Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
[CourseClub.Me].url |
122б |
[CourseClub.Me].url |
122б |
[FreeCourseSite.com].url |
127б |
[FreeCourseSite.com].url |
127б |
[GigaCourse.Com].url |
49б |
[GigaCourse.Com].url |
49б |
001 Defining the Problem_en.vtt |
5.61Кб |
001 Defining the Problem.mp4 |
30.02Мб |
001 How to Translate a Business Problem into a Machine Learning Problem_en.vtt |
8.46Кб |
001 How to Translate a Business Problem into a Machine Learning Problem.mp4 |
31.01Мб |
001 Introduction to Linear Regression & Specifying the Problem_en.vtt |
7.58Кб |
001 Introduction to Linear Regression & Specifying the Problem.mp4 |
26.51Мб |
001 Setting up the Notebook and Understanding Delimiters in a Dataset_en.vtt |
9.80Кб |
001 Setting up the Notebook and Understanding Delimiters in a Dataset.mp4 |
53.98Мб |
001 Set up the Testing Notebook_en.vtt |
3.34Кб |
001 Set up the Testing Notebook.mp4 |
19.97Мб |
001 Solving a Business Problem with Image Classification_en.vtt |
4.49Кб |
001 Solving a Business Problem with Image Classification.mp4 |
19.47Мб |
001 The Human Brain and the Inspiration for Artificial Neural Networks_en.vtt |
9.96Кб |
001 The Human Brain and the Inspiration for Artificial Neural Networks.mp4 |
32.71Мб |
001 What's coming up_en.vtt |
2.32Кб |
001 What's Coming Up_en.vtt |
3.36Кб |
001 What's coming up.mp4 |
5.23Мб |
001 What's Coming Up.mp4 |
12.92Мб |
001 What is Machine Learning_en.vtt |
6.02Кб |
001 What is Machine Learning.mp4 |
40.37Мб |
001 What you'll make_en.vtt |
8.73Кб |
001 What you'll make.mp4 |
35.52Мб |
001 Where next.html |
3.90Кб |
001 Windows Users - Install Anaconda_en.vtt |
7.72Кб |
001 Windows Users - Install Anaconda.mp4 |
32.19Мб |
002 Create a Full Matrix_en.vtt |
19.11Кб |
002 Create a Full Matrix.mp4 |
104.85Мб |
002 Gather & Clean the Data_en.vtt |
12.20Кб |
002 Gather & Clean the Data.mp4 |
40.86Мб |
002 Gathering Email Data and Working with Archives & Text Editors_en.vtt |
12.26Кб |
002 Gathering Email Data and Working with Archives & Text Editors.mp4 |
95.99Мб |
002 Gathering the Boston House Price Data_en.vtt |
7.55Кб |
002 Gathering the Boston House Price Data.mp4 |
47.58Мб |
002 Getting the Data and Loading it into Numpy Arrays_en.vtt |
8.19Кб |
002 Getting the Data and Loading it into Numpy Arrays.mp4 |
39.66Мб |
002 How a Machine Learns_en.vtt |
6.32Кб |
002 How a Machine Learns.mp4 |
10.47Мб |
002 Installing Tensorflow and Keras for Jupyter_en.vtt |
5.90Кб |
002 Installing Tensorflow and Keras for Jupyter.mp4 |
31.92Мб |
002 Joint Conditional Probability (Part 1) Dot Product_en.vtt |
11.06Кб |
002 Joint Conditional Probability (Part 1) Dot Product.mp4 |
47.03Мб |
002 Layers, Feature Generation and Learning_en.vtt |
24.61Кб |
002 Layers, Feature Generation and Learning.mp4 |
124.35Мб |
002 Mac Users - Install Anaconda_en.vtt |
7.07Кб |
002 Mac Users - Install Anaconda.mp4 |
39.12Мб |
002 Saving Tensorflow Models_en.vtt |
19.00Кб |
002 Saving Tensorflow Models.mp4 |
103.67Мб |
002 What is Data Science_en.vtt |
5.04Кб |
002 What is Data Science.mp4 |
39.83Мб |
002 What Modules Do You Want to See.html |
431б |
003 Clean and Explore the Data (Part 1) Understand the Nature of the Dataset_en.vtt |
13.66Кб |
003 Clean and Explore the Data (Part 1) Understand the Nature of the Dataset.mp4 |
56.73Мб |
003 Costs and Disadvantages of Neural Networks_en.vtt |
16.96Кб |
003 Costs and Disadvantages of Neural Networks.mp4 |
76.56Мб |
003 Count the Tokens to Train the Naive Bayes Model_en.vtt |
16.19Кб |
003 Count the Tokens to Train the Naive Bayes Model.mp4 |
63.64Мб |
003 Data Exploration and Understanding the Structure of the Input Data_en.vtt |
5.73Кб |
003 Data Exploration and Understanding the Structure of the Input Data.mp4 |
20.60Мб |
003 Does LSD Make You Better at Maths_en.vtt |
6.42Кб |
003 Does LSD Make You Better at Maths.mp4 |
15.63Мб |
003 Download the Syllabus.html |
994б |
003 Explore & Visualise the Data with Python_en.vtt |
26.99Кб |
003 Explore & Visualise the Data with Python.mp4 |
105.12Мб |
003 Gathering the CIFAR 10 Dataset_en.vtt |
5.48Кб |
003 Gathering the CIFAR 10 Dataset.mp4 |
20.60Мб |
003 How to Add the Lesson Resources to the Project_en.vtt |
4.24Кб |
003 How to Add the Lesson Resources to the Project.mp4 |
18.95Мб |
003 Introduction to Cost Functions_en.vtt |
8.19Кб |
003 Introduction to Cost Functions.mp4 |
39.02Мб |
003 Joint Conditional Probablity (Part 2) Priors_en.vtt |
9.53Кб |
003 Joint Conditional Probablity (Part 2) Priors.mp4 |
45.80Мб |
003 Loading a SavedModel_en.vtt |
23.15Кб |
003 Loading a SavedModel.mp4 |
85.10Мб |
003 Stay in Touch!.html |
1.05Кб |
004 Clean and Explore the Data (Part 2) Find Missing Values_en.vtt |
16.27Кб |
004 Clean and Explore the Data (Part 2) Find Missing Values.mp4 |
107.48Мб |
004 Converting a Model to Tensorflow.js_en.vtt |
18.79Кб |
004 Converting a Model to Tensorflow.js.mp4 |
93.61Мб |
004 Data Preprocessing One-Hot Encoding and Creating the Validation Dataset_en.vtt |
11.48Кб |
004 Data Preprocessing One-Hot Encoding and Creating the Validation Dataset.mp4 |
49.34Мб |
004 Download the 12 Rules to Learn to Code.html |
1.12Кб |
004 Exploring the CIFAR Data_en.vtt |
16.11Кб |
004 Exploring the CIFAR Data.mp4 |
81.16Мб |
004 LaTeX Markdown and Generating Data with Numpy_en.vtt |
14.82Кб |
004 LaTeX Markdown and Generating Data with Numpy.mp4 |
47.01Мб |
004 Making Predictions Comparing Joint Probabilities_en.vtt |
8.78Кб |
004 Making Predictions Comparing Joint Probabilities.mp4 |
37.12Мб |
004 Preprocessing Image Data and How RGB Works_en.vtt |
14.37Кб |
004 Preprocessing Image Data and How RGB Works.mp4 |
69.24Мб |
004 Sum the Tokens across the Spam and Ham Subsets_en.vtt |
6.89Кб |
004 Sum the Tokens across the Spam and Ham Subsets.mp4 |
24.37Мб |
004 The Intuition behind the Linear Regression Model_en.vtt |
9.45Кб |
004 The Intuition behind the Linear Regression Model.mp4 |
12.86Мб |
004 The Naive Bayes Algorithm and the Decision Boundary for a Classifier_en.vtt |
5.36Кб |
004 The Naive Bayes Algorithm and the Decision Boundary for a Classifier.mp4 |
29.41Мб |
004 Top Tips for Succeeding on this Course.html |
2.06Кб |
005 [Python] - Variables and Types_en.vtt |
14.49Кб |
005 [Python] - Variables and Types.mp4 |
47.55Мб |
005 Analyse and Evaluate the Results_en.vtt |
19.58Кб |
005 Analyse and Evaluate the Results.mp4 |
75.46Мб |
005 Basic Probability_en.vtt |
4.62Кб |
005 Basic Probability.mp4 |
9.40Мб |
005 Calculate the Token Probabilities and Save the Trained Model_en.vtt |
8.26Кб |
005 Calculate the Token Probabilities and Save the Trained Model.mp4 |
35.29Мб |
005 Course Resources List.html |
1.12Кб |
005 Importing Keras Models and the Tensorflow Graph_en.vtt |
10.32Кб |
005 Importing Keras Models and the Tensorflow Graph.mp4 |
49.24Мб |
005 Introducing the Website Project and Tooling_en.vtt |
15.68Кб |
005 Introducing the Website Project and Tooling.mp4 |
68.79Мб |
005 Pre-processing Scaling Inputs and Creating a Validation Dataset_en.vtt |
17.80Кб |
005 Pre-processing Scaling Inputs and Creating a Validation Dataset.mp4 |
61.32Мб |
005 The Accuracy Metric_en.vtt |
6.68Кб |
005 The Accuracy Metric.mp4 |
28.66Мб |
005 Understanding the Power Rule & Creating Charts with Subplots_en.vtt |
15.59Кб |
005 Understanding the Power Rule & Creating Charts with Subplots.mp4 |
59.49Мб |
005 Visualising Data (Part 1) Historams, Distributions & Outliers_en.vtt |
12.39Кб |
005 Visualising Data (Part 1) Historams, Distributions & Outliers.mp4 |
42.62Мб |
005 What is a Tensor_en.vtt |
8.18Кб |
005 What is a Tensor.mp4 |
37.85Мб |
006 [Python] - Lists and Arrays_en.vtt |
10.55Кб |
006 [Python] - Lists and Arrays.mp4 |
35.09Мб |
006 [Python] - Loops and the Gradient Descent Algorithm_en.vtt |
37.63Кб |
006 [Python] - Loops and the Gradient Descent Algorithm.mp4 |
92.92Мб |
006 Coding Challenge Prepare the Test Data_en.vtt |
4.57Кб |
006 Coding Challenge Prepare the Test Data.mp4 |
28.62Мб |
006 Compiling a Keras Model and Understanding the Cross Entropy Loss Function_en.vtt |
16.58Кб |
006 Compiling a Keras Model and Understanding the Cross Entropy Loss Function.mp4 |
76.04Мб |
006 Creating Tensors and Setting up the Neural Network Architecture_en.vtt |
26.20Кб |
006 Creating Tensors and Setting up the Neural Network Architecture.mp4 |
110.62Мб |
006 Download the Complete Notebook Here.html |
242б |
006 HTML and CSS Styling_en.vtt |
33.85Кб |
006 HTML and CSS Styling.mp4 |
136.76Мб |
006 Joint & Conditional Probability_en.vtt |
17.25Кб |
006 Joint & Conditional Probability.mp4 |
88.31Мб |
006 Making Predictions using InceptionResNet_en.vtt |
17.08Кб |
006 Making Predictions using InceptionResNet.mp4 |
103.20Мб |
006 Visualising Data (Part 2) Seaborn and Probability Density Functions_en.vtt |
7.84Кб |
006 Visualising Data (Part 2) Seaborn and Probability Density Functions.mp4 |
37.60Мб |
006 Visualising the Decision Boundary_en.vtt |
30.30Кб |
006 Visualising the Decision Boundary.mp4 |
149.45Мб |
007 [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1)_en.vtt |
37.23Кб |
007 [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).mp4 |
229.50Мб |
007 [Python & Pandas] - Dataframes and Series_en.vtt |
24.43Кб |
007 [Python & Pandas] - Dataframes and Series.mp4 |
101.40Мб |
007 Bayes Theorem_en.vtt |
13.19Кб |
007 Bayes Theorem.mp4 |
51.07Мб |
007 Coding Challenge Solution Using other Keras Models_en.vtt |
11.83Кб |
007 Coding Challenge Solution Using other Keras Models.mp4 |
81.98Мб |
007 Defining the Cross Entropy Loss Function, the Optimizer and the Metrics_en.vtt |
12.68Кб |
007 Defining the Cross Entropy Loss Function, the Optimizer and the Metrics.mp4 |
49.63Мб |
007 Download the Complete Notebook Here.html |
242б |
007 False Positive vs False Negatives_en.vtt |
11.47Кб |
007 False Positive vs False Negatives.mp4 |
41.39Мб |
007 Interacting with the Operating System and the Python Try-Catch Block_en.vtt |
21.52Кб |
007 Interacting with the Operating System and the Python Try-Catch Block.mp4 |
45.79Мб |
007 Join the Student Community.html |
715б |
007 Loading a Tensorflow.js Model and Starting your own Server_en.vtt |
33.67Кб |
007 Loading a Tensorflow.js Model and Starting your own Server.mp4 |
175.41Мб |
007 Working with Index Data, Pandas Series, and Dummy Variables_en.vtt |
17.97Кб |
007 Working with Index Data, Pandas Series, and Dummy Variables.mp4 |
103.76Мб |
008 [Python] - Module Imports_en.vtt |
31.45Кб |
008 [Python] - Module Imports.mp4 |
186.86Мб |
008 [Python] - Tuples and the Pitfalls of Optimisation (Part 2)_en.vtt |
29.03Кб |
008 [Python] - Tuples and the Pitfalls of Optimisation (Part 2).mp4 |
145.22Мб |
008 Adding a Favicon_en.vtt |
6.50Кб |
008 Adding a Favicon.mp4 |
24.34Мб |
008 Any Feedback on this Section.html |
512б |
008 Any Feedback on this Section.html |
527б |
008 Download the Complete Notebook Here.html |
264б |
008 Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems_en.vtt |
12.76Кб |
008 Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems.mp4 |
76.55Мб |
008 Reading Files (Part 1) Absolute Paths and Relative Paths_en.vtt |
10.29Кб |
008 Reading Files (Part 1) Absolute Paths and Relative Paths.mp4 |
39.54Мб |
008 TensorFlow Sessions and Batching Data_en.vtt |
18.27Кб |
008 TensorFlow Sessions and Batching Data.mp4 |
73.63Мб |
008 The Recall Metric_en.vtt |
5.76Кб |
008 The Recall Metric.mp4 |
18.41Мб |
008 Understanding Descriptive Statistics the Mean vs the Median_en.vtt |
10.64Кб |
008 Understanding Descriptive Statistics the Mean vs the Median.mp4 |
41.03Мб |
009 [Python] - Functions - Part 1 Defining and Calling Functions_en.vtt |
9.15Кб |
009 [Python] - Functions - Part 1 Defining and Calling Functions.mp4 |
27.38Мб |
009 Any Feedback on this Section.html |
526б |
009 Introduction to Correlation Understanding Strength & Direction_en.vtt |
7.37Кб |
009 Introduction to Correlation Understanding Strength & Direction.mp4 |
12.92Мб |
009 Reading Files (Part 2) Stream Objects and Email Structure_en.vtt |
12.75Кб |
009 Reading Files (Part 2) Stream Objects and Email Structure.mp4 |
87.76Мб |
009 Styling an HTML Canvas_en.vtt |
35.37Кб |
009 Styling an HTML Canvas.mp4 |
172.69Мб |
009 Tensorboard Summaries and the Filewriter_en.vtt |
21.25Кб |
009 Tensorboard Summaries and the Filewriter.mp4 |
98.73Мб |
009 The Precision Metric_en.vtt |
8.42Кб |
009 The Precision Metric.mp4 |
34.47Мб |
009 Understanding the Learning Rate_en.vtt |
32.56Кб |
009 Understanding the Learning Rate.mp4 |
190.14Мб |
009 Use Regularisation to Prevent Overfitting Early Stopping & Dropout Techniques_en.vtt |
25.08Кб |
009 Use Regularisation to Prevent Overfitting Early Stopping & Dropout Techniques.mp4 |
152.54Мб |
010 [Python] - Functions - Part 2 Arguments & Parameters_en.vtt |
18.18Кб |
010 [Python] - Functions - Part 2 Arguments & Parameters.mp4 |
99.44Мб |
010 Calculating Correlations and the Problem posed by Multicollinearity_en.vtt |
15.48Кб |
010 Calculating Correlations and the Problem posed by Multicollinearity.mp4 |
82.51Мб |
010 Drawing on an HTML Canvas_en.vtt |
33.21Кб |
010 Drawing on an HTML Canvas.mp4 |
159.28Мб |
010 Extracting the Text in the Email Body_en.vtt |
5.19Кб |
010 Extracting the Text in the Email Body.mp4 |
30.49Мб |
010 How to Create 3-Dimensional Charts_en.vtt |
22.61Кб |
010 How to Create 3-Dimensional Charts.mp4 |
152.02Мб |
010 The F-score or F1 Metric_en.vtt |
4.47Кб |
010 The F-score or F1 Metric.mp4 |
16.46Мб |
010 Understanding the Tensorflow Graph Nodes and Edges_en.vtt |
18.52Кб |
010 Understanding the Tensorflow Graph Nodes and Edges.mp4 |
89.48Мб |
010 Use the Model to Make Predictions_en.vtt |
30.18Кб |
010 Use the Model to Make Predictions.mp4 |
173.85Мб |
011 [Python] - Functions - Part 3 Results & Return Values_en.vtt |
14.46Кб |
011 [Python] - Functions - Part 3 Results & Return Values.mp4 |
54.13Мб |
011 [Python] - Generator Functions & the yield Keyword_en.vtt |
19.48Кб |
011 [Python] - Generator Functions & the yield Keyword.mp4 |
104.22Мб |
011 A Naive Bayes Implementation using SciKit Learn_en.vtt |
29.27Кб |
011 A Naive Bayes Implementation using SciKit Learn.mp4 |
145.69Мб |
011 Data Pre-Processing for Tensorflow.js_en.vtt |
10.73Кб |
011 Data Pre-Processing for Tensorflow.js.mp4 |
25.56Мб |
011 Model Evaluation and the Confusion Matrix_en.vtt |
9.60Кб |
011 Model Evaluation and the Confusion Matrix.mp4 |
40.05Мб |
011 Name Scoping and Image Visualisation in Tensorboard_en.vtt |
23.85Кб |
011 Name Scoping and Image Visualisation in Tensorboard.mp4 |
66.81Мб |
011 Understanding Partial Derivatives and How to use SymPy_en.vtt |
17.62Кб |
011 Understanding Partial Derivatives and How to use SymPy.mp4 |
102.67Мб |
011 Visualising Correlations with a Heatmap_en.vtt |
21.22Кб |
011 Visualising Correlations with a Heatmap.mp4 |
108.43Мб |
012 [Python] - Objects - Understanding Attributes and Methods_en.vtt |
25.93Кб |
012 [Python] - Objects - Understanding Attributes and Methods.mp4 |
125.35Мб |
012 Create a Pandas DataFrame of Email Bodies_en.vtt |
6.24Кб |
012 Create a Pandas DataFrame of Email Bodies.mp4 |
37.37Мб |
012 Different Model Architectures Experimenting with Dropout_en.vtt |
27.03Кб |
012 Different Model Architectures Experimenting with Dropout.mp4 |
173.82Мб |
012 Download the Complete Notebook Here.html |
242б |
012 Implementing Batch Gradient Descent with SymPy_en.vtt |
11.26Кб |
012 Implementing Batch Gradient Descent with SymPy.mp4 |
65.49Мб |
012 Introduction to OpenCV_en.vtt |
34.43Кб |
012 Introduction to OpenCV.mp4 |
133.24Мб |
012 Model Evaluation and the Confusion Matrix_en.vtt |
35.46Кб |
012 Model Evaluation and the Confusion Matrix.mp4 |
193.26Мб |
012 Techniques to Style Scatter Plots_en.vtt |
18.04Кб |
012 Techniques to Style Scatter Plots.mp4 |
83.87Мб |
013 [Python] - Loops and Performance Considerations_en.vtt |
15.67Кб |
013 [Python] - Loops and Performance Considerations.mp4 |
106.59Мб |
013 A Note for the Next Lesson.html |
476б |
013 Any Feedback on this Section.html |
509б |
013 Cleaning Data (Part 1) Check for Empty Emails & Null Entries_en.vtt |
15.52Кб |
013 Cleaning Data (Part 1) Check for Empty Emails & Null Entries.mp4 |
90.33Мб |
013 Download the Complete Notebook Here.html |
242б |
013 How to Make Sense of Python Documentation for Data Visualisation_en.vtt |
23.06Кб |
013 How to Make Sense of Python Documentation for Data Visualisation.mp4 |
138.12Мб |
013 Prediction and Model Evaluation_en.vtt |
16.75Кб |
013 Prediction and Model Evaluation.mp4 |
87.34Мб |
013 Resizing and Adding Padding to Images_en.vtt |
24.19Кб |
013 Resizing and Adding Padding to Images.mp4 |
147.83Мб |
014 Any Feedback on this Section.html |
521б |
014 Calculating the Centre of Mass and Shifting the Image_en.vtt |
32.10Кб |
014 Calculating the Centre of Mass and Shifting the Image.mp4 |
210.44Мб |
014 Cleaning Data (Part 2) Working with a DataFrame Index_en.vtt |
7.95Кб |
014 Cleaning Data (Part 2) Working with a DataFrame Index.mp4 |
46.50Мб |
014 Download the Complete Notebook Here.html |
242б |
014 Reshaping and Slicing N-Dimensional Arrays_en.vtt |
19.97Кб |
014 Reshaping and Slicing N-Dimensional Arrays.mp4 |
95.11Мб |
014 Working with Python Objects to Analyse Data_en.vtt |
23.55Кб |
014 Working with Python Objects to Analyse Data.mp4 |
135.45Мб |
014 Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques_en.vtt |
25.00Кб |
014 Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.mp4 |
175.24Мб |
015 [Python] - Tips, Code Style and Naming Conventions_en.vtt |
14.66Кб |
015 [Python] - Tips, Code Style and Naming Conventions.mp4 |
67.18Мб |
015 Any Feedback on this Section.html |
499б |
015 Concatenating Numpy Arrays_en.vtt |
7.80Кб |
015 Concatenating Numpy Arrays.mp4 |
32.48Мб |
015 Making a Prediction from a Digit drawn on the HTML Canvas_en.vtt |
15.37Кб |
015 Making a Prediction from a Digit drawn on the HTML Canvas.mp4 |
98.46Мб |
015 Saving a JSON File with Pandas_en.vtt |
6.09Кб |
015 Saving a JSON File with Pandas.mp4 |
43.41Мб |
015 Understanding Multivariable Regression_en.vtt |
6.57Кб |
015 Understanding Multivariable Regression.mp4 |
31.51Мб |
016 Adding the Game Logic_en.vtt |
33.58Кб |
016 Adding the Game Logic.mp4 |
158.22Мб |
016 Data Visualisation (Part 1) Pie Charts_en.vtt |
14.02Кб |
016 Data Visualisation (Part 1) Pie Charts.mp4 |
70.09Мб |
016 Download the Complete Notebook Here.html |
242б |
016 How to Shuffle and Split Training & Testing Data_en.vtt |
9.99Кб |
016 How to Shuffle and Split Training & Testing Data.mp4 |
45.09Мб |
016 Introduction to the Mean Squared Error (MSE)_en.vtt |
11.02Кб |
016 Introduction to the Mean Squared Error (MSE).mp4 |
43.24Мб |
017 Any Feedback on this Section.html |
513б |
017 Data Visualisation (Part 2) Donut Charts_en.vtt |
8.31Кб |
017 Data Visualisation (Part 2) Donut Charts.mp4 |
40.95Мб |
017 Publish and Share your Website!_en.vtt |
8.19Кб |
017 Publish and Share your Website!.mp4 |
33.31Мб |
017 Running a Multivariable Regression_en.vtt |
8.53Кб |
017 Running a Multivariable Regression.mp4 |
40.20Мб |
017 Transposing and Reshaping Arrays_en.vtt |
11.69Кб |
017 Transposing and Reshaping Arrays.mp4 |
58.02Мб |
018 Any Feedback on this Section.html |
500б |
018 How to Calculate the Model Fit with R-Squared_en.vtt |
3.84Кб |
018 How to Calculate the Model Fit with R-Squared.mp4 |
21.48Мб |
018 Implementing a MSE Cost Function_en.vtt |
11.74Кб |
018 Implementing a MSE Cost Function.mp4 |
54.55Мб |
018 Introduction to Natural Language Processing (NLP)_en.vtt |
7.22Кб |
018 Introduction to Natural Language Processing (NLP).mp4 |
37.45Мб |
019 Introduction to Model Evaluation_en.vtt |
3.31Кб |
019 Introduction to Model Evaluation.mp4 |
7.34Мб |
019 Tokenizing, Removing Stop Words and the Python Set Data Structure_en.vtt |
16.58Кб |
019 Tokenizing, Removing Stop Words and the Python Set Data Structure.mp4 |
92.53Мб |
019 Understanding Nested Loops and Plotting the MSE Function (Part 1)_en.vtt |
12.12Кб |
019 Understanding Nested Loops and Plotting the MSE Function (Part 1).mp4 |
48.88Мб |
020 Improving the Model by Transforming the Data_en.vtt |
18.78Кб |
020 Improving the Model by Transforming the Data.mp4 |
81.41Мб |
020 Plotting the Mean Squared Error (MSE) on a Surface (Part 2)_en.vtt |
14.98Кб |
020 Plotting the Mean Squared Error (MSE) on a Surface (Part 2).mp4 |
96.91Мб |
020 Word Stemming & Removing Punctuation_en.vtt |
9.39Кб |
020 Word Stemming & Removing Punctuation.mp4 |
46.64Мб |
021 How to Interpret Coefficients using p-Values and Statistical Significance_en.vtt |
9.48Кб |
021 How to Interpret Coefficients using p-Values and Statistical Significance.mp4 |
49.02Мб |
021 Removing HTML tags with BeautifulSoup_en.vtt |
9.73Кб |
021 Removing HTML tags with BeautifulSoup.mp4 |
86.57Мб |
021 Running Gradient Descent with a MSE Cost Function_en.vtt |
19.24Кб |
021 Running Gradient Descent with a MSE Cost Function.mp4 |
74.32Мб |
022 Creating a Function for Text Processing_en.vtt |
7.21Кб |
022 Creating a Function for Text Processing.mp4 |
26.36Мб |
022 Understanding VIF & Testing for Multicollinearity_en.vtt |
22.29Кб |
022 Understanding VIF & Testing for Multicollinearity.mp4 |
105.42Мб |
022 Visualising the Optimisation on a 3D Surface_en.vtt |
9.35Кб |
022 Visualising the Optimisation on a 3D Surface.mp4 |
35.61Мб |
023 A Note for the Next Lesson.html |
476б |
023 Download the Complete Notebook Here.html |
242б |
023 Model Simplification & Baysian Information Criterion_en.vtt |
20.18Кб |
023 Model Simplification & Baysian Information Criterion.mp4 |
119.72Мб |
024 Advanced Subsetting on DataFrames the apply() Function_en.vtt |
11.79Кб |
024 Advanced Subsetting on DataFrames the apply() Function.mp4 |
55.26Мб |
024 Any Feedback on this Section.html |
520б |
024 How to Analyse and Plot Regression Residuals_en.vtt |
12.85Кб |
024 How to Analyse and Plot Regression Residuals.mp4 |
28.05Мб |
025 [Python] - Logical Operators to Create Subsets and Indices_en.vtt |
13.40Кб |
025 [Python] - Logical Operators to Create Subsets and Indices.mp4 |
57.42Мб |
025 Residual Analysis (Part 1) Predicted vs Actual Values_en.vtt |
15.74Кб |
025 Residual Analysis (Part 1) Predicted vs Actual Values.mp4 |
81.48Мб |
026 Residual Analysis (Part 2) Graphing and Comparing Regression Residuals_en.vtt |
19.68Кб |
026 Residual Analysis (Part 2) Graphing and Comparing Regression Residuals.mp4 |
99.19Мб |
026 Word Clouds & How to install Additional Python Packages_en.vtt |
10.49Кб |
026 Word Clouds & How to install Additional Python Packages.mp4 |
50.04Мб |
027 Creating your First Word Cloud_en.vtt |
12.01Кб |
027 Creating your First Word Cloud.mp4 |
45.54Мб |
027 Making Predictions (Part 1) MSE & R-Squared_en.vtt |
20.51Кб |
027 Making Predictions (Part 1) MSE & R-Squared.mp4 |
126.58Мб |
028 Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals_en.vtt |
12.88Кб |
028 Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals.mp4 |
63.72Мб |
028 Styling the Word Cloud with a Mask_en.vtt |
14.50Кб |
028 Styling the Word Cloud with a Mask.mp4 |
105.94Мб |
029 Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays_en.vtt |
17.87Кб |
029 Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays.mp4 |
102.57Мб |
029 Solving the Hamlet Challenge_en.vtt |
5.21Кб |
029 Solving the Hamlet Challenge.mp4 |
46.79Мб |
030 [Python] - Conditional Statements - Build a Valuation Tool (Part 2)_en.vtt |
18.44Кб |
030 [Python] - Conditional Statements - Build a Valuation Tool (Part 2).mp4 |
90.12Мб |
030 Styling Word Clouds with Custom Fonts_en.vtt |
12.88Кб |
030 Styling Word Clouds with Custom Fonts.mp4 |
99.44Мб |
031 Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module_en.vtt |
24.52Кб |
031 Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module.mp4 |
200.93Мб |
031 Create the Vocabulary for the Spam Classifier_en.vtt |
15.40Кб |
031 Create the Vocabulary for the Spam Classifier.mp4 |
70.09Мб |
032 Coding Challenge Check for Membership in a Collection_en.vtt |
5.31Кб |
032 Coding Challenge Check for Membership in a Collection.mp4 |
14.85Мб |
032 Download the Complete Notebook Here.html |
242б |
033 Any Feedback on this Section.html |
512б |
033 Coding Challenge Find the Longest Email_en.vtt |
6.55Кб |
033 Coding Challenge Find the Longest Email.mp4 |
41.10Мб |
034 Sparse Matrix (Part 1) Split the Training and Testing Data_en.vtt |
13.17Кб |
034 Sparse Matrix (Part 1) Split the Training and Testing Data.mp4 |
58.08Мб |
035 Sparse Matrix (Part 2) Data Munging with Nested Loops_en.vtt |
19.39Кб |
035 Sparse Matrix (Part 2) Data Munging with Nested Loops.mp4 |
91.56Мб |
036 Sparse Matrix (Part 3) Using groupby() and Saving .txt Files_en.vtt |
10.46Кб |
036 Sparse Matrix (Part 3) Using groupby() and Saving .txt Files.mp4 |
61.30Мб |
037 Coding Challenge Solution Preparing the Test Data_en.vtt |
3.93Кб |
037 Coding Challenge Solution Preparing the Test Data.mp4 |
18.88Мб |
038 Checkpoint Understanding the Data_en.vtt |
11.87Кб |
038 Checkpoint Understanding the Data.mp4 |
74.56Мб |
039 Download the Complete Notebook Here.html |
242б |
040 Any Feedback on this Section.html |
519б |
18162714-ML-Data-Science-Syllabus.pdf |
103.97Кб |
18175084-01-Linear-Regression-checkpoint.ipynb.zip |
37.64Кб |
18175146-01-Linear-Regression-complete.ipynb.zip |
75.28Кб |
18179882-02-Python-Intro.ipynb.zip |
36.44Кб |
18179908-03-Gradient-Descent.ipynb.zip |
1.14Мб |
18179918-04-Multivariable-Regression.ipynb.zip |
3.54Мб |
18179924-06-Bayes-Classifier-Pre-Processing.ipynb.zip |
978.02Кб |
18179928-04-Valuation-Tool.ipynb.zip |
2.93Кб |
18180042-07-Bayes-Classifier-Training.ipynb.zip |
5.82Кб |
18180294-07-Bayes-Classifier-Testing-Inference-Evaluation.ipynb.zip |
243.05Кб |
18180296-08-Naive-Bayes-with-scikit-learn.ipynb.zip |
13.26Кб |
18180490-09-Neural-Nets-Pretrained-Image-Classification.ipynb.zip |
571.83Кб |
18187728-10-Neural-Nets-Keras-CIFAR10-Classification.ipynb.zip |
120.11Кб |
18187740-11-Neural-Networks-TF-Handwriting-Recognition.ipynb.zip |
6.60Кб |
18188466-TF-Keras-Classification-Images.zip |
501.10Кб |
18190700-SpamData.zip |
22.83Мб |
18190704-SpamData.zip |
22.31Мб |
18190724-SpamData.zip |
21.28Мб |
18194656-MNIST.zip |
14.77Мб |
18204473-12-Rules-to-Learn-to-Code.pdf |
2.25Мб |
18877814-lsd-math-score-data.csv |
155б |
18905386-boston-valuation.py |
3.05Кб |
21028850-11-Neural-Networks-TF-Handwriting-Recognition.ipynb.zip |
6.39Кб |
21028876-MNIST-Model-Load-Files.zip |
2.84Мб |
21028894-TFJS.zip |
1.54Мб |
21028914-math-garden-stub.zip |
44.03Кб |
21028926-math-garden-stub-complete.zip |
4.09Мб |
21028932-math-garden-stub-12.12-checkpoint.zip |
4.09Мб |
21028968-12-TF-SavedModel-Export-Completed.ipynb.zip |
6.13Кб |
21028978-x-test0-ylabel7.txt |
4.59Кб |
21028982-x-test1-ylabel2.txt |
4.59Кб |
21028988-x-test2-ylabel1.txt |
4.59Кб |
9246634-cost-revenue-dirty.csv |
374.68Кб |
9249290-cost-revenue-clean.csv |
90.82Кб |
external-assets-links.txt |
120б |
external-assets-links.txt |
212б |
external-assets-links.txt |
83б |
external-assets-links.txt |
83б |
external-assets-links.txt |
83б |
external-assets-links.txt |
83б |
external-assets-links.txt |
83б |
external-assets-links.txt |
83б |
external-assets-links.txt |
83б |
external-assets-links.txt |
83б |
external-assets-links.txt |
83б |