Общая информация
Название [FreeCourseSite.com] Udemy - Complete 2022 Data Science & Machine Learning Bootcamp
Тип
Размер 12.53Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[FreeCourseSite.com].url 127б
[FreeCourseSite.com].url 127б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
001 Defining the Problem_en.vtt 5.61Кб
001 Defining the Problem.mp4 30.02Мб
001 How to Translate a Business Problem into a Machine Learning Problem_en.vtt 8.46Кб
001 How to Translate a Business Problem into a Machine Learning Problem.mp4 31.01Мб
001 Introduction to Linear Regression & Specifying the Problem_en.vtt 7.58Кб
001 Introduction to Linear Regression & Specifying the Problem.mp4 26.51Мб
001 Setting up the Notebook and Understanding Delimiters in a Dataset_en.vtt 9.80Кб
001 Setting up the Notebook and Understanding Delimiters in a Dataset.mp4 53.98Мб
001 Set up the Testing Notebook_en.vtt 3.34Кб
001 Set up the Testing Notebook.mp4 19.97Мб
001 Solving a Business Problem with Image Classification_en.vtt 4.49Кб
001 Solving a Business Problem with Image Classification.mp4 19.47Мб
001 The Human Brain and the Inspiration for Artificial Neural Networks_en.vtt 9.96Кб
001 The Human Brain and the Inspiration for Artificial Neural Networks.mp4 32.71Мб
001 What's coming up_en.vtt 2.32Кб
001 What's Coming Up_en.vtt 3.36Кб
001 What's coming up.mp4 5.23Мб
001 What's Coming Up.mp4 12.92Мб
001 What is Machine Learning_en.vtt 6.02Кб
001 What is Machine Learning.mp4 40.37Мб
001 What you'll make_en.vtt 8.73Кб
001 What you'll make.mp4 35.52Мб
001 Where next.html 3.90Кб
001 Windows Users - Install Anaconda_en.vtt 7.72Кб
001 Windows Users - Install Anaconda.mp4 32.19Мб
002 Create a Full Matrix_en.vtt 19.11Кб
002 Create a Full Matrix.mp4 104.85Мб
002 Gather & Clean the Data_en.vtt 12.20Кб
002 Gather & Clean the Data.mp4 40.86Мб
002 Gathering Email Data and Working with Archives & Text Editors_en.vtt 12.26Кб
002 Gathering Email Data and Working with Archives & Text Editors.mp4 95.99Мб
002 Gathering the Boston House Price Data_en.vtt 7.55Кб
002 Gathering the Boston House Price Data.mp4 47.58Мб
002 Getting the Data and Loading it into Numpy Arrays_en.vtt 8.19Кб
002 Getting the Data and Loading it into Numpy Arrays.mp4 39.66Мб
002 How a Machine Learns_en.vtt 6.32Кб
002 How a Machine Learns.mp4 10.47Мб
002 Installing Tensorflow and Keras for Jupyter_en.vtt 5.90Кб
002 Installing Tensorflow and Keras for Jupyter.mp4 31.92Мб
002 Joint Conditional Probability (Part 1) Dot Product_en.vtt 11.06Кб
002 Joint Conditional Probability (Part 1) Dot Product.mp4 47.03Мб
002 Layers, Feature Generation and Learning_en.vtt 24.61Кб
002 Layers, Feature Generation and Learning.mp4 124.35Мб
002 Mac Users - Install Anaconda_en.vtt 7.07Кб
002 Mac Users - Install Anaconda.mp4 39.12Мб
002 Saving Tensorflow Models_en.vtt 19.00Кб
002 Saving Tensorflow Models.mp4 103.67Мб
002 What is Data Science_en.vtt 5.04Кб
002 What is Data Science.mp4 39.83Мб
002 What Modules Do You Want to See.html 431б
003 Clean and Explore the Data (Part 1) Understand the Nature of the Dataset_en.vtt 13.66Кб
003 Clean and Explore the Data (Part 1) Understand the Nature of the Dataset.mp4 56.73Мб
003 Costs and Disadvantages of Neural Networks_en.vtt 16.96Кб
003 Costs and Disadvantages of Neural Networks.mp4 76.56Мб
003 Count the Tokens to Train the Naive Bayes Model_en.vtt 16.19Кб
003 Count the Tokens to Train the Naive Bayes Model.mp4 63.64Мб
003 Data Exploration and Understanding the Structure of the Input Data_en.vtt 5.73Кб
003 Data Exploration and Understanding the Structure of the Input Data.mp4 20.60Мб
003 Does LSD Make You Better at Maths_en.vtt 6.42Кб
003 Does LSD Make You Better at Maths.mp4 15.63Мб
003 Download the Syllabus.html 994б
003 Explore & Visualise the Data with Python_en.vtt 26.99Кб
003 Explore & Visualise the Data with Python.mp4 105.12Мб
003 Gathering the CIFAR 10 Dataset_en.vtt 5.48Кб
003 Gathering the CIFAR 10 Dataset.mp4 20.60Мб
003 How to Add the Lesson Resources to the Project_en.vtt 4.24Кб
003 How to Add the Lesson Resources to the Project.mp4 18.95Мб
003 Introduction to Cost Functions_en.vtt 8.19Кб
003 Introduction to Cost Functions.mp4 39.02Мб
003 Joint Conditional Probablity (Part 2) Priors_en.vtt 9.53Кб
003 Joint Conditional Probablity (Part 2) Priors.mp4 45.80Мб
003 Loading a SavedModel_en.vtt 23.15Кб
003 Loading a SavedModel.mp4 85.10Мб
003 Stay in Touch!.html 1.05Кб
004 Clean and Explore the Data (Part 2) Find Missing Values_en.vtt 16.27Кб
004 Clean and Explore the Data (Part 2) Find Missing Values.mp4 107.48Мб
004 Converting a Model to Tensorflow.js_en.vtt 18.79Кб
004 Converting a Model to Tensorflow.js.mp4 93.61Мб
004 Data Preprocessing One-Hot Encoding and Creating the Validation Dataset_en.vtt 11.48Кб
004 Data Preprocessing One-Hot Encoding and Creating the Validation Dataset.mp4 49.34Мб
004 Download the 12 Rules to Learn to Code.html 1.12Кб
004 Exploring the CIFAR Data_en.vtt 16.11Кб
004 Exploring the CIFAR Data.mp4 81.16Мб
004 LaTeX Markdown and Generating Data with Numpy_en.vtt 14.82Кб
004 LaTeX Markdown and Generating Data with Numpy.mp4 47.01Мб
004 Making Predictions Comparing Joint Probabilities_en.vtt 8.78Кб
004 Making Predictions Comparing Joint Probabilities.mp4 37.12Мб
004 Preprocessing Image Data and How RGB Works_en.vtt 14.37Кб
004 Preprocessing Image Data and How RGB Works.mp4 69.24Мб
004 Sum the Tokens across the Spam and Ham Subsets_en.vtt 6.89Кб
004 Sum the Tokens across the Spam and Ham Subsets.mp4 24.37Мб
004 The Intuition behind the Linear Regression Model_en.vtt 9.45Кб
004 The Intuition behind the Linear Regression Model.mp4 12.86Мб
004 The Naive Bayes Algorithm and the Decision Boundary for a Classifier_en.vtt 5.36Кб
004 The Naive Bayes Algorithm and the Decision Boundary for a Classifier.mp4 29.41Мб
004 Top Tips for Succeeding on this Course.html 2.06Кб
005 [Python] - Variables and Types_en.vtt 14.49Кб
005 [Python] - Variables and Types.mp4 47.55Мб
005 Analyse and Evaluate the Results_en.vtt 19.58Кб
005 Analyse and Evaluate the Results.mp4 75.46Мб
005 Basic Probability_en.vtt 4.62Кб
005 Basic Probability.mp4 9.40Мб
005 Calculate the Token Probabilities and Save the Trained Model_en.vtt 8.26Кб
005 Calculate the Token Probabilities and Save the Trained Model.mp4 35.29Мб
005 Course Resources List.html 1.12Кб
005 Importing Keras Models and the Tensorflow Graph_en.vtt 10.32Кб
005 Importing Keras Models and the Tensorflow Graph.mp4 49.24Мб
005 Introducing the Website Project and Tooling_en.vtt 15.68Кб
005 Introducing the Website Project and Tooling.mp4 68.79Мб
005 Pre-processing Scaling Inputs and Creating a Validation Dataset_en.vtt 17.80Кб
005 Pre-processing Scaling Inputs and Creating a Validation Dataset.mp4 61.32Мб
005 The Accuracy Metric_en.vtt 6.68Кб
005 The Accuracy Metric.mp4 28.66Мб
005 Understanding the Power Rule & Creating Charts with Subplots_en.vtt 15.59Кб
005 Understanding the Power Rule & Creating Charts with Subplots.mp4 59.49Мб
005 Visualising Data (Part 1) Historams, Distributions & Outliers_en.vtt 12.39Кб
005 Visualising Data (Part 1) Historams, Distributions & Outliers.mp4 42.62Мб
005 What is a Tensor_en.vtt 8.18Кб
005 What is a Tensor.mp4 37.85Мб
006 [Python] - Lists and Arrays_en.vtt 10.55Кб
006 [Python] - Lists and Arrays.mp4 35.09Мб
006 [Python] - Loops and the Gradient Descent Algorithm_en.vtt 37.63Кб
006 [Python] - Loops and the Gradient Descent Algorithm.mp4 92.92Мб
006 Coding Challenge Prepare the Test Data_en.vtt 4.57Кб
006 Coding Challenge Prepare the Test Data.mp4 28.62Мб
006 Compiling a Keras Model and Understanding the Cross Entropy Loss Function_en.vtt 16.58Кб
006 Compiling a Keras Model and Understanding the Cross Entropy Loss Function.mp4 76.04Мб
006 Creating Tensors and Setting up the Neural Network Architecture_en.vtt 26.20Кб
006 Creating Tensors and Setting up the Neural Network Architecture.mp4 110.62Мб
006 Download the Complete Notebook Here.html 242б
006 HTML and CSS Styling_en.vtt 33.85Кб
006 HTML and CSS Styling.mp4 136.76Мб
006 Joint & Conditional Probability_en.vtt 17.25Кб
006 Joint & Conditional Probability.mp4 88.31Мб
006 Making Predictions using InceptionResNet_en.vtt 17.08Кб
006 Making Predictions using InceptionResNet.mp4 103.20Мб
006 Visualising Data (Part 2) Seaborn and Probability Density Functions_en.vtt 7.84Кб
006 Visualising Data (Part 2) Seaborn and Probability Density Functions.mp4 37.60Мб
006 Visualising the Decision Boundary_en.vtt 30.30Кб
006 Visualising the Decision Boundary.mp4 149.45Мб
007 [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1)_en.vtt 37.23Кб
007 [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).mp4 229.50Мб
007 [Python & Pandas] - Dataframes and Series_en.vtt 24.43Кб
007 [Python & Pandas] - Dataframes and Series.mp4 101.40Мб
007 Bayes Theorem_en.vtt 13.19Кб
007 Bayes Theorem.mp4 51.07Мб
007 Coding Challenge Solution Using other Keras Models_en.vtt 11.83Кб
007 Coding Challenge Solution Using other Keras Models.mp4 81.98Мб
007 Defining the Cross Entropy Loss Function, the Optimizer and the Metrics_en.vtt 12.68Кб
007 Defining the Cross Entropy Loss Function, the Optimizer and the Metrics.mp4 49.63Мб
007 Download the Complete Notebook Here.html 242б
007 False Positive vs False Negatives_en.vtt 11.47Кб
007 False Positive vs False Negatives.mp4 41.39Мб
007 Interacting with the Operating System and the Python Try-Catch Block_en.vtt 21.52Кб
007 Interacting with the Operating System and the Python Try-Catch Block.mp4 45.79Мб
007 Join the Student Community.html 715б
007 Loading a Tensorflow.js Model and Starting your own Server_en.vtt 33.67Кб
007 Loading a Tensorflow.js Model and Starting your own Server.mp4 175.41Мб
007 Working with Index Data, Pandas Series, and Dummy Variables_en.vtt 17.97Кб
007 Working with Index Data, Pandas Series, and Dummy Variables.mp4 103.76Мб
008 [Python] - Module Imports_en.vtt 31.45Кб
008 [Python] - Module Imports.mp4 186.86Мб
008 [Python] - Tuples and the Pitfalls of Optimisation (Part 2)_en.vtt 29.03Кб
008 [Python] - Tuples and the Pitfalls of Optimisation (Part 2).mp4 145.22Мб
008 Adding a Favicon_en.vtt 6.50Кб
008 Adding a Favicon.mp4 24.34Мб
008 Any Feedback on this Section.html 512б
008 Any Feedback on this Section.html 527б
008 Download the Complete Notebook Here.html 264б
008 Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems_en.vtt 12.76Кб
008 Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems.mp4 76.55Мб
008 Reading Files (Part 1) Absolute Paths and Relative Paths_en.vtt 10.29Кб
008 Reading Files (Part 1) Absolute Paths and Relative Paths.mp4 39.54Мб
008 TensorFlow Sessions and Batching Data_en.vtt 18.27Кб
008 TensorFlow Sessions and Batching Data.mp4 73.63Мб
008 The Recall Metric_en.vtt 5.76Кб
008 The Recall Metric.mp4 18.41Мб
008 Understanding Descriptive Statistics the Mean vs the Median_en.vtt 10.64Кб
008 Understanding Descriptive Statistics the Mean vs the Median.mp4 41.03Мб
009 [Python] - Functions - Part 1 Defining and Calling Functions_en.vtt 9.15Кб
009 [Python] - Functions - Part 1 Defining and Calling Functions.mp4 27.38Мб
009 Any Feedback on this Section.html 526б
009 Introduction to Correlation Understanding Strength & Direction_en.vtt 7.37Кб
009 Introduction to Correlation Understanding Strength & Direction.mp4 12.92Мб
009 Reading Files (Part 2) Stream Objects and Email Structure_en.vtt 12.75Кб
009 Reading Files (Part 2) Stream Objects and Email Structure.mp4 87.76Мб
009 Styling an HTML Canvas_en.vtt 35.37Кб
009 Styling an HTML Canvas.mp4 172.69Мб
009 Tensorboard Summaries and the Filewriter_en.vtt 21.25Кб
009 Tensorboard Summaries and the Filewriter.mp4 98.73Мб
009 The Precision Metric_en.vtt 8.42Кб
009 The Precision Metric.mp4 34.47Мб
009 Understanding the Learning Rate_en.vtt 32.56Кб
009 Understanding the Learning Rate.mp4 190.14Мб
009 Use Regularisation to Prevent Overfitting Early Stopping & Dropout Techniques_en.vtt 25.08Кб
009 Use Regularisation to Prevent Overfitting Early Stopping & Dropout Techniques.mp4 152.54Мб
010 [Python] - Functions - Part 2 Arguments & Parameters_en.vtt 18.18Кб
010 [Python] - Functions - Part 2 Arguments & Parameters.mp4 99.44Мб
010 Calculating Correlations and the Problem posed by Multicollinearity_en.vtt 15.48Кб
010 Calculating Correlations and the Problem posed by Multicollinearity.mp4 82.51Мб
010 Drawing on an HTML Canvas_en.vtt 33.21Кб
010 Drawing on an HTML Canvas.mp4 159.28Мб
010 Extracting the Text in the Email Body_en.vtt 5.19Кб
010 Extracting the Text in the Email Body.mp4 30.49Мб
010 How to Create 3-Dimensional Charts_en.vtt 22.61Кб
010 How to Create 3-Dimensional Charts.mp4 152.02Мб
010 The F-score or F1 Metric_en.vtt 4.47Кб
010 The F-score or F1 Metric.mp4 16.46Мб
010 Understanding the Tensorflow Graph Nodes and Edges_en.vtt 18.52Кб
010 Understanding the Tensorflow Graph Nodes and Edges.mp4 89.48Мб
010 Use the Model to Make Predictions_en.vtt 30.18Кб
010 Use the Model to Make Predictions.mp4 173.85Мб
011 [Python] - Functions - Part 3 Results & Return Values_en.vtt 14.46Кб
011 [Python] - Functions - Part 3 Results & Return Values.mp4 54.13Мб
011 [Python] - Generator Functions & the yield Keyword_en.vtt 19.48Кб
011 [Python] - Generator Functions & the yield Keyword.mp4 104.22Мб
011 A Naive Bayes Implementation using SciKit Learn_en.vtt 29.27Кб
011 A Naive Bayes Implementation using SciKit Learn.mp4 145.69Мб
011 Data Pre-Processing for Tensorflow.js_en.vtt 10.73Кб
011 Data Pre-Processing for Tensorflow.js.mp4 25.56Мб
011 Model Evaluation and the Confusion Matrix_en.vtt 9.60Кб
011 Model Evaluation and the Confusion Matrix.mp4 40.05Мб
011 Name Scoping and Image Visualisation in Tensorboard_en.vtt 23.85Кб
011 Name Scoping and Image Visualisation in Tensorboard.mp4 66.81Мб
011 Understanding Partial Derivatives and How to use SymPy_en.vtt 17.62Кб
011 Understanding Partial Derivatives and How to use SymPy.mp4 102.67Мб
011 Visualising Correlations with a Heatmap_en.vtt 21.22Кб
011 Visualising Correlations with a Heatmap.mp4 108.43Мб
012 [Python] - Objects - Understanding Attributes and Methods_en.vtt 25.93Кб
012 [Python] - Objects - Understanding Attributes and Methods.mp4 125.35Мб
012 Create a Pandas DataFrame of Email Bodies_en.vtt 6.24Кб
012 Create a Pandas DataFrame of Email Bodies.mp4 37.37Мб
012 Different Model Architectures Experimenting with Dropout_en.vtt 27.03Кб
012 Different Model Architectures Experimenting with Dropout.mp4 173.82Мб
012 Download the Complete Notebook Here.html 242б
012 Implementing Batch Gradient Descent with SymPy_en.vtt 11.26Кб
012 Implementing Batch Gradient Descent with SymPy.mp4 65.49Мб
012 Introduction to OpenCV_en.vtt 34.43Кб
012 Introduction to OpenCV.mp4 133.24Мб
012 Model Evaluation and the Confusion Matrix_en.vtt 35.46Кб
012 Model Evaluation and the Confusion Matrix.mp4 193.26Мб
012 Techniques to Style Scatter Plots_en.vtt 18.04Кб
012 Techniques to Style Scatter Plots.mp4 83.87Мб
013 [Python] - Loops and Performance Considerations_en.vtt 15.67Кб
013 [Python] - Loops and Performance Considerations.mp4 106.59Мб
013 A Note for the Next Lesson.html 476б
013 Any Feedback on this Section.html 509б
013 Cleaning Data (Part 1) Check for Empty Emails & Null Entries_en.vtt 15.52Кб
013 Cleaning Data (Part 1) Check for Empty Emails & Null Entries.mp4 90.33Мб
013 Download the Complete Notebook Here.html 242б
013 How to Make Sense of Python Documentation for Data Visualisation_en.vtt 23.06Кб
013 How to Make Sense of Python Documentation for Data Visualisation.mp4 138.12Мб
013 Prediction and Model Evaluation_en.vtt 16.75Кб
013 Prediction and Model Evaluation.mp4 87.34Мб
013 Resizing and Adding Padding to Images_en.vtt 24.19Кб
013 Resizing and Adding Padding to Images.mp4 147.83Мб
014 Any Feedback on this Section.html 521б
014 Calculating the Centre of Mass and Shifting the Image_en.vtt 32.10Кб
014 Calculating the Centre of Mass and Shifting the Image.mp4 210.44Мб
014 Cleaning Data (Part 2) Working with a DataFrame Index_en.vtt 7.95Кб
014 Cleaning Data (Part 2) Working with a DataFrame Index.mp4 46.50Мб
014 Download the Complete Notebook Here.html 242б
014 Reshaping and Slicing N-Dimensional Arrays_en.vtt 19.97Кб
014 Reshaping and Slicing N-Dimensional Arrays.mp4 95.11Мб
014 Working with Python Objects to Analyse Data_en.vtt 23.55Кб
014 Working with Python Objects to Analyse Data.mp4 135.45Мб
014 Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques_en.vtt 25.00Кб
014 Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.mp4 175.24Мб
015 [Python] - Tips, Code Style and Naming Conventions_en.vtt 14.66Кб
015 [Python] - Tips, Code Style and Naming Conventions.mp4 67.18Мб
015 Any Feedback on this Section.html 499б
015 Concatenating Numpy Arrays_en.vtt 7.80Кб
015 Concatenating Numpy Arrays.mp4 32.48Мб
015 Making a Prediction from a Digit drawn on the HTML Canvas_en.vtt 15.37Кб
015 Making a Prediction from a Digit drawn on the HTML Canvas.mp4 98.46Мб
015 Saving a JSON File with Pandas_en.vtt 6.09Кб
015 Saving a JSON File with Pandas.mp4 43.41Мб
015 Understanding Multivariable Regression_en.vtt 6.57Кб
015 Understanding Multivariable Regression.mp4 31.51Мб
016 Adding the Game Logic_en.vtt 33.58Кб
016 Adding the Game Logic.mp4 158.22Мб
016 Data Visualisation (Part 1) Pie Charts_en.vtt 14.02Кб
016 Data Visualisation (Part 1) Pie Charts.mp4 70.09Мб
016 Download the Complete Notebook Here.html 242б
016 How to Shuffle and Split Training & Testing Data_en.vtt 9.99Кб
016 How to Shuffle and Split Training & Testing Data.mp4 45.09Мб
016 Introduction to the Mean Squared Error (MSE)_en.vtt 11.02Кб
016 Introduction to the Mean Squared Error (MSE).mp4 43.24Мб
017 Any Feedback on this Section.html 513б
017 Data Visualisation (Part 2) Donut Charts_en.vtt 8.31Кб
017 Data Visualisation (Part 2) Donut Charts.mp4 40.95Мб
017 Publish and Share your Website!_en.vtt 8.19Кб
017 Publish and Share your Website!.mp4 33.31Мб
017 Running a Multivariable Regression_en.vtt 8.53Кб
017 Running a Multivariable Regression.mp4 40.20Мб
017 Transposing and Reshaping Arrays_en.vtt 11.69Кб
017 Transposing and Reshaping Arrays.mp4 58.02Мб
018 Any Feedback on this Section.html 500б
018 How to Calculate the Model Fit with R-Squared_en.vtt 3.84Кб
018 How to Calculate the Model Fit with R-Squared.mp4 21.48Мб
018 Implementing a MSE Cost Function_en.vtt 11.74Кб
018 Implementing a MSE Cost Function.mp4 54.55Мб
018 Introduction to Natural Language Processing (NLP)_en.vtt 7.22Кб
018 Introduction to Natural Language Processing (NLP).mp4 37.45Мб
019 Introduction to Model Evaluation_en.vtt 3.31Кб
019 Introduction to Model Evaluation.mp4 7.34Мб
019 Tokenizing, Removing Stop Words and the Python Set Data Structure_en.vtt 16.58Кб
019 Tokenizing, Removing Stop Words and the Python Set Data Structure.mp4 92.53Мб
019 Understanding Nested Loops and Plotting the MSE Function (Part 1)_en.vtt 12.12Кб
019 Understanding Nested Loops and Plotting the MSE Function (Part 1).mp4 48.88Мб
020 Improving the Model by Transforming the Data_en.vtt 18.78Кб
020 Improving the Model by Transforming the Data.mp4 81.41Мб
020 Plotting the Mean Squared Error (MSE) on a Surface (Part 2)_en.vtt 14.98Кб
020 Plotting the Mean Squared Error (MSE) on a Surface (Part 2).mp4 96.91Мб
020 Word Stemming & Removing Punctuation_en.vtt 9.39Кб
020 Word Stemming & Removing Punctuation.mp4 46.64Мб
021 How to Interpret Coefficients using p-Values and Statistical Significance_en.vtt 9.48Кб
021 How to Interpret Coefficients using p-Values and Statistical Significance.mp4 49.02Мб
021 Removing HTML tags with BeautifulSoup_en.vtt 9.73Кб
021 Removing HTML tags with BeautifulSoup.mp4 86.57Мб
021 Running Gradient Descent with a MSE Cost Function_en.vtt 19.24Кб
021 Running Gradient Descent with a MSE Cost Function.mp4 74.32Мб
022 Creating a Function for Text Processing_en.vtt 7.21Кб
022 Creating a Function for Text Processing.mp4 26.36Мб
022 Understanding VIF & Testing for Multicollinearity_en.vtt 22.29Кб
022 Understanding VIF & Testing for Multicollinearity.mp4 105.42Мб
022 Visualising the Optimisation on a 3D Surface_en.vtt 9.35Кб
022 Visualising the Optimisation on a 3D Surface.mp4 35.61Мб
023 A Note for the Next Lesson.html 476б
023 Download the Complete Notebook Here.html 242б
023 Model Simplification & Baysian Information Criterion_en.vtt 20.18Кб
023 Model Simplification & Baysian Information Criterion.mp4 119.72Мб
024 Advanced Subsetting on DataFrames the apply() Function_en.vtt 11.79Кб
024 Advanced Subsetting on DataFrames the apply() Function.mp4 55.26Мб
024 Any Feedback on this Section.html 520б
024 How to Analyse and Plot Regression Residuals_en.vtt 12.85Кб
024 How to Analyse and Plot Regression Residuals.mp4 28.05Мб
025 [Python] - Logical Operators to Create Subsets and Indices_en.vtt 13.40Кб
025 [Python] - Logical Operators to Create Subsets and Indices.mp4 57.42Мб
025 Residual Analysis (Part 1) Predicted vs Actual Values_en.vtt 15.74Кб
025 Residual Analysis (Part 1) Predicted vs Actual Values.mp4 81.48Мб
026 Residual Analysis (Part 2) Graphing and Comparing Regression Residuals_en.vtt 19.68Кб
026 Residual Analysis (Part 2) Graphing and Comparing Regression Residuals.mp4 99.19Мб
026 Word Clouds & How to install Additional Python Packages_en.vtt 10.49Кб
026 Word Clouds & How to install Additional Python Packages.mp4 50.04Мб
027 Creating your First Word Cloud_en.vtt 12.01Кб
027 Creating your First Word Cloud.mp4 45.54Мб
027 Making Predictions (Part 1) MSE & R-Squared_en.vtt 20.51Кб
027 Making Predictions (Part 1) MSE & R-Squared.mp4 126.58Мб
028 Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals_en.vtt 12.88Кб
028 Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals.mp4 63.72Мб
028 Styling the Word Cloud with a Mask_en.vtt 14.50Кб
028 Styling the Word Cloud with a Mask.mp4 105.94Мб
029 Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays_en.vtt 17.87Кб
029 Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays.mp4 102.57Мб
029 Solving the Hamlet Challenge_en.vtt 5.21Кб
029 Solving the Hamlet Challenge.mp4 46.79Мб
030 [Python] - Conditional Statements - Build a Valuation Tool (Part 2)_en.vtt 18.44Кб
030 [Python] - Conditional Statements - Build a Valuation Tool (Part 2).mp4 90.12Мб
030 Styling Word Clouds with Custom Fonts_en.vtt 12.88Кб
030 Styling Word Clouds with Custom Fonts.mp4 99.44Мб
031 Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module_en.vtt 24.52Кб
031 Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module.mp4 200.93Мб
031 Create the Vocabulary for the Spam Classifier_en.vtt 15.40Кб
031 Create the Vocabulary for the Spam Classifier.mp4 70.09Мб
032 Coding Challenge Check for Membership in a Collection_en.vtt 5.31Кб
032 Coding Challenge Check for Membership in a Collection.mp4 14.85Мб
032 Download the Complete Notebook Here.html 242б
033 Any Feedback on this Section.html 512б
033 Coding Challenge Find the Longest Email_en.vtt 6.55Кб
033 Coding Challenge Find the Longest Email.mp4 41.10Мб
034 Sparse Matrix (Part 1) Split the Training and Testing Data_en.vtt 13.17Кб
034 Sparse Matrix (Part 1) Split the Training and Testing Data.mp4 58.08Мб
035 Sparse Matrix (Part 2) Data Munging with Nested Loops_en.vtt 19.39Кб
035 Sparse Matrix (Part 2) Data Munging with Nested Loops.mp4 91.56Мб
036 Sparse Matrix (Part 3) Using groupby() and Saving .txt Files_en.vtt 10.46Кб
036 Sparse Matrix (Part 3) Using groupby() and Saving .txt Files.mp4 61.30Мб
037 Coding Challenge Solution Preparing the Test Data_en.vtt 3.93Кб
037 Coding Challenge Solution Preparing the Test Data.mp4 18.88Мб
038 Checkpoint Understanding the Data_en.vtt 11.87Кб
038 Checkpoint Understanding the Data.mp4 74.56Мб
039 Download the Complete Notebook Here.html 242б
040 Any Feedback on this Section.html 519б
18162714-ML-Data-Science-Syllabus.pdf 103.97Кб
18175084-01-Linear-Regression-checkpoint.ipynb.zip 37.64Кб
18175146-01-Linear-Regression-complete.ipynb.zip 75.28Кб
18179882-02-Python-Intro.ipynb.zip 36.44Кб
18179908-03-Gradient-Descent.ipynb.zip 1.14Мб
18179918-04-Multivariable-Regression.ipynb.zip 3.54Мб
18179924-06-Bayes-Classifier-Pre-Processing.ipynb.zip 978.02Кб
18179928-04-Valuation-Tool.ipynb.zip 2.93Кб
18180042-07-Bayes-Classifier-Training.ipynb.zip 5.82Кб
18180294-07-Bayes-Classifier-Testing-Inference-Evaluation.ipynb.zip 243.05Кб
18180296-08-Naive-Bayes-with-scikit-learn.ipynb.zip 13.26Кб
18180490-09-Neural-Nets-Pretrained-Image-Classification.ipynb.zip 571.83Кб
18187728-10-Neural-Nets-Keras-CIFAR10-Classification.ipynb.zip 120.11Кб
18187740-11-Neural-Networks-TF-Handwriting-Recognition.ipynb.zip 6.60Кб
18188466-TF-Keras-Classification-Images.zip 501.10Кб
18190700-SpamData.zip 22.83Мб
18190704-SpamData.zip 22.31Мб
18190724-SpamData.zip 21.28Мб
18194656-MNIST.zip 14.77Мб
18204473-12-Rules-to-Learn-to-Code.pdf 2.25Мб
18877814-lsd-math-score-data.csv 155б
18905386-boston-valuation.py 3.05Кб
21028850-11-Neural-Networks-TF-Handwriting-Recognition.ipynb.zip 6.39Кб
21028876-MNIST-Model-Load-Files.zip 2.84Мб
21028894-TFJS.zip 1.54Мб
21028914-math-garden-stub.zip 44.03Кб
21028926-math-garden-stub-complete.zip 4.09Мб
21028932-math-garden-stub-12.12-checkpoint.zip 4.09Мб
21028968-12-TF-SavedModel-Export-Completed.ipynb.zip 6.13Кб
21028978-x-test0-ylabel7.txt 4.59Кб
21028982-x-test1-ylabel2.txt 4.59Кб
21028988-x-test2-ylabel1.txt 4.59Кб
9246634-cost-revenue-dirty.csv 374.68Кб
9249290-cost-revenue-clean.csv 90.82Кб
external-assets-links.txt 120б
external-assets-links.txt 212б
external-assets-links.txt 83б
external-assets-links.txt 83б
external-assets-links.txt 83б
external-assets-links.txt 83б
external-assets-links.txt 83б
external-assets-links.txt 83б
external-assets-links.txt 83б
external-assets-links.txt 83б
external-assets-links.txt 83б
Статистика распространения по странам
Индия (IN) 2
Великобритания (GB) 1
Россия (RU) 1
Израиль (IL) 1
Тунис (TN) 1
Южная Корея (KR) 1
США (US) 1
Мексика (MX) 1
Франция (FR) 1
Всего 10
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент