdf |
482.21Кб |
1.1 Course notes_hypothesis_testing.pdf |
656.44Кб |
1.1 Course notes_inferential statistics.pdf |
382.32Кб |
1.1 Course notes_regression_analysis.pdf |
312.18Кб |
1.1 Course notes_regression_analysis.pdf |
312.18Кб |
1.1 Course Notes - Basic Probability.pdf |
371.05Кб |
1.1 Course Notes - Bayesian Inference.pdf |
386.01Кб |
1.1 Course Notes - Combinatorics.pdf |
226.12Кб |
1.1 Course Notes - Probability Distributions.pdf |
463.95Кб |
1.1 Course Notes - Section 2.pdf |
578.08Кб |
1.1 Course Notes - Section 6.pdf |
936.42Кб |
1.1 Defining a Function in Python - Resources.html |
134б |
1.1 For Loops - Resources.html |
134б |
1.1 Introduction to the If Statement - Resources.html |
134б |
1.1 Lists - Resources.html |
134б |
1.1 Probability in Finance Solutions.pdf |
184.46Кб |
1.1 Shortcuts-for-Jupyter.pdf |
619.17Кб |
1.1 sklearn - Linear Regression - Practical Example (Part 1).html |
134б |
1.1 Variables - Resources.html |
134б |
1.2 Audiobooks_data.csv |
710.77Кб |
1.2 df_preprocessed.csv |
29.11Кб |
1.2 Glossary.xlsx |
19.97Кб |
1.2 Probability in Finance Homework.pdf |
110.68Кб |
1.2 Python Introduction - Course Notes.pdf |
2.04Мб |
1.2 Shortcuts-for-Jupyter.pdf |
619.17Кб |
1.2 Statistics Glossary.xlsx |
20.26Кб |
1.3 data_preprocessing_homework.pdf |
134.47Кб |
1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4 |
126.87Мб |
1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.srt |
8.99Кб |
1. A Practical Example What You Will Learn in This Course.mp4 |
49.04Мб |
1. A Practical Example What You Will Learn in This Course.srt |
6.37Кб |
1. Are You Sure You're All Set.html |
519б |
1. Basic NN Example (Part 1).mp4 |
20.60Мб |
1. Basic NN Example (Part 1).srt |
4.46Кб |
1. Bonus Lecture Next Steps.html |
2.53Кб |
1. Business Case Exploring the Dataset and Identifying Predictors.mp4 |
66.28Мб |
1. Business Case Exploring the Dataset and Identifying Predictors.srt |
10.66Кб |
1. Business Case Getting Acquainted with the Dataset.mp4 |
87.66Мб |
1. Business Case Getting Acquainted with the Dataset.srt |
10.78Кб |
1. Comparison Operators.mp4 |
10.17Мб |
1. Comparison Operators.srt |
2.47Кб |
1. Data Science and Business Buzzwords Why are there so Many.mp4 |
81.42Мб |
1. Data Science and Business Buzzwords Why are there so Many.srt |
6.62Кб |
1. Debunking Common Misconceptions.mp4 |
72.86Мб |
1. Debunking Common Misconceptions.srt |
5.29Кб |
1. Defining a Function in Python.mp4 |
14.76Мб |
1. Defining a Function in Python.srt |
5.32Кб |
1. EXERCISE - Age vs Probability.html |
385б |
1. Exploring the Problem with a Machine Learning Mindset.mp4 |
27.55Мб |
1. Exploring the Problem with a Machine Learning Mindset.srt |
4.58Кб |
1. Finding the Job - What to Expect and What to Look for.mp4 |
54.38Мб |
1. Finding the Job - What to Expect and What to Look for.srt |
4.49Кб |
1. For Loops.mp4 |
23.60Мб |
1. For Loops.srt |
6.58Кб |
1. Fundamentals of Combinatorics.mp4 |
16.22Мб |
1. Fundamentals of Combinatorics.srt |
1.30Кб |
1. Fundamentals of Probability Distributions.mp4 |
73.41Мб |
1. Fundamentals of Probability Distributions.srt |
7.54Кб |
1. Game Plan for this Python, SQL, and Tableau Business Exercise.mp4 |
52.31Мб |
1. Game Plan for this Python, SQL, and Tableau Business Exercise.srt |
5.46Кб |
1. How to Install TensorFlow 2.0.mp4 |
38.76Мб |
1. How to Install TensorFlow 2.0.srt |
6.38Кб |
1. Introduction.mp4 |
15.50Мб |
1. Introduction.srt |
1.63Кб |
1. Introduction to Cluster Analysis.mp4 |
53.43Мб |
1. Introduction to Cluster Analysis.srt |
4.80Кб |
1. Introduction to Logistic Regression.mp4 |
27.07Мб |
1. Introduction to Logistic Regression.srt |
1.61Кб |
1. Introduction to Neural Networks.mp4 |
42.93Мб |
1. Introduction to Neural Networks.srt |
5.90Кб |
1. Introduction to Programming.mp4 |
58.55Мб |
1. Introduction to Programming.srt |
6.90Кб |
1. Introduction to Regression Analysis.mp4 |
17.32Мб |
1. Introduction to Regression Analysis.srt |
2.21Кб |
1. K-Means Clustering.mp4 |
27.29Мб |
1. K-Means Clustering.srt |
6.67Кб |
1. Lists.mp4 |
37.80Мб |
1. Lists.srt |
9.83Кб |
1. MNIST The Dataset.mp4 |
13.38Мб |
1. MNIST The Dataset.srt |
3.58Кб |
1. MNIST What is the MNIST Dataset.mp4 |
17.83Мб |
1. MNIST What is the MNIST Dataset.srt |
3.49Кб |
1. Multiple Linear Regression.mp4 |
21.53Мб |
1. Multiple Linear Regression.srt |
3.35Кб |
1. Necessary Programming Languages and Software Used in Data Science.mp4 |
103.52Мб |
1. Necessary Programming Languages and Software Used in Data Science.srt |
7.29Кб |
1. Null vs Alternative Hypothesis.mp4 |
92.05Мб |
1. Null vs Alternative Hypothesis.srt |
6.97Кб |
1. Object Oriented Programming.mp4 |
33.60Мб |
1. Object Oriented Programming.srt |
6.10Кб |
1. Population and Sample.mp4 |
58.11Мб |
1. Population and Sample.srt |
5.47Кб |
1. Practical Example Descriptive Statistics.mp4 |
160.46Мб |
1. Practical Example Descriptive Statistics.srt |
20.78Кб |
1. Practical Example Hypothesis Testing.mp4 |
69.49Мб |
1. Practical Example Hypothesis Testing.srt |
8.49Кб |
1. Practical Example Inferential Statistics.mp4 |
102.67Мб |
1. Practical Example Inferential Statistics.srt |
13.64Кб |
1. Practical Example Linear Regression (Part 1).mp4 |
97.09Мб |
1. Practical Example Linear Regression (Part 1).srt |
14.86Кб |
1. Preprocessing Introduction.mp4 |
27.79Мб |
1. Preprocessing Introduction.srt |
3.87Кб |
1. Probability in Finance.mp4 |
99.06Мб |
1. Probability in Finance.srt |
9.83Кб |
1. READ ME!!!!.html |
564б |
1. Sets and Events.mp4 |
53.47Мб |
1. Sets and Events.srt |
5.06Кб |
1. Stochastic Gradient Descent.mp4 |
28.69Мб |
1. Stochastic Gradient Descent.srt |
4.81Кб |
1. Summary on What You've Learned.mp4 |
39.76Мб |
1. Summary on What You've Learned.srt |
5.21Кб |
1. Techniques for Working with Traditional Data.mp4 |
138.31Мб |
1. Techniques for Working with Traditional Data.srt |
10.62Кб |
1. The Basic Probability Formula.mp4 |
85.92Мб |
1. The Basic Probability Formula.srt |
8.90Кб |
1. The IF Statement.mp4 |
23.24Мб |
1. The IF Statement.srt |
7.60Кб |
1. The Linear Regression Model.mp4 |
57.38Мб |
1. The Linear Regression Model.srt |
7.06Кб |
1. The Reason Behind These Disciplines.mp4 |
81.19Мб |
1. The Reason Behind These Disciplines.srt |
6.50Кб |
1. Types of Clustering.mp4 |
44.58Мб |
1. Types of Clustering.srt |
4.66Кб |
1. Types of Data.mp4 |
72.52Мб |
1. Types of Data.srt |
5.95Кб |
1. Using Arithmetic Operators in Python.mp4 |
18.93Мб |
1. Using Arithmetic Operators in Python.srt |
4.11Кб |
1. Variables.mp4 |
25.30Мб |
1. Variables.srt |
6.05Кб |
1. What are Confidence Intervals.mp4 |
49.99Мб |
1. What are Confidence Intervals.srt |
3.26Кб |
1. What are Data, Servers, Clients, Requests, and Responses.mp4 |
69.04Мб |
1. What are Data, Servers, Clients, Requests, and Responses.srt |
5.93Кб |
1. What is a Layer.mp4 |
12.50Мб |
1. What is a Layer.srt |
2.39Кб |
1. What is a Matrix.mp4 |
33.60Мб |
1. What is a Matrix.srt |
4.34Кб |
1. What is Initialization.mp4 |
21.77Мб |
1. What is Initialization.srt |
3.50Кб |
1. What is Overfitting.mp4 |
31.09Мб |
1. What is Overfitting.srt |
5.58Кб |
1. What is sklearn and How is it Different from Other Packages.mp4 |
27.25Мб |
1. What is sklearn and How is it Different from Other Packages.srt |
3.42Кб |
1. What to Expect from the Following Sections.html |
2.48Кб |
1. What to Expect from this Part.mp4 |
31.11Мб |
1. What to Expect from this Part.srt |
4.63Кб |
10.10 TensorFlow MNIST 'Time' Solution.html |
162б |
10.11 TensorFlow MNIST '4. Activation Functions (Part 1)' Solution.html |
172б |
10.1 2.4.Numerical-variables.Frequency-distribution-table-exercise-solution.xlsx |
13.15Кб |
10.1 Addition and Subtraction of Matrices Python Notebook.html |
178б |
10.1 Basic NN Example with TensorFlow Exercise 3 Solution.html |
160б |
10.1 Binary predictors.html |
134б |
10.1 Feature selection.html |
134б |
10.1 Indexing Elements - Resources.html |
134б |
10.1 MNIST Learning.html |
134б |
10.1 Online p-value calculator.pdf |
1.15Мб |
10.1 TensorFlow MNIST '6. Batch size (Part 1)' Solution.html |
162б |
10.2 Basic NN Example with TensorFlow Exercise 2.1 Solution.html |
162б |
10.2 TensorFlow MNIST 'Around 98% Accuracy' Solution.html |
157б |
10.3 Basic NN Example with TensorFlow (All Exercises).html |
154б |
10.3 TensorFlow MNIST '3. Width and Depth' Solution.html |
160б |
10.4 Basic NN Example with TensorFlow Exercise 2.3 Solution.html |
162б |
10.4 TensorFlow MNIST '5. Activation Functions (Part 2)' Solution.html |
172б |
10.5 Basic NN Example with TensorFlow Exercise 1 Solution.html |
160б |
10.5 TensorFlow MNIST '1. Width' Solution.html |
150б |
10.6 Basic NN Example with TensorFlow Exercise 2.2 Solution.html |
162б |
10.6 TensorFlow MNIST '7. Batch size (Part 2)' Solution.html |
162б |
10.7 Basic NN Example with TensorFlow Exercise 2.4 Solution.html |
162б |
10.7 TensorFlow MNIST '8. Learning Rate (Part 1)' Solution.html |
165б |
10.8 Basic NN Example with TensorFlow Exercise 4 Solution.html |
160б |
10.8 TensorFlow MNIST '9. Learning Rate (Part 2)' Solution.html |
165б |
10.9 TensorFlow MNIST '2. Depth' Solution.html |
150б |
10. A1 Linearity.html |
165б |
10. A Breakdown of our Data Science Infographic.html |
165б |
10. Addition and Subtraction of Matrices.mp4 |
32.62Мб |
10. Addition and Subtraction of Matrices.srt |
4.04Кб |
10. Analyzing the Reasons for Absence.mp4 |
40.58Мб |
10. Analyzing the Reasons for Absence.srt |
5.85Кб |
10. Basic NN Example with TF Exercises.html |
1.59Кб |
10. Binary Predictors in a Logistic Regression.mp4 |
38.43Мб |
10. Binary Predictors in a Logistic Regression.srt |
5.41Кб |
10. Business Case Testing the Model.mp4 |
11.21Мб |
10. Business Case Testing the Model.srt |
2.71Кб |
10. Central Limit Theorem.html |
165б |
10. Discrete Distributions The Bernoulli Distribution.html |
165б |
10. Feature Selection (F-regression).mp4 |
29.51Мб |
10. Feature Selection (F-regression).srt |
6.67Кб |
10. Indexing Elements.mp4 |
5.93Мб |
10. Indexing Elements.srt |
1.70Кб |
10. Interpreting the Coefficients of the Logistic Regression.mp4 |
40.41Мб |
10. Interpreting the Coefficients of the Logistic Regression.srt |
7.25Кб |
10. Jupyter's Interface.html |
165б |
10. Margin of Error.mp4 |
47.24Мб |
10. Margin of Error.srt |
6.15Кб |
10. MNIST Learning.mp4 |
40.96Мб |
10. MNIST Learning.srt |
7.94Кб |
10. MNIST Solutions.html |
2.19Кб |
10. Mutually Exclusive Sets.html |
165б |
10. Numerical Variables Exercise.html |
81б |
10. p-value.mp4 |
55.88Мб |
10. p-value.srt |
5.03Кб |
10. Relationship between Clustering and Regression.mp4 |
9.93Мб |
10. Relationship between Clustering and Regression.srt |
2.18Кб |
10. Setting an Early Stopping Mechanism - Exercise.html |
192б |
10. Software Integration - Explained.html |
165б |
10. Solving Variations without Repetition.html |
165б |
10. Techniques for Working with Traditional Methods.mp4 |
111.66Мб |
10. Techniques for Working with Traditional Methods.srt |
10.98Кб |
10. The Linear Model with Multiple Inputs.html |
165б |
10. Using Seaborn for Graphs.mp4 |
12.25Мб |
10. Using Seaborn for Graphs.srt |
1.48Кб |
11.1 2.5. The Histogram_lesson.xlsx |
18.63Кб |
11.1 Bank_data.csv |
19.55Кб |
11.1 Business Case Testing the Model.html |
134б |
11.1 Calculation of P-values.html |
134б |
11.1 Combinations With Repetition.pdf |
207.41Кб |
11.1 Logistic Regression prior to Backward Elimination.html |
226б |
11.1 Market segmentation.html |
134б |
11.1 MNIST - Exercises.html |
134б |
11.1 Python Introduction - Course Notes.pdf |
2.04Мб |
11.1 TensorFlow Business Case Homework.html |
134б |
11.1 TensorFlow MNIST All Exercises.html |
144б |
11.2 Binary predictors - exercise.html |
134б |
11. A2 No Endogeneity.mp4 |
35.68Мб |
11. A2 No Endogeneity.srt |
5.24Кб |
11. Addition and Subtraction of Matrices.html |
165б |
11. A Note on Calculation of P-values with sklearn.html |
372б |
11. Backward Elimination or How to Simplify Your Model.mp4 |
39.56Мб |
11. Backward Elimination or How to Simplify Your Model.srt |
5.24Кб |
11. Binary Predictors in a Logistic Regression - Exercise.html |
87б |
11. Business Case A Comment on the Homework.mp4 |
36.38Мб |
11. Business Case A Comment on the Homework.srt |
5.30Кб |
11. Business Case Testing the Model.mp4 |
10.80Мб |
11. Business Case Testing the Model.srt |
2.04Кб |
11. Dependence and Independence of Sets.mp4 |
34.79Мб |
11. Dependence and Independence of Sets.srt |
3.46Кб |
11. Discrete Distributions The Binomial Distribution.mp4 |
68.84Мб |
11. Discrete Distributions The Binomial Distribution.srt |
8.30Кб |
11. How to Interpret the Regression Table.mp4 |
44.64Мб |
11. How to Interpret the Regression Table.srt |
6.30Кб |
11. Indexing Elements.html |
165б |
11. Margin of Error.html |
165б |
11. Market Segmentation with Cluster Analysis (Part 1).mp4 |
43.02Мб |
11. Market Segmentation with Cluster Analysis (Part 1).srt |
7.53Кб |
11. MNIST Exercises.html |
2.13Кб |
11. MNIST - Exercises.html |
1.98Кб |
11. Obtaining Dummies from a Single Feature.mp4 |
81.11Мб |
11. Obtaining Dummies from a Single Feature.srt |
10.20Кб |
11. p-value.html |
165б |
11. Python 2 vs Python 3.mp4 |
11.27Мб |
11. Python 2 vs Python 3.srt |
3.31Кб |
11. Solving Combinations.mp4 |
57.35Мб |
11. Solving Combinations.srt |
5.61Кб |
11. Standard error.mp4 |
22.78Мб |
11. Standard error.srt |
2.02Кб |
11. Techniques for Working with Traditional Methods.html |
165б |
11. The Histogram.mp4 |
13.78Мб |
11. The Histogram.srt |
3.01Кб |
11. The Linear model with Multiple Inputs and Multiple Outputs.mp4 |
38.32Мб |
11. The Linear model with Multiple Inputs and Multiple Outputs.srt |
5.46Кб |
12.1 3.13. Confidence intervals. Two means. Dependent samples_lesson.xlsx |
10.47Кб |
12.1 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx |
14.54Кб |
12.1 Accuracy.html |
134б |
12.1 Business Case Final Exercise.html |
134б |
12.1 Errors when Adding Matrices Python Notebook.html |
220б |
12.1 Market segmentation.html |
134б |
12.1 MNIST Testing the Model.html |
134б |
12.1 Structure Your Code with Indentation - Resources.html |
134б |
12.1 Summary table with p-values.html |
134б |
12.1 TensorFlow Business Case Homework.html |
134б |
12. A2 No Endogeneity.html |
165б |
12. Business Case Final Exercise.html |
433б |
12. Business Case Final Exercise.html |
439б |
12. Calculating the Accuracy of the Model.mp4 |
32.86Мб |
12. Calculating the Accuracy of the Model.srt |
4.13Кб |
12. Confidence intervals. Two means. Dependent samples.mp4 |
70.48Мб |
12. Confidence intervals. Two means. Dependent samples.srt |
8.03Кб |
12. Creating a Summary Table with P-values.mp4 |
12.31Мб |
12. Creating a Summary Table with P-values.srt |
3.01Кб |
12. Dependence and Independence of Sets.html |
165б |
12. Discrete Distributions The Binomial Distribution.html |
165б |
12. Errors when Adding Matrices.mp4 |
11.17Мб |
12. Errors when Adding Matrices.srt |
2.57Кб |
12. EXERCISE - Obtaining Dummies from a Single Feature.html |
129б |
12. How to Interpret the Regression Table.html |
165б |
12. Market Segmentation with Cluster Analysis (Part 2).mp4 |
56.12Мб |
12. Market Segmentation with Cluster Analysis (Part 2).srt |
9.18Кб |
12. MNIST Testing the Model.mp4 |
29.52Мб |
12. MNIST Testing the Model.srt |
6.02Кб |
12. Real Life Examples of Traditional Methods.mp4 |
42.79Мб |
12. Real Life Examples of Traditional Methods.srt |
3.58Кб |
12. Solving Combinations.html |
165б |
12. Standard Error.html |
165б |
12. Structuring with Indentation.mp4 |
13.15Мб |
12. Structuring with Indentation.srt |
4.68Кб |
12. Test for the Mean. Population Variance Unknown.mp4 |
40.25Мб |
12. Test for the Mean. Population Variance Unknown.srt |
5.73Кб |
12. Testing the Model We Created.mp4 |
49.07Мб |
12. Testing the Model We Created.srt |
6.50Кб |
12. The Histogram.html |
165б |
12. The Linear model with Multiple Inputs and Multiple Outputs.html |
165б |
13.1 3.13. Confidence intervals. Two means. Dependent samples_exercise_solution.xlsx |
14.24Кб |
13.1 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx |
11.34Кб |
13.1 Bank_data.csv |
19.55Кб |
13.1 Multiple linear regression - Exercise.html |
134б |
13.1 Poisson - Expected Value and Variance.pdf |
145.99Кб |
13.1 Statistics - PDF with Excel Solutions that don't visualize properly.pdf |
289.12Кб |
13.1 Symmetry Explained.pdf |
85.04Кб |
13.1 Transpose of a Matrix Python Notebook.html |
167б |
13.2 2.5.The-Histogram-exercise-solution.xlsx |
17.10Кб |
13.2 3.13. Confidence intervals. Two means. Dependent samples_exercise.xlsx |
13.74Кб |
13.2 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx |
12.63Кб |
13.2 Accuracy of the model - exercise.html |
134б |
13.3 2.5.The-Histogram-exercise.xlsx |
15.50Кб |
13. A3 Normality and Homoscedasticity.mp4 |
42.71Мб |
13. A3 Normality and Homoscedasticity.srt |
6.67Кб |
13. Calculating the Accuracy of the Model.html |
87б |
13. Confidence intervals. Two means. Dependent samples Exercise.html |
81б |
13. Decomposition of Variability.mp4 |
49.67Мб |
13. Decomposition of Variability.srt |
4.17Кб |
13. Discrete Distributions The Poisson Distribution.mp4 |
55.76Мб |
13. Discrete Distributions The Poisson Distribution.srt |
6.57Кб |
13. Estimators and Estimates.mp4 |
47.83Мб |
13. Estimators and Estimates.srt |
3.71Кб |
13. Graphical Representation of Simple Neural Networks.mp4 |
22.65Мб |
13. Graphical Representation of Simple Neural Networks.srt |
2.69Кб |
13. Histogram Exercise.html |
81б |
13. How is Clustering Useful.mp4 |
74.46Мб |
13. How is Clustering Useful.srt |
6.39Кб |
13. Machine Learning (ML) Techniques.mp4 |
99.33Мб |
13. Machine Learning (ML) Techniques.srt |
8.73Кб |
13. Multiple Linear Regression - Exercise.html |
76б |
13. Saving the Model and Preparing it for Deployment.mp4 |
37.46Мб |
13. Saving the Model and Preparing it for Deployment.srt |
5.57Кб |
13. SOLUTION - Obtaining Dummies from a Single Feature.html |
116б |
13. Structuring with Indentation.html |
165б |
13. Symmetry of Combinations.mp4 |
40.31Мб |
13. Symmetry of Combinations.srt |
4.30Кб |
13. Test for the Mean. Population Variance Unknown Exercise.html |
81б |
13. The Conditional Probability Formula.mp4 |
45.87Мб |
13. The Conditional Probability Formula.srt |
4.93Кб |
13. Transpose of a Matrix.mp4 |
38.08Мб |
13. Transpose of a Matrix.srt |
5.37Кб |
14.1 2.6. Cross table and scatter plot.xlsx |
26.12Кб |
14.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_lesson.xlsx |
9.83Кб |
14.1 4.7. Test for the mean. Dependent samples_lesson.xlsx |
9.79Кб |
14.1 Dot Product Python Notebook.html |
154б |
14.1 Exercise - part 1.html |
134б |
14.1 Feature scaling.html |
134б |
14.2 iris_dataset.csv |
2.40Кб |
14. A4 No Autocorrelation.mp4 |
31.51Мб |
14. A4 No Autocorrelation.srt |
4.90Кб |
14. ARTICLE - A Note on 'pickling'.html |
2.14Кб |
14. Confidence intervals. Two means. Independent Samples (Part 1).mp4 |
28.76Мб |
14. Confidence intervals. Two means. Independent Samples (Part 1).srt |
6.07Кб |
14. Cross Tables and Scatter Plots.mp4 |
39.81Мб |
14. Cross Tables and Scatter Plots.srt |
6.68Кб |
14. Decomposition of Variability.html |
165б |
14. Discrete Distributions The Poisson Distribution.html |
165б |
14. Dot Product.mp4 |
24.00Мб |
14. Dot Product.srt |
4.26Кб |
14. Dropping a Dummy Variable from the Data Set.html |
2.34Кб |
14. Estimators and Estimates.html |
165б |
14. EXERCISE Species Segmentation with Cluster Analysis (Part 1).html |
87б |
14. Feature Scaling (Standardization).mp4 |
39.09Мб |
14. Feature Scaling (Standardization).srt |
7.68Кб |
14. Graphical Representation of Simple Neural Networks.html |
165б |
14. Machine Learning (ML) Techniques.html |
165б |
14. Symmetry of Combinations.html |
165б |
14. Test for the Mean. Dependent Samples.mp4 |
50.38Мб |
14. Test for the Mean. Dependent Samples.srt |
6.26Кб |
14. The Conditional Probability Formula.html |
165б |
14. Underfitting and Overfitting.mp4 |
22.29Мб |
14. Underfitting and Overfitting.srt |
4.97Кб |
15.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise_solution.xlsx |
10.12Кб |
15.1 4.7. Test for the mean. Dependent samples_exercise.xlsx |
12.80Кб |
15.1 Dot Product of Matrices Python Notebook.html |
171б |
15.1 Feature scaling standardization.html |
134б |
15.1 iris_with_answers.csv |
3.63Кб |
15.1 Logistic Regression.html |
196б |
15.1 Solving Integrals.pdf |
343.85Кб |
15.1 Testing the model.html |
134б |
15.2 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise.xlsx |
9.83Кб |
15.2 4.7. Test for the mean. Dependent samples_exercise_solution.xlsx |
14.40Кб |
15.2 Exercise - part 2.html |
134б |
15.2 Logistic Regression with Comments.html |
210б |
15.3 iris_dataset.csv |
2.40Кб |
15. A4 No autocorrelation.html |
165б |
15. Characteristics of Continuous Distributions.mp4 |
84.13Мб |
15. Characteristics of Continuous Distributions.srt |
8.66Кб |
15. Confidence intervals. Two means. Independent Samples (Part 1). Exercise.html |
81б |
15. Cross Tables and Scatter Plots.html |
165б |
15. Dot Product of Matrices.mp4 |
49.44Мб |
15. Dot Product of Matrices.srt |
9.52Кб |
15. EXERCISE - Saving the Model (and Scaler).html |
284б |
15. EXERCISE Species Segmentation with Cluster Analysis (Part 2).html |
87б |
15. Feature Selection through Standardization of Weights.mp4 |
34.89Мб |
15. Feature Selection through Standardization of Weights.srt |
7.26Кб |
15. More on Dummy Variables A Statistical Perspective.mp4 |
13.74Мб |
15. More on Dummy Variables A Statistical Perspective.srt |
1.70Кб |
15. Solving Combinations with Separate Sample Spaces.mp4 |
33.16Мб |
15. Solving Combinations with Separate Sample Spaces.srt |
3.73Кб |
15. Test for the Mean. Dependent Samples Exercise.html |
81б |
15. Testing the Model.mp4 |
32.28Мб |
15. Testing the Model.srt |
6.55Кб |
15. The Law of Total Probability.mp4 |
34.94Мб |
15. The Law of Total Probability.srt |
3.49Кб |
15. Types of Machine Learning.mp4 |
125.15Мб |
15. Types of Machine Learning.srt |
10.51Кб |
15. What is the Objective Function.mp4 |
17.92Мб |
15. What is the Objective Function.srt |
2.12Кб |
15. What is the OLS.mp4 |
28.32Мб |
15. What is the OLS.srt |
3.82Кб |
16.1 2.6. Cross table and scatter plot_exercise_solution.xlsx |
40.44Кб |
16.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_lesson.xlsx |
9.52Кб |
16.1 4.8. Test for the mean. Independent samples (Part 1)_lesson.xlsx |
9.63Кб |
16.1 Predicting with the Standardized Cofficients.html |
134б |
16.1 Testing the model - exercise.html |
134б |
16.2 2.6. Cross table and scatter plot_exercise.xlsx |
16.28Кб |
16.2 Bank_data_testing.csv |
8.30Кб |
16.3 Bank_data.csv |
19.55Кб |
16. A5 No Multicollinearity.mp4 |
28.71Мб |
16. A5 No Multicollinearity.srt |
4.62Кб |
16. Characteristics of Continuous Distributions.html |
165б |
16. Classifying the Various Reasons for Absence.mp4 |
74.61Мб |
16. Classifying the Various Reasons for Absence.srt |
10.02Кб |
16. Confidence intervals. Two means. Independent Samples (Part 2).mp4 |
26.82Мб |
16. Confidence intervals. Two means. Independent Samples (Part 2).srt |
4.51Кб |
16. Cross Tables and Scatter Plots Exercise.html |
81б |
16. Predicting with the Standardized Coefficients.mp4 |
25.97Мб |
16. Predicting with the Standardized Coefficients.srt |
5.59Кб |
16. Preparing the Deployment of the Model through a Module.mp4 |
44.49Мб |
16. Preparing the Deployment of the Model through a Module.srt |
5.62Кб |
16. Solving Combinations with Separate Sample Spaces.html |
165б |
16. Test for the mean. Independent Samples (Part 1).mp4 |
33.94Мб |
16. Test for the mean. Independent Samples (Part 1).srt |
5.49Кб |
16. Testing the Model - Exercise.html |
87б |
16. The Additive Rule.mp4 |
26.98Мб |
16. The Additive Rule.srt |
2.74Кб |
16. Types of Machine Learning.html |
165б |
16. What is the Objective Function.html |
165б |
16. What is the OLS.html |
165б |
16. Why is Linear Algebra Useful.mp4 |
144.34Мб |
16. Why is Linear Algebra Useful.srt |
11.79Кб |
17.1 2.7. Mean, median and mode_lesson.xlsx |
10.49Кб |
17.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise.xlsx |
9.17Кб |
17.1 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx |
10.77Кб |
17.1 Feature scaling - exercise.html |
134б |
17.1 Normal Distribution - Exp and Var.pdf |
144.08Кб |
17.2 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise_solution.xlsx |
9.79Кб |
17.2 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise-solution.xlsx |
11.25Кб |
17. A5 No Multicollinearity.html |
165б |
17. Combinatorics in Real-Life The Lottery.mp4 |
41.30Мб |
17. Combinatorics in Real-Life The Lottery.srt |
4.15Кб |
17. Common Objective Functions L2-norm Loss.mp4 |
23.27Мб |
17. Common Objective Functions L2-norm Loss.srt |
2.77Кб |
17. Confidence intervals. Two means. Independent Samples (Part 2). Exercise.html |
81б |
17. Continuous Distributions The Normal Distribution.mp4 |
48.24Мб |
17. Continuous Distributions The Normal Distribution.srt |
4.77Кб |
17. Feature Scaling (Standardization) - Exercise.html |
76б |
17. Mean, median and mode.mp4 |
37.12Мб |
17. Mean, median and mode.srt |
5.73Кб |
17. Real Life Examples of Machine Learning (ML).mp4 |
36.82Мб |
17. Real Life Examples of Machine Learning (ML).srt |
2.90Кб |
17. R-Squared.mp4 |
41.04Мб |
17. R-Squared.srt |
6.57Кб |
17. Test for the mean. Independent Samples (Part 1). Exercise.html |
81б |
17. The Additive Rule.html |
165б |
17. Using .concat() in Python.mp4 |
38.73Мб |
17. Using .concat() in Python.srt |
5.07Кб |
18.1 2.7. Mean, median and mode_exercise.xlsx |
10.87Кб |
18.1 4.9. Test for the mean. Independent samples (Part 2)_lesson.xlsx |
9.31Кб |
18.1 Dealing with categorical data.html |
134б |
18.2 2.7. Mean, median and mode_exercise_solution.xlsx |
11.35Кб |
18. Combinatorics in Real-Life The Lottery.html |
165б |
18. Common Objective Functions L2-norm Loss.html |
165б |
18. Confidence intervals. Two means. Independent Samples (Part 3).mp4 |
19.93Мб |
18. Confidence intervals. Two means. Independent Samples (Part 3).srt |
1.96Кб |
18. Continuous Distributions The Normal Distribution.html |
165б |
18. Dealing with Categorical Data - Dummy Variables.mp4 |
55.67Мб |
18. Dealing with Categorical Data - Dummy Variables.srt |
8.15Кб |
18. EXERCISE - Using .concat() in Python.html |
189б |
18. Mean, Median and Mode Exercise.html |
81б |
18. Real Life Examples of Machine Learning (ML).html |
165б |
18. R-Squared.html |
165б |
18. Test for the mean. Independent Samples (Part 2).mp4 |
36.40Мб |
18. Test for the mean. Independent Samples (Part 2).srt |
5.14Кб |
18. The Multiplication Law.mp4 |
49.03Мб |
18. The Multiplication Law.srt |
4.62Кб |
18. Underfitting and Overfitting.mp4 |
16.96Мб |
18. Underfitting and Overfitting.srt |
3.45Кб |
19.1 2.8. Skewness_lesson.xlsx |
34.63Кб |
19.1 Dealing with categorical data.html |
134б |
19.1 Train - Test split explained.html |
134б |
19. A Recap of Combinatorics.mp4 |
38.49Мб |
19. A Recap of Combinatorics.srt |
3.72Кб |
19. Common Objective Functions Cross-Entropy Loss.mp4 |
37.25Мб |
19. Common Objective Functions Cross-Entropy Loss.srt |
5.25Кб |
19. Continuous Distributions The Standard Normal Distribution.mp4 |
47.90Мб |
19. Continuous Distributions The Standard Normal Distribution.srt |
5.28Кб |
19. Dealing with Categorical Data - Dummy Variables.html |
76б |
19. Skewness.mp4 |
19.41Мб |
19. Skewness.srt |
3.64Кб |
19. SOLUTION - Using .concat() in Python.html |
142б |
19. Test for the mean. Independent Samples (Part 2).html |
165б |
19. The Multiplication Law.html |
165б |
19. Train - Test Split Explained.mp4 |
49.18Мб |
19. Train - Test Split Explained.srt |
9.59Кб |
2.1 2.13.Practical-example.Descriptive-statistics-exercise.xlsx |
120.27Кб |
2.1 3.17.Practical-example.Confidence-intervals-exercise.xlsx |
1.73Мб |
2.1 3.2. What is a distribution_lesson.xlsx |
19.46Кб |
2.1 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx |
44.27Кб |
2.1 Absenteeism_predictions.csv |
2.10Кб |
2.1 Basic NN Example (Part 2).html |
136б |
2.1 Course_Notes_Cluster_Analysis.pdf |
208.65Кб |
2.1 Course_Notes_Logistic_Regression.pdf |
335.17Кб |
2.1 Course Notes - Section 6.pdf |
936.42Кб |
2.1 Creating a Function with a Parameter - Resources.html |
134б |
2.1 Example of Clustering.html |
134б |
2.1 sklearn - Linear Regression - Practical Example (Part 2).html |
134б |
2.2 2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx |
146.38Кб |
2.2 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx |
1.82Мб |
2.2 4.10.+Hypothesis+testing+section_practical+example_exercise.xlsx |
43.69Кб |
2.2 A simple example in Python.html |
134б |
2.2 Course notes_inferential statistics.pdf |
382.32Кб |
2. Analyzing Age vs Probability in Tableau.mp4 |
56.56Мб |
2. Analyzing Age vs Probability in Tableau.srt |
10.01Кб |
2. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.html |
165б |
2. A Simple Example in Python.mp4 |
34.70Мб |
2. A Simple Example in Python.srt |
5.79Кб |
2. A Simple Example of Clustering.mp4 |
51.83Мб |
2. A Simple Example of Clustering.srt |
9.59Кб |
2. Basic NN Example (Part 2).mp4 |
34.95Мб |
2. Basic NN Example (Part 2).srt |
6.79Кб |
2. Business Case Outlining the Solution.mp4 |
7.31Мб |
2. Business Case Outlining the Solution.mp4 |
12.22Мб |
2. Business Case Outlining the Solution.srt |
2.00Кб |
2. Business Case Outlining the Solution.srt |
2.52Кб |
2. Comparison Operators.html |
165б |
2. Creating the Targets for the Logistic Regression.mp4 |
45.80Мб |
2. Creating the Targets for the Logistic Regression.srt |
8.39Кб |
2. Data Science and Business Buzzwords Why are there so Many.html |
165б |
2. Debunking Common Misconceptions.html |
165б |
2. Dendrogram.mp4 |
29.07Мб |
2. Dendrogram.srt |
7.36Кб |
2. Deploying the 'absenteeism_module' - Part I.mp4 |
25.49Мб |
2. Deploying the 'absenteeism_module' - Part I.srt |
4.76Кб |
2. Finding the Job - What to Expect and What to Look for.html |
165б |
2. For Loops.html |
165б |
2. Fundamentals of Combinatorics.html |
165б |
2. Fundamentals of Probability Distributions.html |
165б |
2. Further Reading on Null and Alternative Hypothesis.html |
2.29Кб |
2. How are we Going to Approach this Section.mp4 |
19.41Мб |
2. How are we Going to Approach this Section.srt |
2.92Кб |
2. How to Create a Function with a Parameter.mp4 |
38.11Мб |
2. How to Create a Function with a Parameter.srt |
8.98Кб |
2. How to Install TensorFlow 1.mp4 |
11.36Мб |
2. How to Install TensorFlow 1.srt |
3.42Кб |
2. Importing the Absenteeism Data in Python.mp4 |
23.15Мб |
2. Importing the Absenteeism Data in Python.srt |
3.99Кб |
2. Introduction to Neural Networks.html |
165б |
2. Introduction to Programming.html |
165б |
2. Introduction to Regression Analysis.html |
165б |
2. Lists.html |
165б |
2. MNIST How to Tackle the MNIST.mp4 |
18.66Мб |
2. MNIST How to Tackle the MNIST.mp4 |
22.59Мб |
2. MNIST How to Tackle the MNIST.srt |
3.52Кб |
2. MNIST How to Tackle the MNIST.srt |
3.62Кб |
2. Multiple Linear Regression.html |
165б |
2. Necessary Programming Languages and Software Used in Data Science.html |
165б |
2. Object Oriented Programming.html |
165б |
2. Population and Sample.html |
165б |
2. Practical Example Descriptive Statistics Exercise.html |
81б |
2. Practical Example Hypothesis Testing Exercise.html |
81б |
2. Practical Example Inferential Statistics Exercise.html |
81б |
2. Practical Example Linear Regression (Part 2).mp4 |
46.01Мб |
2. Practical Example Linear Regression (Part 2).srt |
8.03Кб |
2. Probability in Statistics.mp4 |
77.29Мб |
2. Probability in Statistics.srt |
8.44Кб |
2. Problems with Gradient Descent.mp4 |
11.02Мб |
2. Problems with Gradient Descent.srt |
2.83Кб |
2. Sets and Events.html |
165б |
2. Some Examples of Clusters.mp4 |
71.54Мб |
2. Some Examples of Clusters.srt |
6.24Кб |
2. Techniques for Working with Traditional Data.html |
165б |
2. TensorFlow Outline and Comparison with Other Libraries.mp4 |
33.52Мб |
2. TensorFlow Outline and Comparison with Other Libraries.srt |
5.24Кб |
2. The Basic Probability Formula.html |
165б |
2. The Business Task.mp4 |
39.16Мб |
2. The Business Task.srt |
3.74Кб |
2. The IF Statement.html |
165б |
2. The Linear Regression Model.html |
165б |
2. The Reason Behind These Disciplines.html |
165б |
2. Types of Basic Preprocessing.mp4 |
11.85Мб |
2. Types of Basic Preprocessing.srt |
1.63Кб |
2. Types of Data.html |
165б |
2. Types of Simple Initializations.mp4 |
14.32Мб |
2. Types of Simple Initializations.srt |
3.67Кб |
2. Underfitting and Overfitting for Classification.mp4 |
25.08Мб |
2. Underfitting and Overfitting for Classification.srt |
2.63Кб |
2. Using Arithmetic Operators in Python.html |
165б |
2. Variables.html |
165б |
2. What's Further out there in terms of Machine Learning.mp4 |
20.13Мб |
2. What's Further out there in terms of Machine Learning.srt |
2.55Кб |
2. What are Confidence Intervals.html |
165б |
2. What are Data, Servers, Clients, Requests, and Responses.html |
165б |
2. What Does the Course Cover.mp4 |
62.26Мб |
2. What Does the Course Cover.srt |
5.08Кб |
2. What is a Deep Net.mp4 |
29.54Мб |
2. What is a Deep Net.srt |
3.24Кб |
2. What is a Distribution.mp4 |
61.59Мб |
2. What is a Distribution.srt |
5.85Кб |
2. What is a Matrix.html |
165б |
20.1 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2-solution.xlsx |
11.39Кб |
20.1 Additional Exercises Combinatorics.pdf |
106.58Кб |
20.1 Making predictions.html |
134б |
20.2 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx |
10.54Кб |
20.2 Additional Exercises Combinatorics Solutions.pdf |
245.67Кб |
20. A Practical Example of Combinatorics.mp4 |
134.32Мб |
20. A Practical Example of Combinatorics.srt |
13.96Кб |
20. Bayes' Law.mp4 |
49.94Мб |
20. Bayes' Law.srt |
7.20Кб |
20. Common Objective Functions Cross-Entropy Loss.html |
165б |
20. Continuous Distributions The Standard Normal Distribution.html |
165б |
20. Making Predictions with the Linear Regression.mp4 |
24.69Мб |
20. Making Predictions with the Linear Regression.srt |
4.44Кб |
20. Reordering Columns in a Pandas DataFrame in Python.mp4 |
14.01Мб |
20. Reordering Columns in a Pandas DataFrame in Python.srt |
1.82Кб |
20. Skewness.html |
165б |
20. Test for the mean. Independent Samples (Part 2). Exercise.html |
81б |
21.1 2.8. Skewness_exercise_solution.xlsx |
19.78Кб |
21.1 GD-function-example.xlsx |
42.33Кб |
21.2 2.8. Skewness_exercise.xlsx |
9.49Кб |
21. Bayes' Law.html |
165б |
21. Continuous Distributions The Students' T Distribution.mp4 |
27.19Мб |
21. Continuous Distributions The Students' T Distribution.srt |
2.79Кб |
21. EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html |
167б |
21. Optimization Algorithm 1-Parameter Gradient Descent.mp4 |
55.63Мб |
21. Optimization Algorithm 1-Parameter Gradient Descent.srt |
8.47Кб |
21. Skewness Exercise.html |
81б |
22.1 2.9. Variance_lesson.xlsx |
10.08Кб |
22.1 CDS_2017-2018 Hamilton.pdf |
845.31Кб |
22.2 Bayesian Homework - Solutions.pdf |
30.35Кб |
22.3 Bayesian Homework .pdf |
27.26Кб |
22. A Practical Example of Bayesian Inference.mp4 |
145.13Мб |
22. A Practical Example of Bayesian Inference.srt |
19.32Кб |
22. Continuous Distributions The Students' T Distribution.html |
165б |
22. Optimization Algorithm 1-Parameter Gradient Descent.html |
165б |
22. SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html |
471б |
22. Variance.mp4 |
50.96Мб |
22. Variance.srt |
7.53Кб |
23.1 2.9. Variance_exercise_solution.xlsx |
11.05Кб |
23.1 Creating Checkpoints.html |
176б |
23.2 2.9. Variance_exercise.xlsx |
10.83Кб |
23. Continuous Distributions The Chi-Squared Distribution.mp4 |
26.35Мб |
23. Continuous Distributions The Chi-Squared Distribution.srt |
2.76Кб |
23. Creating Checkpoints while Coding in Jupyter.mp4 |
25.67Мб |
23. Creating Checkpoints while Coding in Jupyter.srt |
3.64Кб |
23. Optimization Algorithm n-Parameter Gradient Descent.mp4 |
39.42Мб |
23. Optimization Algorithm n-Parameter Gradient Descent.srt |
7.53Кб |
23. Variance Exercise.html |
522б |
24.1 2.10. Standard deviation and coefficient of variation_lesson.xlsx |
10.97Кб |
24. Continuous Distributions The Chi-Squared Distribution.html |
165б |
24. EXERCISE - Creating Checkpoints while Coding in Jupyter.html |
137б |
24. Optimization Algorithm n-Parameter Gradient Descent.html |
165б |
24. Standard Deviation and Coefficient of Variation.mp4 |
45.12Мб |
24. Standard Deviation and Coefficient of Variation.srt |
6.60Кб |
25. Continuous Distributions The Exponential Distribution.mp4 |
40.24Мб |
25. Continuous Distributions The Exponential Distribution.srt |
4.13Кб |
25. SOLUTION - Creating Checkpoints while Coding in Jupyter.html |
117б |
25. Standard Deviation.html |
165б |
26.1 2.10.Standard-deviation-and-coefficient-of-variation-exercise.xlsx |
11.61Кб |
26.2 2.10.Standard-deviation-and-coefficient-of-variation-exercise-solution.xlsx |
12.60Кб |
26. Analyzing the Dates from the Initial Data Set.mp4 |
57.28Мб |
26. Analyzing the Dates from the Initial Data Set.srt |
8.43Кб |
26. Continuous Distributions The Exponential Distribution.html |
165б |
26. Standard Deviation and Coefficient of Variation Exercise.html |
81б |
27.1 2.11. Covariance_lesson.xlsx |
24.92Кб |
27. Continuous Distributions The Logistic Distribution.mp4 |
47.06Мб |
27. Continuous Distributions The Logistic Distribution.srt |
5.02Кб |
27. Covariance.mp4 |
27.49Мб |
27. Covariance.srt |
4.92Кб |
27. Extracting the Month Value from the Date Column.mp4 |
47.79Мб |
27. Extracting the Month Value from the Date Column.srt |
7.97Кб |
28. Continuous Distributions The Logistic Distribution.html |
165б |
28. Covariance.html |
165б |
28. Extracting the Day of the Week from the Date Column.mp4 |
27.96Мб |
28. Extracting the Day of the Week from the Date Column.srt |
4.47Кб |
29.1 2.11. Covariance_exercise.xlsx |
20.23Кб |
29.1 FIFA19.csv |
8.65Мб |
29.1 Preprocessing.html |
191б |
29.2 2.11. Covariance_exercise_solution.xlsx |
29.51Кб |
29.2 Daily Views (post).xlsx |
20.21Кб |
29.2 Removing the “Date” Column.html |
188б |
29.3 Customers_Membership.xlsx |
9.69Кб |
29.4 Customers_Membership (post).xlsx |
15.62Кб |
29.5 Daily Views.xlsx |
9.53Кб |
29.6 FIFA19 (post).csv |
8.64Мб |
29. A Practical Example of Probability Distributions.mp4 |
157.83Мб |
29. A Practical Example of Probability Distributions.srt |
19.91Кб |
29. Covariance Exercise.html |
81б |
29. EXERCISE - Removing the Date Column.html |
1.21Кб |
3.1 3.9.The-z-table.xlsx |
25.58Кб |
3.1 Add an Else Statement - Resources.html |
134б |
3.1 Adjusted R-squared.html |
134б |
3.1 Another Way to Define a Function - Resources.html |
134б |
3.1 Basic NN Example (Part 3).html |
136б |
3.1 Countries_exercise.csv |
8.27Кб |
3.1 Course Notes - Section 2.pdf |
578.08Кб |
3.1 FAQ_The_Data_Science_Course.pdf |
306.10Кб |
3.1 Heatmaps.html |
134б |
3.1 Help Yourself with Methods - Resources.html |
134б |
3.1 Logical and Identity Operators - Resources.html |
134б |
3.1 MNIST Importing the Relevant Packages.html |
134б |
3.1 Numbers and Boolean Values - Resources.html |
134б |
3.1 Probability Cheat Sheet.pdf |
320.28Кб |
3.1 Simple Linear Regression with sklearn.html |
156б |
3.1 TensorFlow MNIST Part 1 with Comments.html |
159б |
3.1 The Double Equality Sign - Resources.html |
134б |
3.1 While Loops and Incrementing - Resources.html |
134б |
3.2 3.9. Population variance known, z-score_lesson.xlsx |
11.21Кб |
3.2 A simple example of clustering.html |
134б |
3.2 Download All Resources.html |
134б |
3.2 Simple Linear Regression with sklearn with Comments.html |
170б |
3.3 1.01. Simple linear regression.csv |
922б |
3. Adjusted R-Squared.mp4 |
54.84Мб |
3. Adjusted R-Squared.srt |
7.53Кб |
3. A Note on Installing Packages in Anaconda.html |
2.30Кб |
3. A Note on Multicollinearity.html |
849б |
3. A Simple Example of Clustering - Exercise.html |
87б |
3. Basic NN Example (Part 3).mp4 |
24.41Мб |
3. Basic NN Example (Part 3).srt |
4.46Кб |
3. Business Case Balancing the Dataset.mp4 |
30.44Мб |
3. Business Case Balancing the Dataset.srt |
4.50Кб |
3. Checking the Content of the Data Set.mp4 |
61.90Мб |
3. Checking the Content of the Data Set.srt |
7.04Кб |
3. Computing Expected Values.mp4 |
75.68Мб |
3. Computing Expected Values.srt |
6.68Кб |
3. Confidence Intervals; Population Variance Known; Z-score.mp4 |
78.21Мб |
3. Confidence Intervals; Population Variance Known; Z-score.srt |
9.80Кб |
3. Correlation vs Regression.mp4 |
14.74Мб |
3. Correlation vs Regression.srt |
2.10Кб |
3. DeepMind and Deep Learning.html |
1.05Кб |
3. Defining a Function in Python - Part II.mp4 |
25.25Мб |
3. Defining a Function in Python - Part II.srt |
6.42Кб |
3. Deploying the 'absenteeism_module' - Part II.mp4 |
54.25Мб |
3. Deploying the 'absenteeism_module' - Part II.srt |
7.53Кб |
3. Difference between Classification and Clustering.mp4 |
36.15Мб |
3. Difference between Classification and Clustering.srt |
3.28Кб |
3. Digging into a Deep Net.mp4 |
59.37Мб |
3. Digging into a Deep Net.srt |
6.70Кб |
3. Download All Resources and Important FAQ.html |
21.35Кб |
3. EXERCISE - Reasons vs Probability.html |
397б |
3. Heatmaps.mp4 |
29.63Мб |
3. Heatmaps.srt |
6.34Кб |
3. Introducing the Data Set.mp4 |
40.87Мб |
3. Introducing the Data Set.srt |
4.15Кб |
3. Levels of Measurement.mp4 |
54.39Мб |
3. Levels of Measurement.srt |
4.54Кб |
3. Logical and Identity Operators.mp4 |
30.05Мб |
3. Logical and Identity Operators.srt |
5.77Кб |
3. Logistic vs Logit Function.mp4 |
86.50Мб |
3. Logistic vs Logit Function.srt |
4.88Кб |
3. MNIST Importing the Relevant Packages and Loading the Data.mp4 |
16.32Мб |
3. MNIST Importing the Relevant Packages and Loading the Data.srt |
3.07Кб |
3. MNIST Relevant Packages.mp4 |
18.90Мб |
3. MNIST Relevant Packages.srt |
2.12Кб |
3. Modules and Packages.mp4 |
8.50Мб |
3. Modules and Packages.srt |
1.26Кб |
3. Momentum.mp4 |
16.43Мб |
3. Momentum.srt |
3.45Кб |
3. Null vs Alternative Hypothesis.html |
165б |
3. Numbers and Boolean Values in Python.mp4 |
17.06Мб |
3. Numbers and Boolean Values in Python.srt |
3.68Кб |
3. Permutations and How to Use Them.mp4 |
42.73Мб |
3. Permutations and How to Use Them.srt |
4.07Кб |
3. Probability in Data Science.mp4 |
63.50Мб |
3. Probability in Data Science.srt |
6.65Кб |
3. Real Life Examples of Traditional Data.mp4 |
29.94Мб |
3. Real Life Examples of Traditional Data.srt |
2.24Кб |
3. Scalars and Vectors.mp4 |
33.85Мб |
3. Scalars and Vectors.srt |
3.78Кб |
3. Selecting the Inputs for the Logistic Regression.mp4 |
16.76Мб |
3. Selecting the Inputs for the Logistic Regression.srt |
3.66Кб |
3. Simple Linear Regression with sklearn.mp4 |
34.78Мб |
3. Simple Linear Regression with sklearn.srt |
7.33Кб |
3. Standardization.mp4 |
50.99Мб |
3. Standardization.srt |
5.97Кб |
3. State-of-the-Art Method - (Xavier) Glorot Initialization.mp4 |
17.14Мб |
3. State-of-the-Art Method - (Xavier) Glorot Initialization.srt |
3.71Кб |
3. TensorFlow 1 vs TensorFlow 2.mp4 |
22.00Мб |
3. TensorFlow 1 vs TensorFlow 2.srt |
3.63Кб |
3. The Double Equality Sign.mp4 |
5.99Мб |
3. The Double Equality Sign.srt |
1.82Кб |
3. The ELSE Statement.mp4 |
23.29Мб |
3. The ELSE Statement.srt |
6.28Кб |
3. The Importance of Working with a Balanced Dataset.mp4 |
39.42Мб |
3. The Importance of Working with a Balanced Dataset.srt |
4.48Кб |
3. Training the Model.mp4 |
28.72Мб |
3. Training the Model.srt |
4.28Кб |
3. Types of Probability Distributions.mp4 |
71.07Мб |
3. Types of Probability Distributions.srt |
9.31Кб |
3. Using Methods.mp4 |
37.60Мб |
3. Using Methods.srt |
8.36Кб |
3. Ways Sets Can Interact.mp4 |
47.43Мб |
3. Ways Sets Can Interact.srt |
4.39Кб |
3. What are Data Connectivity, APIs, and Endpoints.mp4 |
104.08Мб |
3. What are Data Connectivity, APIs, and Endpoints.srt |
8.54Кб |
3. What is a Distribution.html |
165б |
3. What is the difference between Analysis and Analytics.mp4 |
53.55Мб |
3. What is the difference between Analysis and Analytics.srt |
5.07Кб |
3. What is Validation.mp4 |
32.72Мб |
3. What is Validation.srt |
4.90Кб |
3. While Loops and Incrementing.mp4 |
28.43Мб |
3. While Loops and Incrementing.srt |
5.90Кб |
3. Why Python.mp4 |
75.08Мб |
3. Why Python.srt |
6.96Кб |
30. Analyzing Several Straightforward Columns for this Exercise.mp4 |
29.52Мб |
30. Analyzing Several Straightforward Columns for this Exercise.srt |
4.34Кб |
30. Correlation Coefficient.mp4 |
29.38Мб |
30. Correlation Coefficient.srt |
4.71Кб |
31. Correlation.html |
165б |
31. Working on Education, Children, and Pets.mp4 |
39.60Мб |
31. Working on Education, Children, and Pets.srt |
5.67Кб |
32.1 2.12. Correlation_exercise_solution.xlsx |
29.48Кб |
32.1 Exercises and solutions.html |
170б |
32.2 2.12. Correlation_exercise.xlsx |
29.30Кб |
32.2 Preprocessing.html |
156б |
32. Correlation Coefficient Exercise.html |
81б |
32. Final Remarks of this Section.mp4 |
21.63Мб |
32. Final Remarks of this Section.srt |
2.47Кб |
33. A Note on Exporting Your Data as a .csv File.html |
883б |
4.1 1.01. Simple linear regression.csv |
922б |
4.1 3.9. Population variance known, z-score_exercise_solution.xlsx |
11.16Кб |
4.1 Audiobooks Preprocessing.html |
134б |
4.1 Basic NN Example (Part 4).html |
145б |
4.1 Building a logistic regression.html |
134б |
4.1 Business Case Preprocessing the Data.html |
134б |
4.1 Clustering categorical data.html |
134б |
4.1 Course notes_hypothesis_testing.pdf |
656.44Кб |
4.1 Create Lists with the range() Function - Resources.html |
134б |
4.1 Deploying the ‘absenteeism_module.html |
185б |
4.1 Else if, for Brief - Elif - Resources.html |
134б |
4.1 sklearn - Linear Regression - Practical Example (Part 3).html |
134б |
4.1 TensorFlow MNIST Part 2 with Comments.html |
159б |
4.1 Using a Function in Another Function - Resources.html |
134б |
4.2 3.9. Population variance known, z-score_exercise.xlsx |
10.83Кб |
4.2 Simple Linear Regression with sklearn with Comments.html |
170б |
4.3 3.9.The-z-table.xlsx |
25.58Кб |
4.3 Simple Linear Regression with sklearn.html |
156б |
4. Adjusted R-Squared.html |
165б |
4. Analyzing Reasons vs Probability in Tableau.mp4 |
59.34Мб |
4. Analyzing Reasons vs Probability in Tableau.srt |
9.54Кб |
4. A Note on TensorFlow 2 Syntax.mp4 |
6.75Мб |
4. A Note on TensorFlow 2 Syntax.srt |
1.36Кб |
4. An overview of CNNs.mp4 |
58.80Мб |
4. An overview of CNNs.srt |
6.44Кб |
4. Basic NN Example (Part 4).mp4 |
61.14Мб |
4. Basic NN Example (Part 4).srt |
10.86Кб |
4. Building a Logistic Regression.mp4 |
17.11Мб |
4. Building a Logistic Regression.srt |
3.28Кб |
4. Business Case Preprocessing.mp4 |
103.42Мб |
4. Business Case Preprocessing.srt |
13.45Кб |
4. Business Case Preprocessing the Data.mp4 |
84.34Мб |
4. Business Case Preprocessing the Data.srt |
12.30Кб |
4. Clustering Categorical Data.mp4 |
21.24Мб |
4. Clustering Categorical Data.srt |
3.24Кб |
4. Computing Expected Values.html |
165б |
4. Confidence Intervals; Population Variance Known; Z-score; Exercise.html |
81б |
4. Correlation vs Regression.html |
165б |
4. Exporting the Obtained Data Set as a .csv.html |
998б |
4. How to Use a Function within a Function.mp4 |
8.14Мб |
4. How to Use a Function within a Function.srt |
2.03Кб |
4. Introducing the Data Set.html |
165б |
4. Introduction to Terms with Multiple Meanings.mp4 |
27.86Мб |
4. Introduction to Terms with Multiple Meanings.srt |
4.05Кб |
4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4 |
29.09Мб |
4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.srt |
5.93Кб |
4. Levels of Measurement.html |
165б |
4. Lists with the range() Function.mp4 |
25.79Мб |
4. Lists with the range() Function.srt |
7.66Кб |
4. Logical and Identity Operators.html |
165б |
4. Math Prerequisites.mp4 |
14.56Мб |
4. Math Prerequisites.srt |
4.05Кб |
4. MNIST Model Outline.mp4 |
56.39Мб |
4. MNIST Model Outline.srt |
9.06Кб |
4. MNIST Preprocess the Data - Create a Validation Set and Scale It.mp4 |
29.04Мб |
4. MNIST Preprocess the Data - Create a Validation Set and Scale It.srt |
6.27Кб |
4. Modules and Packages.html |
165б |
4. Non-Linearities and their Purpose.mp4 |
27.68Мб |
4. Non-Linearities and their Purpose.srt |
3.88Кб |
4. Numbers and Boolean Values in Python.html |
165б |
4. Permutations and How to Use Them.html |
165б |
4. Practical Example Linear Regression (Part 3).mp4 |
23.70Мб |
4. Practical Example Linear Regression (Part 3).srt |
4.12Кб |
4. Preprocessing Categorical Data.mp4 |
18.60Мб |
4. Preprocessing Categorical Data.srt |
2.76Кб |
4. Rejection Region and Significance Level.mp4 |
82.61Мб |
4. Rejection Region and Significance Level.srt |
8.69Кб |
4. Scalars and Vectors.html |
165б |
4. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4 |
32.01Мб |
4. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.srt |
6.69Кб |
4. Standardizing the Data.mp4 |
20.60Мб |
4. Standardizing the Data.srt |
4.19Кб |
4. Techniques for Working with Big Data.mp4 |
75.51Мб |
4. Techniques for Working with Big Data.srt |
5.67Кб |
4. TensorFlow Intro.mp4 |
47.70Мб |
4. TensorFlow Intro.srt |
5.20Кб |
4. The Double Equality Sign.html |
165б |
4. The ELIF Statement.mp4 |
53.34Мб |
4. The ELIF Statement.srt |
13.19Кб |
4. The Normal Distribution.mp4 |
49.86Мб |
4. The Normal Distribution.srt |
4.90Кб |
4. Training, Validation, and Test Datasets.mp4 |
25.20Мб |
4. Training, Validation, and Test Datasets.srt |
3.60Кб |
4. Training the Model.html |
165б |
4. Types of Probability Distributions.html |
165б |
4. Using Methods.html |
165б |
4. Ways Sets Can Interact.html |
165б |
4. What are Data Connectivity, APIs, and Endpoints.html |
165б |
4. What is the difference between Analysis and Analytics.html |
165б |
4. Why Python.html |
165б |
5.10 Basic NN Example Exercise 3d Solution.html |
154б |
5.1 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx |
30.77Кб |
5.1 365_DataScience_Diagram.pdf |
323.08Кб |
5.1 Actual Introduction to TensorFlow.html |
134б |
5.1 A Note on Boolean Values - Resources.html |
134б |
5.1 Basic NN Example (All Exercises).html |
143б |
5.1 Building a logistic regression.html |
134б |
5.1 Business Case Preprocessing the Data.html |
134б |
5.1 Clustering categorical data.html |
134б |
5.1 Combining Conditional Statements and Functions - Resources.html |
134б |
5.1 Dummies and VIF - Exercise and Solution.html |
134б |
5.1 List Slicing - Resources.html |
134б |
5.1 MNIST Preprocess the Data.html |
134б |
5.1 Multiple linear regression - exercise.html |
134б |
5.1 Preprocessing Exercise.html |
134б |
5.1 Reassign Values - Resources.html |
134б |
5.1 Strings - Resources.html |
134б |
5.1 TensorFlow MNIST Part 3 with Comments.html |
159б |
5.1 Types of File Formats.html |
134б |
5.2 Basic NN Example Exercise 5 Solution.html |
149б |
5.2 Categorical.csv |
10.34Кб |
5.2 Example_bank_data.csv |
6.21Кб |
5.2 Shortcuts-for-Jupyter.pdf |
619.17Кб |
5.3 Basic NN Example Exercise 3a Solution.html |
154б |
5.4 Basic NN Example Exercise 6 Solution.html |
149б |
5.5 Basic NN Example Exercise 2 Solution.html |
149б |
5.6 Basic NN Example Exercise 3c Solution.html |
154б |
5.7 Basic NN Example Exercise 4 Solution.html |
149б |
5.8 Basic NN Example Exercise 3b Solution.html |
154б |
5.9 Basic NN Example Exercise 1 Solution.html |
149б |
5. Activation Functions.mp4 |
25.09Мб |
5. Activation Functions.srt |
5.25Кб |
5. Actual Introduction to TensorFlow.mp4 |
17.41Мб |
5. Actual Introduction to TensorFlow.srt |
2.17Кб |
5. A Note on Boolean Values.mp4 |
20.00Мб |
5. A Note on Boolean Values.srt |
6.21Кб |
5. A Note on Normalization.html |
733б |
5. An Overview of RNNs.mp4 |
25.26Мб |
5. An Overview of RNNs.srt |
3.71Кб |
5. Basic NN Example Exercises.html |
1.66Кб |
5. Binary and One-Hot Encoding.mp4 |
28.94Мб |
5. Binary and One-Hot Encoding.srt |
4.81Кб |
5. Building a Logistic Regression - Exercise.html |
87б |
5. Business Analytics, Data Analytics, and Data Science An Introduction.mp4 |
64.52Мб |
5. Business Analytics, Data Analytics, and Data Science An Introduction.srt |
10.63Кб |
5. Business Case Preprocessing Exercise.html |
383б |
5. Business Case Preprocessing the Data - Exercise.html |
370б |
5. Categorical Variables - Visualization Techniques.mp4 |
36.64Мб |
5. Categorical Variables - Visualization Techniques.srt |
6.30Кб |
5. Characteristics of Discrete Distributions.mp4 |
22.71Мб |
5. Characteristics of Discrete Distributions.srt |
2.46Кб |
5. Clustering Categorical Data - Exercise.html |
87б |
5. Conditional Statements and Functions.mp4 |
15.69Мб |
5. Conditional Statements and Functions.srt |
3.51Кб |
5. Confidence Interval Clarifications.mp4 |
57.03Мб |
5. Confidence Interval Clarifications.srt |
5.41Кб |
5. Dummies and Variance Inflation Factor - Exercise.html |
76б |
5. EXERCISE - Transportation Expense vs Probability.html |
553б |
5. Frequency.mp4 |
61.74Мб |
5. Frequency.srt |
6.42Кб |
5. Geometrical Representation of the Linear Regression Model.mp4 |
5.13Мб |
5. Geometrical Representation of the Linear Regression Model.srt |
1.64Кб |
5. How to Reassign Values.mp4 |
4.01Мб |
5. How to Reassign Values.srt |
1.29Кб |
5. Intersection of Sets.mp4 |
26.96Мб |
5. Intersection of Sets.srt |
2.47Кб |
5. Learning Rate Schedules Visualized.mp4 |
9.11Мб |
5. Learning Rate Schedules Visualized.srt |
2.16Кб |
5. Linear Algebra and Geometry.mp4 |
49.80Мб |
5. Linear Algebra and Geometry.srt |
4.09Кб |
5. List Slicing.mp4 |
30.77Мб |
5. List Slicing.srt |
5.55Кб |
5. Lists with the range() Function.html |
165б |
5. MNIST Loss and Optimization Algorithm.mp4 |
25.86Мб |
5. MNIST Loss and Optimization Algorithm.srt |
3.53Кб |
5. MNIST Preprocess the Data - Scale the Test Data - Exercise.html |
79б |
5. Multiple Linear Regression Exercise.html |
76б |
5. N-Fold Cross Validation.mp4 |
20.71Мб |
5. N-Fold Cross Validation.srt |
4.17Кб |
5. Python Strings.mp4 |
50.65Мб |
5. Python Strings.srt |
14.55Кб |
5. Rejection Region and Significance Level.html |
165б |
5. Simple Operations with Factorials.mp4 |
36.12Мб |
5. Simple Operations with Factorials.srt |
3.26Кб |
5. Splitting the Data for Training and Testing.mp4 |
52.77Мб |
5. Splitting the Data for Training and Testing.srt |
8.10Кб |
5. Taking a Closer Look at APIs.mp4 |
115.60Мб |
5. Taking a Closer Look at APIs.srt |
10.39Кб |
5. Techniques for Working with Big Data.html |
165б |
5. The Normal Distribution.html |
165б |
5. Types of File Formats Supporting TensorFlow.mp4 |
16.41Мб |
5. Types of File Formats Supporting TensorFlow.srt |
3.50Кб |
5. Types of Machine Learning.mp4 |
45.10Мб |
5. Types of Machine Learning.srt |
5.23Кб |
5. What's Regression Analysis - a Quick Refresher.html |
2.84Кб |
5. What is the Standard Library.mp4 |
18.03Мб |
5. What is the Standard Library.srt |
3.56Кб |
5. Why Jupyter.mp4 |
44.32Мб |
5. Why Jupyter.srt |
4.64Кб |
6.1 3.4. Standard normal distribution_lesson.xlsx |
10.38Кб |
6.1 Basic NN Example with TensorFlow (Part 1).html |
154б |
6.1 Creating a Data Provider (Class).html |
134б |
6.1 Creating Functions Containing a Few Arguments - Resources.html |
134б |
6.1 How to choose the number of clusters.html |
134б |
6.1 Outlining the Model.html |
134б |
6.1 Simple linear regression with sklearn.html |
134б |
6.1 sklearn - Linear Regression - Practical Example (Part 4).html |
134б |
6.1 TensorFlow MNIST Part 4 with Comments.html |
159б |
6.1 Tuples - Resources.html |
134б |
6.1 Use Conditional Statements and Loops Together - Resources.html |
134б |
6. Activation Functions Softmax Activation.mp4 |
25.93Мб |
6. Activation Functions Softmax Activation.srt |
4.46Кб |
6. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp4 |
26.35Мб |
6. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).srt |
5.21Кб |
6. Analyzing Transportation Expense vs Probability in Tableau.mp4 |
40.63Мб |
6. Analyzing Transportation Expense vs Probability in Tableau.srt |
7.21Кб |
6. An Invaluable Coding Tip.mp4 |
23.05Мб |
6. An Invaluable Coding Tip.srt |
3.20Кб |
6. A Note on Boolean Values.html |
165б |
6. An Overview of non-NN Approaches.mp4 |
44.78Мб |
6. An Overview of non-NN Approaches.srt |
5.12Кб |
6. Business Analytics, Data Analytics, and Data Science An Introduction.html |
165б |
6. Business Case Load the Preprocessed Data.mp4 |
17.57Мб |
6. Business Case Load the Preprocessed Data.srt |
4.70Кб |
6. Calculating the Accuracy of the Model.mp4 |
43.91Мб |
6. Calculating the Accuracy of the Model.srt |
5.19Кб |
6. Categorical Variables - Visualization Techniques.html |
165б |
6. Characteristics of Discrete Distributions.html |
165б |
6. Conditional Statements and Loops.mp4 |
27.77Мб |
6. Conditional Statements and Loops.srt |
7.46Кб |
6. Creating a Data Provider.mp4 |
76.35Мб |
6. Creating a Data Provider.srt |
7.75Кб |
6. Early Stopping or When to Stop Training.mp4 |
24.18Мб |
6. Early Stopping or When to Stop Training.srt |
6.86Кб |
6. Fitting the Model and Assessing its Accuracy.mp4 |
41.62Мб |
6. Fitting the Model and Assessing its Accuracy.srt |
7.38Кб |
6. Frequency.html |
165б |
6. Functions Containing a Few Arguments.mp4 |
14.71Мб |
6. Functions Containing a Few Arguments.srt |
3.00Кб |
6. Geometrical Representation of the Linear Regression Model.html |
165б |
6. How to Choose the Number of Clusters.mp4 |
44.14Мб |
6. How to Choose the Number of Clusters.srt |
7.37Кб |
6. How to Reassign Values.html |
165б |
6. Intersection of Sets.html |
165б |
6. Linear Algebra and Geometry.html |
165б |
6. MNIST Preprocess the Data - Shuffle and Batch.mp4 |
41.52Мб |
6. MNIST Preprocess the Data - Shuffle and Batch.srt |
9.26Кб |
6. Outlining the Model with TensorFlow 2.mp4 |
34.69Мб |
6. Outlining the Model with TensorFlow 2.srt |
7.83Кб |
6. Practical Example Linear Regression (Part 4).mp4 |
56.05Мб |
6. Practical Example Linear Regression (Part 4).srt |
11.49Кб |
6. Python Strings.html |
165б |
6. Real Life Examples of Big Data.mp4 |
22.04Мб |
6. Real Life Examples of Big Data.srt |
1.88Кб |
6. Simple Linear Regression with sklearn - Exercise.html |
76б |
6. Simple Operations with Factorials.html |
165б |
6. Student's T Distribution.mp4 |
35.44Мб |
6. Student's T Distribution.srt |
4.13Кб |
6. Taking a Closer Look at APIs.html |
165б |
6. Test for Significance of the Model (F-Test).mp4 |
16.42Мб |
6. Test for Significance of the Model (F-Test).srt |
2.55Кб |
6. The Standard Normal Distribution.mp4 |
22.50Мб |
6. The Standard Normal Distribution.srt |
3.94Кб |
6. Tuples.mp4 |
29.50Мб |
6. Tuples.srt |
6.92Кб |
6. Type I Error and Type II Error.mp4 |
43.94Мб |
6. Type I Error and Type II Error.srt |
5.67Кб |
6. Types of File Formats, supporting Tensors.mp4 |
20.34Мб |
6. Types of File Formats, supporting Tensors.srt |
3.45Кб |
6. Types of Machine Learning.html |
165б |
6. Using a Statistical Approach towards the Solution to the Exercise.mp4 |
20.19Мб |
6. Using a Statistical Approach towards the Solution to the Exercise.srt |
2.80Кб |
6. What is the Standard Library.html |
165б |
6. Why Jupyter.html |
165б |
7.1 1.02. Multiple linear regression.csv |
1.07Кб |
7.1 365_DataScience.png |
6.93Мб |
7.1 Add Comments - Resources.html |
134б |
7.1 All In - Conditional Statements, Functions, and Loops - Resources.html |
134б |
7.1 Arrays in Python Notebook.html |
181б |
7.1 Basic NN Example with TensorFlow (Part 2).html |
154б |
7.1 Business Case Load the Preprocessed Data.html |
134б |
7.1 Countries_exercise.csv |
8.27Кб |
7.1 Dictionaries - Resources.html |
134б |
7.1 Interpreting the Result.html |
134б |
7.1 MNIST Preprocess the Data.html |
134б |
7.1 Notable Built-In Functions in Python - Resources.html |
134б |
7.1 Statistics - PDF with Excel Solutions that don't visualize properly.pdf |
289.12Кб |
7.1 TensorFlow Business Case Model Outline.html |
134б |
7.1 TensorFlow MNIST Part 5 with Comments.html |
159б |
7.2 2.3. Categorical variables. Visualization techniques_exercise.xlsx |
15.24Кб |
7.2 365_DataScience_Diagram.pdf |
323.08Кб |
7.2 How to choose the number of clusters.html |
134б |
7.2 Multiple Linear Regression with sklearn.html |
158б |
7.3 2.3. Categorical variables. Visualization techniques_exercise_solution.xlsx |
41.11Кб |
7.3 Multiple Linear Regression with sklearn with Comments.html |
172б |
7. Adam (Adaptive Moment Estimation).mp4 |
22.36Мб |
7. Adam (Adaptive Moment Estimation).srt |
3.33Кб |
7. Add Comments.mp4 |
11.27Мб |
7. Add Comments.srt |
3.87Кб |
7. Arrays in Python - A Convenient Way To Represent Matrices.mp4 |
26.67Мб |
7. Arrays in Python - A Convenient Way To Represent Matrices.srt |
6.13Кб |
7. Backpropagation.mp4 |
34.95Мб |
7. Backpropagation.srt |
4.46Кб |
7. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp4 |
38.50Мб |
7. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.srt |
7.36Кб |
7. Built-in Functions in Python.mp4 |
22.02Мб |
7. Built-in Functions in Python.srt |
4.21Кб |
7. Business Case Load the Preprocessed Data - Exercise.html |
79б |
7. Business Case Model Outline.mp4 |
53.13Мб |
7. Business Case Model Outline.srt |
6.94Кб |
7. Business Intelligence (BI) Techniques.mp4 |
89.95Мб |
7. Business Intelligence (BI) Techniques.srt |
8.63Кб |
7. Categorical Variables Exercise.html |
81б |
7. Communication between Software Products through Text Files.mp4 |
60.34Мб |
7. Communication between Software Products through Text Files.srt |
5.47Кб |
7. Conditional Statements, Functions, and Loops.mp4 |
9.48Мб |
7. Conditional Statements, Functions, and Loops.srt |
2.41Кб |
7. Continuing with BI, ML, and AI.mp4 |
108.99Мб |
7. Continuing with BI, ML, and AI.srt |
11.87Кб |
7. Creating a Summary Table with the Coefficients and Intercept.mp4 |
38.88Мб |
7. Creating a Summary Table with the Coefficients and Intercept.srt |
6.62Кб |
7. Dictionaries.mp4 |
41.69Мб |
7. Dictionaries.srt |
8.43Кб |
7. Discrete Distributions The Uniform Distribution.mp4 |
24.40Мб |
7. Discrete Distributions The Uniform Distribution.srt |
2.73Кб |
7. Dropping a Column from a DataFrame in Python.mp4 |
61.77Мб |
7. Dropping a Column from a DataFrame in Python.srt |
7.81Кб |
7. Dummy Variables - Exercise.html |
713б |
7. Events and Their Complements.mp4 |
59.16Мб |
7. Events and Their Complements.srt |
6.71Кб |
7. How to Choose the Number of Clusters - Exercise.html |
87б |
7. Importing Modules in Python.mp4 |
19.94Мб |
7. Importing Modules in Python.srt |
4.81Кб |
7. Installing Python and Jupyter.mp4 |
51.00Мб |
7. Installing Python and Jupyter.srt |
8.84Кб |
7. Interpreting the Result and Extracting the Weights and Bias.mp4 |
30.28Мб |
7. Interpreting the Result and Extracting the Weights and Bias.srt |
6.23Кб |
7. MNIST Batching and Early Stopping.mp4 |
12.85Мб |
7. MNIST Batching and Early Stopping.srt |
2.92Кб |
7. MNIST Preprocess the Data - Shuffle and Batch - Exercise.html |
79б |
7. Multiple Linear Regression with sklearn.mp4 |
20.08Мб |
7. Multiple Linear Regression with sklearn.srt |
4.17Кб |
7. OLS Assumptions.mp4 |
21.86Мб |
7. OLS Assumptions.srt |
3.03Кб |
7. Python Packages Installation.mp4 |
40.59Мб |
7. Python Packages Installation.srt |
5.62Кб |
7. Solving Variations with Repetition.mp4 |
34.01Мб |
7. Solving Variations with Repetition.srt |
3.47Кб |
7. Student's T Distribution.html |
165б |
7. The Linear Model (Linear Algebraic Version).mp4 |
28.45Мб |
7. The Linear Model (Linear Algebraic Version).srt |
3.88Кб |
7. The Standard Normal Distribution.html |
165б |
7. Type I Error and Type II Error.html |
165б |
7. Understanding Logistic Regression Tables.mp4 |
30.56Мб |
7. Understanding Logistic Regression Tables.srt |
5.56Кб |
7. Union of Sets.mp4 |
57.20Мб |
7. Union of Sets.srt |
5.53Кб |
8.1 1.02. Multiple linear regression.csv |
1.07Кб |
8.1 2.4. Numerical variables. Frequency distribution table_lesson.xlsx |
11.44Кб |
8.1 3.11. Population variance unknown, t-score_lesson.xlsx |
10.78Кб |
8.1 3.4.Standard-normal-distribution-exercise-solution.xlsx |
24.04Кб |
8.1 4.4. Test for the mean. Population variance known_lesson.xlsx |
10.96Кб |
8.1 Bank_data.csv |
19.55Кб |
8.1 Basic NN Example with TensorFlow (Part 3).html |
154б |
8.1 Business Case Learning and Interpreting.html |
134б |
8.1 Customizing a TensorFlow 2 Model.html |
134б |
8.1 First regression in Python.html |
134б |
8.1 Iterating over Dictionaries - Resources.html |
134б |
8.1 MNIST Outline the Model.html |
134б |
8.1 sklearn - Linear Regression - Practical Example (Part 5).html |
134б |
8.1 TensorFlow Business Case Optimization.html |
134б |
8.1 TensorFlow MNIST Part 6 with Comments.html |
159б |
8.1 Tensors Notebook.html |
148б |
8.2 3.11. The t-table.xlsx |
15.85Кб |
8.2 3.4.Standard-normal-distribution-exercise.xlsx |
11.99Кб |
8.2 Multiple Linear Regression and Adjusted R-squared.html |
187б |
8.2 Understanding logistic regression.html |
134б |
8.3 Multiple Linear Regression and Adjusted R-squared with Comments.html |
201б |
8. Add Comments.html |
165б |
8. Backpropagation Picture.mp4 |
19.50Мб |
8. Backpropagation Picture.srt |
3.97Кб |
8. Basic NN Example with TF Loss Function and Gradient Descent.mp4 |
32.52Мб |
8. Basic NN Example with TF Loss Function and Gradient Descent.srt |
4.83Кб |
8. Business Case Learning and Interpreting the Result.mp4 |
31.19Мб |
8. Business Case Learning and Interpreting the Result.srt |
6.27Кб |
8. Business Case Optimization.mp4 |
41.53Мб |
8. Business Case Optimization.srt |
6.60Кб |
8. Business Intelligence (BI) Techniques.html |
165б |
8. Calculating the Adjusted R-Squared in sklearn.mp4 |
30.88Мб |
8. Calculating the Adjusted R-Squared in sklearn.srt |
6.27Кб |
8. Communication between Software Products through Text Files.html |
165б |
8. Confidence Intervals; Population Variance Unknown; T-score.mp4 |
32.20Мб |
8. Confidence Intervals; Population Variance Unknown; T-score.srt |
5.71Кб |
8. Continuing with BI, ML, and AI.html |
165б |
8. Customizing a TensorFlow 2 Model.mp4 |
22.92Мб |
8. Customizing a TensorFlow 2 Model.srt |
4.11Кб |
8. Dictionaries.html |
165б |
8. Discrete Distributions The Uniform Distribution.html |
165б |
8. Events and Their Complements.html |
165б |
8. EXERCISE - Dropping a Column from a DataFrame in Python.html |
866б |
8. First Regression in Python.mp4 |
44.57Мб |
8. First Regression in Python.srt |
7.91Кб |
8. How to Iterate over Dictionaries.mp4 |
29.65Мб |
8. How to Iterate over Dictionaries.srt |
7.93Кб |
8. Importing Modules in Python.html |
165б |
8. Interpreting the Coefficients for Our Problem.mp4 |
52.38Мб |
8. Interpreting the Coefficients for Our Problem.srt |
7.89Кб |
8. MNIST Learning.mp4 |
46.69Мб |
8. MNIST Learning.srt |
10.19Кб |
8. MNIST Outline the Model.mp4 |
28.23Мб |
8. MNIST Outline the Model.srt |
7.20Кб |
8. Numerical Variables - Frequency Distribution Table.mp4 |
25.85Мб |
8. Numerical Variables - Frequency Distribution Table.srt |
4.36Кб |
8. OLS Assumptions.html |
165б |
8. Practical Example Linear Regression (Part 5).mp4 |
57.89Мб |
8. Practical Example Linear Regression (Part 5).srt |
10.59Кб |
8. Pros and Cons of K-Means Clustering.mp4 |
37.71Мб |
8. Pros and Cons of K-Means Clustering.srt |
4.61Кб |
8. Python Functions.html |
165б |
8. Solving Variations with Repetition.html |
165б |
8. Test for the Mean. Population Variance Known.mp4 |
54.23Мб |
8. Test for the Mean. Population Variance Known.srt |
8.14Кб |
8. The Linear Model.html |
165б |
8. The Standard Normal Distribution Exercise.html |
81б |
8. Understanding Jupyter's Interface - the Notebook Dashboard.mp4 |
13.80Мб |
8. Understanding Jupyter's Interface - the Notebook Dashboard.srt |
3.73Кб |
8. Understanding Logistic Regression Tables - Exercise.html |
87б |
8. Union of Sets.html |
165б |
8. What is a Tensor.mp4 |
22.53Мб |
8. What is a Tensor.srt |
3.61Кб |
9.1 3.11.The-t-table.xlsx |
15.85Кб |
9.1 365_DataScience.png |
6.92Мб |
9.1 4.4. Test for the mean. Population variance known_exercise.xlsx |
11.03Кб |
9.1 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf |
182.38Кб |
9.1 Basic NN Example with TensorFlow (Complete).html |
156б |
9.1 Basic NN with TensorFlow.html |
134б |
9.1 Business Case Setting an Early Stopping Mechanism.html |
134б |
9.1 Calculating the Adjusted R-Squared.html |
134б |
9.1 First regression in Python - Exercise.html |
134б |
9.1 Line Continuation - Resources.html |
134б |
9.1 Logistic Regression prior to Custom Scaler.html |
219б |
9.1 MNIST Select the Loss and the Optimizer.html |
134б |
9.1 TensorFlow Business Case Interpretation.html |
134б |
9.1 TensorFlow MNIST Complete Code with Comments.html |
152б |
9.2 3.11. Population variance unknown, t-score_exercise_solution.xlsx |
11.10Кб |
9.2 4.4. Test for the mean. Population variance known_exercise_solution.xlsx |
11.22Кб |
9.3 3.11. Population variance unknown, t-score_exercise.xlsx |
10.62Кб |
9. A1 Linearity.mp4 |
12.61Мб |
9. A1 Linearity.srt |
2.36Кб |
9. A Breakdown of our Data Science Infographic.mp4 |
67.75Мб |
9. A Breakdown of our Data Science Infographic.srt |
5.10Кб |
9. Backpropagation - A Peek into the Mathematics of Optimization.html |
539б |
9. Basic NN Example with TF Model Output.mp4 |
37.39Мб |
9. Basic NN Example with TF Model Output.srt |
7.93Кб |
9. Basic NN with TensorFlow Exercises.html |
1.29Кб |
9. Business Case Interpretation.mp4 |
25.75Мб |
9. Business Case Interpretation.srt |
2.94Кб |
9. Business Case Setting an Early Stopping Mechanism.mp4 |
49.82Мб |
9. Business Case Setting an Early Stopping Mechanism.srt |
7.82Кб |
9. Calculating the Adjusted R-Squared in sklearn - Exercise.html |
76б |
9. Central Limit Theorem.mp4 |
62.89Мб |
9. Central Limit Theorem.srt |
5.63Кб |
9. Confidence Intervals; Population Variance Unknown; T-score; Exercise.html |
81б |
9. Discrete Distributions The Bernoulli Distribution.mp4 |
34.14Мб |
9. Discrete Distributions The Bernoulli Distribution.srt |
3.85Кб |
9. First Regression in Python Exercise.html |
1.33Кб |
9. Linear Regression - Exercise.html |
503б |
9. MNIST Results and Testing.mp4 |
62.78Мб |
9. MNIST Results and Testing.srt |
8.17Кб |
9. MNIST Select the Loss and the Optimizer.mp4 |
13.91Мб |
9. MNIST Select the Loss and the Optimizer.srt |
3.02Кб |
9. Mutually Exclusive Sets.mp4 |
25.39Мб |
9. Mutually Exclusive Sets.srt |
2.52Кб |
9. Numerical Variables - Frequency Distribution Table.html |
165б |
9. Prerequisites for Coding in the Jupyter Notebooks.mp4 |
30.59Мб |
9. Prerequisites for Coding in the Jupyter Notebooks.srt |
7.79Кб |
9. Real Life Examples of Business Intelligence (BI).mp4 |
29.54Мб |
9. Real Life Examples of Business Intelligence (BI).srt |
2.13Кб |
9. Software Integration - Explained.mp4 |
63.70Мб |
9. Software Integration - Explained.srt |
6.71Кб |
9. SOLUTION - Dropping a Column from a DataFrame in Python.html |
113б |
9. Solving Variations without Repetition.mp4 |
43.15Мб |
9. Solving Variations without Repetition.srt |
4.53Кб |
9. Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4 |
41.19Мб |
9. Standardizing only the Numerical Variables (Creating a Custom Scaler).srt |
5.03Кб |
9. Test for the Mean. Population Variance Known Exercise.html |
81б |
9. The Linear Model with Multiple Inputs.mp4 |
25.12Мб |
9. The Linear Model with Multiple Inputs.srt |
3.09Кб |
9. To Standardize or not to Standardize.mp4 |
30.11Мб |
9. To Standardize or not to Standardize.srt |
5.88Кб |
9. Understanding Line Continuation.mp4 |
2.36Мб |
9. Understanding Line Continuation.srt |
1.13Кб |
9. What do the Odds Actually Mean.mp4 |
32.28Мб |
9. What do the Odds Actually Mean.srt |
4.79Кб |
9. What is a Tensor.html |
165б |