Please note that this page does not hosts or makes available any of the listed filenames. You
cannot download any of those files from here.
|
[TGx]Downloaded from torrentgalaxy.to .txt |
585B |
0 |
270B |
001 Anatomy of a torch dataset and dataloader.en.srt |
26.46KB |
001 Anatomy of a torch dataset and dataloader.mp4 |
135.84MB |
001 Bonus content.html |
4.45KB |
001 Convolution_ concepts.en.srt |
32.50KB |
001 Convolution_ concepts.mp4 |
98.06MB |
001 Downloading and using the code.en.srt |
9.41KB |
001 Downloading and using the code.mp4 |
45.65MB |
001 Explanation of weight matrix sizes.en.srt |
17.18KB |
001 Explanation of weight matrix sizes.mp4 |
68.98MB |
001 GAN_ What, why, and how.en.srt |
23.51KB |
001 GAN_ What, why, and how.mp4 |
89.74MB |
001 How to learn from the Python tutorial.en.srt |
4.83KB |
001 How to learn from the Python tutorial.mp4 |
21.97MB |
001 How to learn from this course.mp4 |
54.97MB |
001 How to learn topic _X_ in deep learning_.en.srt |
12.32KB |
001 How to learn topic _X_ in deep learning_.mp4 |
42.03MB |
001 If-else statements.en.srt |
21.71KB |
001 If-else statements.mp4 |
66.80MB |
001 Indexing.en.srt |
18.10KB |
001 Indexing.mp4 |
51.07MB |
001 Inputs and outputs.en.srt |
10.56KB |
001 Inputs and outputs.mp4 |
29.49MB |
001 Introduction to this section.en.srt |
2.90KB |
001 Introduction to this section.mp4 |
11.12MB |
001 Overview of gradient descent.en.srt |
20.89KB |
001 Overview of gradient descent.mp4 |
68.44MB |
001 Printing and string interpolation.en.srt |
24.33KB |
001 Printing and string interpolation.mp4 |
94.83MB |
001 Project 1_ A gratuitously complex adding machine.en.srt |
10.75KB |
001 Project 1_ A gratuitously complex adding machine.mp4 |
48.55MB |
001 Project 1_ Import and classify CIFAR10.en.srt |
10.56KB |
001 Project 1_ Import and classify CIFAR10.mp4 |
48.36MB |
001 Regularization_ Concept and methods.en.srt |
19.02KB |
001 Regularization_ Concept and methods.mp4 |
80.05MB |
001 Should you watch the Python tutorial_.en.srt |
6.14KB |
001 Should you watch the Python tutorial_.mp4 |
23.77MB |
001 The canonical CNN architecture.en.srt |
15.68KB |
001 The canonical CNN architecture.mp4 |
55.83MB |
001 The perceptron and ANN architecture.en.srt |
26.80KB |
001 The perceptron and ANN architecture.mp4 |
83.64MB |
001 Transfer learning_ What, why, and when_.en.srt |
24.76KB |
001 Transfer learning_ What, why, and when_.mp4 |
96.61MB |
001 Two perspectives of the world.en.srt |
10.32KB |
001 Two perspectives of the world.mp4 |
40.01MB |
001 What are _metaparameters__.en.srt |
7.35KB |
001 What are _metaparameters__.mp4 |
32.70MB |
001 What are autoencoders and what do they do_.en.srt |
16.93KB |
001 What are autoencoders and what do they do_.mp4 |
49.04MB |
001 What are fully-connected and feedforward networks_.en.srt |
6.94KB |
001 What are fully-connected and feedforward networks_.mp4 |
25.53MB |
001 What is a GPU and why use it_.en.srt |
22.47KB |
001 What is a GPU and why use it_.mp4 |
88.73MB |
001 What is an artificial neural network_.en.srt |
21.30KB |
001 What is an artificial neural network_.mp4 |
65.38MB |
001 What is overfitting and is it as bad as they say_.en.srt |
18.32KB |
001 What is overfitting and is it as bad as they say_.mp4 |
73.13MB |
001 What is style transfer and how does it work_.en.srt |
6.35KB |
001 What is style transfer and how does it work_.mp4 |
40.57MB |
001 Will AI save us or destroy us_.en.srt |
14.36KB |
001 Will AI save us or destroy us_.mp4 |
65.92MB |
002 Accuracy, precision, recall, F1.en.srt |
18.08KB |
002 Accuracy, precision, recall, F1.mp4 |
72.57MB |
002 A geometric view of ANNs.en.srt |
19.37KB |
002 A geometric view of ANNs.mp4 |
70.88MB |
002 A surprising demo of weight initializations.en.srt |
23.89KB |
002 A surprising demo of weight initializations.mp4 |
121.57MB |
002 CNN to classify MNIST digits.en.srt |
38.02KB |
002 CNN to classify MNIST digits.mp4 |
200.33MB |
002 Cross-validation.en.srt |
24.96KB |
002 Cross-validation.mp4 |
88.19MB |
002 Data size and network size.en.srt |
23.39KB |
002 Data size and network size.mp4 |
135.67MB |
002 Denoising MNIST.en.srt |
22.79KB |
002 Denoising MNIST.mp4 |
118.53MB |
002 Example case studies.en.srt |
9.15KB |
002 Example case studies.mp4 |
52.92MB |
002 Feature maps and convolution kernels.en.srt |
13.96KB |
002 Feature maps and convolution kernels.mp4 |
70.41MB |
002 How models _learn_.en.srt |
18.75KB |
002 How models _learn_.mp4 |
72.79MB |
002 How to read academic DL papers.en.srt |
25.43KB |
002 How to read academic DL papers.mp4 |
141.85MB |
002 If-else statements, part 2.en.srt |
22.90KB |
002 If-else statements, part 2.mp4 |
91.12MB |
002 Implementation.en.srt |
14.81KB |
002 Implementation.mp4 |
76.60MB |
002 Linear GAN with MNIST.en.srt |
31.99KB |
002 Linear GAN with MNIST.mp4 |
169.90MB |
002 My policy on code-sharing.en.srt |
2.52KB |
002 My policy on code-sharing.mp4 |
10.24MB |
002 Plotting dots and lines.en.srt |
17.70KB |
002 Plotting dots and lines.mp4 |
53.87MB |
002 Project 1_ My solution.en.srt |
17.15KB |
002 Project 1_ My solution.en.srt |
16.97KB |
002 Project 1_ My solution.mp4 |
118.60MB |
002 Project 1_ My solution.mp4 |
99.75MB |
002 Python libraries (numpy).en.srt |
20.01KB |
002 Python libraries (numpy).mp4 |
63.39MB |
002 Slicing.en.srt |
17.97KB |
002 Slicing.mp4 |
48.45MB |
002 Spectral theories in mathematics.en.srt |
13.58KB |
002 Spectral theories in mathematics.mp4 |
51.06MB |
002 The _wine quality_ dataset.en.srt |
25.71KB |
002 The _wine quality_ dataset.mp4 |
143.50MB |
002 The Gram matrix (feature activation covariance).en.srt |
16.79KB |
002 The Gram matrix (feature activation covariance).mp4 |
66.49MB |
002 The MNIST dataset.en.srt |
18.71KB |
002 The MNIST dataset.mp4 |
101.46MB |
002 train() and eval() modes.en.srt |
10.19KB |
002 train() and eval() modes.mp4 |
38.34MB |
002 Transfer learning_ MNIST -_ FMNIST.en.srt |
14.58KB |
002 Transfer learning_ MNIST -_ FMNIST.mp4 |
90.35MB |
002 Using Udemy like a pro.en.srt |
12.34KB |
002 Using Udemy like a pro.mp4 |
54.37MB |
002 Variables.en.srt |
27.29KB |
002 Variables.mp4 |
77.58MB |
002 What about local minima_.en.srt |
17.17KB |
002 What about local minima_.mp4 |
67.08MB |
003 ANN math part 1 (forward prop).en.srt |
17.39KB |
003 ANN math part 1 (forward prop).mp4 |
57.90MB |
003 APRF in code.en.srt |
9.38KB |
003 APRF in code.mp4 |
51.79MB |
003 CNN on shifted MNIST.en.srt |
12.12KB |
003 CNN on shifted MNIST.mp4 |
58.34MB |
003 CodeChallenge_ How many units_.en.srt |
28.86KB |
003 CodeChallenge_ How many units_.mp4 |
135.38MB |
003 CodeChallenge_ letters to numbers.en.srt |
20.54KB |
003 CodeChallenge_ letters to numbers.mp4 |
118.74MB |
003 CodeChallenge_ Linear GAN with FMNIST.en.srt |
13.88KB |
003 CodeChallenge_ Linear GAN with FMNIST.mp4 |
62.73MB |
003 CodeChallenge_ Minibatch size in the wine dataset.en.srt |
23.05KB |
003 CodeChallenge_ Minibatch size in the wine dataset.mp4 |
118.79MB |
003 CodeChallenge_ Run an experiment on the GPU.en.srt |
9.81KB |
003 CodeChallenge_ Run an experiment on the GPU.mp4 |
52.99MB |
003 CodeChallenge_ unbalanced data.en.srt |
29.32KB |
003 CodeChallenge_ unbalanced data.mp4 |
166.26MB |
003 Convolution in code.en.srt |
30.53KB |
003 Convolution in code.mp4 |
173.10MB |
003 Dropout regularization.en.srt |
31.17KB |
003 Dropout regularization.mp4 |
136.03MB |
003 DUDL_PythonCode.zip |
700.80KB |
003 FFN to classify digits.en.srt |
32.91KB |
003 FFN to classify digits.mp4 |
161.85MB |
003 For loops.en.srt |
25.24KB |
003 For loops.mp4 |
87.13MB |
003 Generalization.en.srt |
8.82KB |
003 Generalization.mp4 |
32.44MB |
003 Gradient descent in 1D.en.srt |
24.75KB |
003 Gradient descent in 1D.mp4 |
119.29MB |
003 Math and printing.en.srt |
26.80KB |
003 Math and printing.mp4 |
78.50MB |
003 Project 2_ CIFAR-autoencoder.en.srt |
7.00KB |
003 Project 2_ CIFAR-autoencoder.mp4 |
33.37MB |
003 Project 2_ Predicting heart disease.en.srt |
10.99KB |
003 Project 2_ Predicting heart disease.mp4 |
50.61MB |
003 Python libraries (pandas).en.srt |
20.30KB |
003 Python libraries (pandas).mp4 |
81.19MB |
003 Some other possible ethical scenarios.en.srt |
15.20KB |
003 Some other possible ethical scenarios.mp4 |
66.25MB |
003 Subplot geometry.en.srt |
23.14KB |
003 Subplot geometry.mp4 |
86.78MB |
003 Terms and datatypes in math and computers.en.srt |
10.68KB |
003 Terms and datatypes in math and computers.mp4 |
38.08MB |
003 Theory_ Why and how to initialize weights.en.srt |
18.23KB |
003 Theory_ Why and how to initialize weights.mp4 |
79.41MB |
003 The role of DL in science and knowledge.en.srt |
23.31KB |
003 The role of DL in science and knowledge.mp4 |
121.55MB |
003 The style transfer algorithm.en.srt |
15.10KB |
003 The style transfer algorithm.mp4 |
67.31MB |
004 AEs for occlusion.en.srt |
25.42KB |
004 AEs for occlusion.mp4 |
138.20MB |
004 ANN math part 2 (errors, loss, cost).en.srt |
13.89KB |
004 ANN math part 2 (errors, loss, cost).mp4 |
48.47MB |
004 APRF example 1_ wine quality.en.srt |
19.25KB |
004 APRF example 1_ wine quality.mp4 |
107.35MB |
004 Classify Gaussian blurs.en.srt |
34.26KB |
004 Classify Gaussian blurs.mp4 |
185.14MB |
004 CNN GAN with Gaussians.en.srt |
22.13KB |
004 CNN GAN with Gaussians.mp4 |
135.70MB |
004 CodeChallenge_ Binarized MNIST images.en.srt |
7.37KB |
004 CodeChallenge_ Binarized MNIST images.mp4 |
40.78MB |
004 CodeChallenge_ unfortunate starting value.en.srt |
16.00KB |
004 CodeChallenge_ unfortunate starting value.mp4 |
77.09MB |
004 CodeChallenge_ Weight variance inits.en.srt |
18.42KB |
004 CodeChallenge_ Weight variance inits.mp4 |
103.96MB |
004 Converting reality to numbers.en.srt |
9.57KB |
004 Converting reality to numbers.mp4 |
33.21MB |
004 Convolution parameters (stride, padding).en.srt |
18.09KB |
004 Convolution parameters (stride, padding).mp4 |
66.93MB |
004 Cross-validation -- manual separation.en.srt |
18.59KB |
004 Cross-validation -- manual separation.mp4 |
98.30MB |
004 Data normalization.en.srt |
19.68KB |
004 Data normalization.mp4 |
59.81MB |
004 Dropout regularization in practice.en.srt |
33.37KB |
004 Dropout regularization in practice.mp4 |
183.23MB |
004 Enumerate and zip.en.srt |
16.03KB |
004 Enumerate and zip.mp4 |
58.59MB |
004 Famous CNN architectures.en.srt |
8.70KB |
004 Famous CNN architectures.mp4 |
41.28MB |
004 Getting help on functions.en.srt |
11.05KB |
004 Getting help on functions.mp4 |
48.60MB |
004 Lists (1 of 2).en.srt |
20.48KB |
004 Lists (1 of 2).mp4 |
55.04MB |
004 Making the graphs look nicer.en.srt |
26.98KB |
004 Making the graphs look nicer.mp4 |
107.66MB |
004 Project 2_ My solution.en.srt |
27.78KB |
004 Project 2_ My solution.mp4 |
155.73MB |
004 Project 3_ FMNIST.en.srt |
5.11KB |
004 Project 3_ FMNIST.mp4 |
26.45MB |
004 Running experiments to understand DL.en.srt |
19.22KB |
004 Running experiments to understand DL.mp4 |
74.84MB |
004 Transferring the screaming bathtub.en.srt |
32.28KB |
004 Transferring the screaming bathtub.mp4 |
216.82MB |
004 What to do about unbalanced designs_.mp4 |
54.21MB |
004 Will deep learning take our jobs_.en.srt |
14.90KB |
004 Will deep learning take our jobs_.mp4 |
75.14MB |
005 Accountability and making ethical AI.en.srt |
16.71KB |
005 Accountability and making ethical AI.mp4 |
70.06MB |
005 ANN math part 3 (backprop).en.srt |
15.23KB |
005 ANN math part 3 (backprop).mp4 |
52.89MB |
005 APRF example 2_ MNIST.en.srt |
17.17KB |
005 APRF example 2_ MNIST.mp4 |
98.62MB |
005 Are artificial _neurons_ like biological neurons_.en.srt |
24.16KB |
005 Are artificial _neurons_ like biological neurons_.mp4 |
114.65MB |
005 CodeChallenge_ Data normalization.en.srt |
24.48KB |
005 CodeChallenge_ Data normalization.mp4 |
96.25MB |
005 CodeChallenge_ Gaussians with fewer layers.en.srt |
8.94KB |
005 CodeChallenge_ Gaussians with fewer layers.mp4 |
53.06MB |
005 CodeChallenge_ Style transfer with AlexNet.en.srt |
10.47KB |
005 CodeChallenge_ Style transfer with AlexNet.mp4 |
53.47MB |
005 Continue.en.srt |
10.09KB |
005 Continue.mp4 |
33.03MB |
005 Creating functions.en.srt |
30.89KB |
005 Creating functions.mp4 |
88.43MB |
005 Cross-validation -- scikitlearn.en.srt |
30.46KB |
005 Cross-validation -- scikitlearn.mp4 |
142.88MB |
005 Data oversampling in MNIST.en.srt |
24.16KB |
005 Data oversampling in MNIST.mp4 |
122.59MB |
005 Dropout example 2.en.srt |
9.18KB |
005 Dropout example 2.mp4 |
53.87MB |
005 Examine feature map activations.en.srt |
40.51KB |
005 Examine feature map activations.mp4 |
260.56MB |
005 Gradient descent in 2D.en.srt |
21.35KB |
005 Gradient descent in 2D.mp4 |
95.90MB |
005 Lists (2 of 2).en.srt |
14.58KB |
005 Lists (2 of 2).mp4 |
46.69MB |
005 Project 3_ FFN for missing data interpolation.en.srt |
14.38KB |
005 Project 3_ FFN for missing data interpolation.mp4 |
45.39MB |
005 Project 4_ Psychometric functions in CNNs.en.srt |
16.88KB |
005 Project 4_ Psychometric functions in CNNs.mp4 |
76.27MB |
005 Seaborn.en.srt |
15.73KB |
005 Seaborn.mp4 |
59.72MB |
005 The Conv2 class in PyTorch.en.srt |
18.90KB |
005 The Conv2 class in PyTorch.mp4 |
100.19MB |
005 The importance of data normalization.en.srt |
13.75KB |
005 The importance of data normalization.mp4 |
64.65MB |
005 The latent code of MNIST.en.srt |
31.66KB |
005 The latent code of MNIST.mp4 |
161.81MB |
005 Transfer learning with ResNet-18.en.srt |
24.59KB |
005 Transfer learning with ResNet-18.mp4 |
148.46MB |
005 Vector and matrix transpose.en.srt |
10.01KB |
005 Vector and matrix transpose.mp4 |
37.66MB |
005 Xavier and Kaiming initializations.en.srt |
22.52KB |
005 Xavier and Kaiming initializations.mp4 |
134.08MB |
006 ANN for regression.en.srt |
35.85KB |
006 ANN for regression.mp4 |
135.50MB |
006 Autoencoder with tied weights.en.srt |
34.83KB |
006 Autoencoder with tied weights.mp4 |
177.74MB |
006 Batch normalization.en.srt |
18.66KB |
006 Batch normalization.mp4 |
76.81MB |
006 CNN GAN with FMNIST.en.srt |
9.23KB |
006 CNN GAN with FMNIST.mp4 |
54.58MB |
006 CodeChallenge_ 2D gradient ascent.en.srt |
7.53KB |
006 CodeChallenge_ 2D gradient ascent.mp4 |
39.36MB |
006 CodeChallenge_ Choose the parameters.en.srt |
10.12KB |
006 CodeChallenge_ Choose the parameters.mp4 |
58.71MB |
006 CodeChallenge_ MNIST with unequal groups.en.srt |
12.70KB |
006 CodeChallenge_ MNIST with unequal groups.mp4 |
62.37MB |
006 CodeChallenge_ Softcode internal parameters.en.srt |
25.03KB |
006 CodeChallenge_ Softcode internal parameters.mp4 |
120.10MB |
006 CodeChallenge_ VGG-16.en.srt |
5.05KB |
006 CodeChallenge_ VGG-16.mp4 |
20.28MB |
006 CodeChallenge_ Xavier vs. Kaiming.en.srt |
24.65KB |
006 CodeChallenge_ Xavier vs. Kaiming.mp4 |
126.50MB |
006 Cross-validation -- DataLoader.en.srt |
28.57KB |
006 Cross-validation -- DataLoader.mp4 |
172.32MB |
006 Data noise augmentation (with devset+test).en.srt |
18.62KB |
006 Data noise augmentation (with devset+test).mp4 |
106.09MB |
006 Distributions of weights pre- and post-learning.en.srt |
22.05KB |
006 Distributions of weights pre- and post-learning.mp4 |
116.26MB |
006 Global and local variable scopes.en.srt |
19.67KB |
006 Global and local variable scopes.mp4 |
65.96MB |
006 Images.en.srt |
25.75KB |
006 Images.mp4 |
93.56MB |
006 Initializing variables.en.srt |
25.61KB |
006 Initializing variables.mp4 |
91.05MB |
006 OMG it's the dot product!.en.srt |
13.95KB |
006 OMG it's the dot product!.mp4 |
50.11MB |
006 Project 3_ My solution.en.srt |
11.88KB |
006 Project 3_ My solution.mp4 |
75.48MB |
006 Tuples.en.srt |
12.04KB |
006 Tuples.mp4 |
35.75MB |
006 Weight regularization (L1_L2)_ math.en.srt |
27.07KB |
006 Weight regularization (L1_L2)_ math.mp4 |
85.41MB |
007 Batch normalization in practice.en.srt |
11.05KB |
007 Batch normalization in practice.mp4 |
61.76MB |
007 Booleans.en.srt |
27.78KB |
007 Booleans.mp4 |
76.83MB |
007 CodeChallenge_ CNN GAN with CIFAR.en.srt |
11.65KB |
007 CodeChallenge_ CNN GAN with CIFAR.mp4 |
60.77MB |
007 CodeChallenge_ How wide the FC_.en.srt |
16.49KB |
007 CodeChallenge_ How wide the FC_.mp4 |
94.08MB |
007 CodeChallenge_ Identically random weights.en.srt |
17.92KB |
007 CodeChallenge_ Identically random weights.mp4 |
88.17MB |
007 CodeChallenge_ manipulate regression slopes.en.srt |
28.31KB |
007 CodeChallenge_ manipulate regression slopes.mp4 |
139.12MB |
007 CodeChallenge_ MNIST and breadth vs. depth.en.srt |
17.73KB |
007 CodeChallenge_ MNIST and breadth vs. depth.mp4 |
95.21MB |
007 Computation time.en.srt |
14.26KB |
007 Computation time.mp4 |
81.73MB |
007 Copies and referents of variables.en.srt |
7.24KB |
007 Copies and referents of variables.mp4 |
23.78MB |
007 Data feature augmentation.en.srt |
28.32KB |
007 Data feature augmentation.mp4 |
158.27MB |
007 Export plots in low and high resolution.en.srt |
11.37KB |
007 Export plots in low and high resolution.mp4 |
43.57MB |
007 L2 regularization in practice.en.srt |
18.97KB |
007 L2 regularization in practice.mp4 |
110.47MB |
007 Matrix multiplication.en.srt |
20.60KB |
007 Matrix multiplication.mp4 |
85.67MB |
007 Parametric experiments on g.d.en.srt |
27.15KB |
007 Parametric experiments on g.d.mp4 |
135.61MB |
007 Pretraining with autoencoders.en.srt |
28.75KB |
007 Pretraining with autoencoders.mp4 |
156.58MB |
007 Single-line loops (list comprehension).en.srt |
21.74KB |
007 Single-line loops (list comprehension).mp4 |
75.14MB |
007 Splitting data into train, devset, test.en.srt |
13.82KB |
007 Splitting data into train, devset, test.mp4 |
79.21MB |
007 Transpose convolution.en.srt |
19.91KB |
007 Transpose convolution.mp4 |
92.89MB |
008 ANN for classifying qwerties.en.srt |
34.00KB |
008 ANN for classifying qwerties.mp4 |
151.12MB |
008 Better performance in test than train_.en.srt |
11.95KB |
008 Better performance in test than train_.mp4 |
44.83MB |
008 CIFAR10 with autoencoder-pretrained model.en.srt |
25.89KB |
008 CIFAR10 with autoencoder-pretrained model.mp4 |
153.34MB |
008 Classes and object-oriented programming.en.srt |
26.60KB |
008 Classes and object-oriented programming.mp4 |
108.18MB |
008 CodeChallenge_ Batch-normalize the qwerties.en.srt |
7.52KB |
008 CodeChallenge_ Batch-normalize the qwerties.mp4 |
41.43MB |
008 CodeChallenge_ fixed vs. dynamic learning rate.en.srt |
23.05KB |
008 CodeChallenge_ fixed vs. dynamic learning rate.mp4 |
114.56MB |
008 CodeChallenge_ Optimizers and MNIST.en.srt |
9.92KB |
008 CodeChallenge_ Optimizers and MNIST.mp4 |
46.26MB |
008 Cross-validation on regression.en.srt |
11.99KB |
008 Cross-validation on regression.mp4 |
60.35MB |
008 Dictionaries.en.srt |
17.06KB |
008 Dictionaries.mp4 |
50.67MB |
008 Do autoencoders clean Gaussians_.en.srt |
24.39KB |
008 Do autoencoders clean Gaussians_.mp4 |
147.88MB |
008 Freezing weights during learning.en.srt |
19.25KB |
008 Freezing weights during learning.mp4 |
93.15MB |
008 Getting data into colab.en.srt |
8.85KB |
008 Getting data into colab.mp4 |
43.75MB |
008 L1 regularization in practice.en.srt |
17.44KB |
008 L1 regularization in practice.mp4 |
99.44MB |
008 Max_mean pooling.en.srt |
26.69KB |
008 Max_mean pooling.mp4 |
89.07MB |
008 Softmax.en.srt |
27.76KB |
008 Softmax.mp4 |
95.96MB |
008 while loops.en.srt |
27.94KB |
008 while loops.mp4 |
91.10MB |
009 Activation functions.en.srt |
26.49KB |
009 Activation functions.mp4 |
97.03MB |
009 Broadcasting in numpy.en.srt |
21.34KB |
009 Broadcasting in numpy.mp4 |
71.05MB |
009 CodeChallenge_ AEs and occluded Gaussians.en.srt |
14.03KB |
009 CodeChallenge_ AEs and occluded Gaussians.mp4 |
89.45MB |
009 Learning rates comparison.en.srt |
36.24KB |
009 Learning rates comparison.mp4 |
168.64MB |
009 Learning-related changes in weights.en.srt |
32.77KB |
009 Learning-related changes in weights.mp4 |
146.78MB |
009 Logarithms.en.srt |
11.47KB |
009 Logarithms.mp4 |
43.88MB |
009 Pooling in PyTorch.en.srt |
19.63KB |
009 Pooling in PyTorch.mp4 |
81.02MB |
009 Save and load trained models.en.srt |
8.95KB |
009 Save and load trained models.mp4 |
55.71MB |
009 Scrambled MNIST.en.srt |
11.24KB |
009 Scrambled MNIST.mp4 |
60.17MB |
009 Training in mini-batches.en.srt |
16.88KB |
009 Training in mini-batches.mp4 |
62.12MB |
009 Vanishing and exploding gradients.en.srt |
9.06KB |
009 Vanishing and exploding gradients.mp4 |
30.24MB |
010 Activation functions in PyTorch.en.srt |
16.95KB |
010 Activation functions in PyTorch.mp4 |
91.46MB |
010 Batch training in action.en.srt |
15.65KB |
010 Batch training in action.mp4 |
89.10MB |
010 CodeChallenge_ Custom loss functions.en.srt |
29.89KB |
010 CodeChallenge_ Custom loss functions.mp4 |
132.89MB |
010 Entropy and cross-entropy.mp4 |
106.00MB |
010 Function error checking and handling.en.srt |
25.36KB |
010 Function error checking and handling.mp4 |
99.87MB |
010 Multilayer ANN.en.srt |
29.40KB |
010 Multilayer ANN.mp4 |
144.70MB |
010 Save the best-performing model.en.srt |
21.98KB |
010 Save the best-performing model.mp4 |
126.50MB |
010 Shifted MNIST.en.srt |
16.47KB |
010 Shifted MNIST.mp4 |
77.91MB |
010 Tangent_ Notebook revision history.en.srt |
2.76KB |
010 Tangent_ Notebook revision history.mp4 |
22.18MB |
010 To pool or to stride_.en.srt |
14.28KB |
010 To pool or to stride_.mp4 |
55.51MB |
010 Use default inits or apply your own_.en.srt |
6.34KB |
010 Use default inits or apply your own_.mp4 |
28.05MB |
011 Activation functions comparison.en.srt |
13.59KB |
011 Activation functions comparison.mp4 |
73.90MB |
011 CodeChallenge_ The mystery of the missing 7.en.srt |
15.78KB |
011 CodeChallenge_ The mystery of the missing 7.mp4 |
74.25MB |
011 Discover the Gaussian parameters.en.srt |
23.25KB |
011 Discover the Gaussian parameters.mp4 |
136.65MB |
011 Image transforms.en.srt |
23.92KB |
011 Image transforms.mp4 |
129.90MB |
011 Linear solutions to linear problems.en.srt |
12.17KB |
011 Linear solutions to linear problems.mp4 |
50.37MB |
011 Min_max and argmin_argmax.en.srt |
18.16KB |
011 Min_max and argmin_argmax.mp4 |
88.21MB |
011 The importance of equal batch sizes.en.srt |
9.47KB |
011 The importance of equal batch sizes.mp4 |
60.11MB |
011 Where to find online datasets.en.srt |
8.19KB |
011 Where to find online datasets.mp4 |
41.70MB |
012 CodeChallenge_ Compare relu variants.en.srt |
11.29KB |
012 CodeChallenge_ Compare relu variants.mp4 |
63.97MB |
012 CodeChallenge_ Effects of mini-batch size.en.srt |
18.09KB |
012 CodeChallenge_ Effects of mini-batch size.mp4 |
95.42MB |
012 Creating and using custom DataLoaders.en.srt |
26.50KB |
012 Creating and using custom DataLoaders.mp4 |
139.53MB |
012 Mean and variance.en.srt |
22.48KB |
012 Mean and variance.mp4 |
80.57MB |
012 The EMNIST dataset (letter recognition).en.srt |
36.14KB |
012 The EMNIST dataset (letter recognition).mp4 |
201.31MB |
012 Universal approximation theorem.en.srt |
11.70KB |
012 Universal approximation theorem.mp4 |
49.18MB |
012 Why multilayer linear models don't exist.en.srt |
9.21KB |
012 Why multilayer linear models don't exist.mp4 |
26.46MB |
013 CodeChallenge_ Predict sugar.en.srt |
24.98KB |
013 CodeChallenge_ Predict sugar.mp4 |
122.10MB |
013 Dropout in CNNs.en.srt |
14.17KB |
013 Dropout in CNNs.mp4 |
82.73MB |
013 Multi-output ANN (iris dataset).en.srt |
37.47KB |
013 Multi-output ANN (iris dataset).mp4 |
186.77MB |
013 Random sampling and sampling variability.en.srt |
16.36KB |
013 Random sampling and sampling variability.mp4 |
85.42MB |
014 CodeChallenge_ How low can you go_.en.srt |
9.95KB |
014 CodeChallenge_ How low can you go_.mp4 |
55.36MB |
014 CodeChallenge_ more qwerties!.en.srt |
17.79KB |
014 CodeChallenge_ more qwerties!.mp4 |
95.10MB |
014 Loss functions.en.srt |
24.18KB |
014 Loss functions.mp4 |
90.30MB |
014 Reproducible randomness via seeding.en.srt |
11.76KB |
014 Reproducible randomness via seeding.mp4 |
69.70MB |
015 CodeChallenge_ Varying number of channels.en.srt |
19.61KB |
015 CodeChallenge_ Varying number of channels.mp4 |
92.37MB |
015 Comparing the number of hidden units.en.srt |
14.62KB |
015 Comparing the number of hidden units.mp4 |
71.15MB |
015 Loss functions in PyTorch.en.srt |
26.87KB |
015 Loss functions in PyTorch.mp4 |
138.10MB |
015 The t-test.en.srt |
19.38KB |
015 The t-test.mp4 |
81.36MB |
016 Depth vs. breadth_ number of parameters.en.srt |
25.73KB |
016 Depth vs. breadth_ number of parameters.mp4 |
132.07MB |
016 Derivatives_ intuition and polynomials.en.srt |
24.42KB |
016 Derivatives_ intuition and polynomials.mp4 |
80.30MB |
016 More practice with multioutput ANNs.en.srt |
20.32KB |
016 More practice with multioutput ANNs.mp4 |
99.80MB |
016 So many possibilities! How to create a CNN_.en.srt |
6.51KB |
016 So many possibilities! How to create a CNN_.mp4 |
21.04MB |
017 Defining models using sequential vs. class.en.srt |
19.17KB |
017 Defining models using sequential vs. class.mp4 |
89.48MB |
017 Derivatives find minima.en.srt |
12.19KB |
017 Derivatives find minima.mp4 |
45.47MB |
017 Optimizers (minibatch, momentum).mp4 |
98.07MB |
018 Derivatives_ product and chain rules.en.srt |
13.53KB |
018 Derivatives_ product and chain rules.mp4 |
55.63MB |
018 Model depth vs. breadth.en.srt |
30.90KB |
018 Model depth vs. breadth.mp4 |
158.91MB |
018 SGD with momentum.en.srt |
11.58KB |
018 SGD with momentum.mp4 |
62.10MB |
019 CodeChallenge_ convert sequential to class.en.srt |
9.73KB |
019 CodeChallenge_ convert sequential to class.mp4 |
51.44MB |
019 Optimizers (RMSprop, Adam).en.srt |
22.06KB |
019 Optimizers (RMSprop, Adam).mp4 |
76.73MB |
020 Diversity of ANN visual representations.html |
1.40KB |
020 Optimizers comparison.en.srt |
14.64KB |
020 Optimizers comparison.mp4 |
86.88MB |
021 CodeChallenge_ Optimizers and... something.en.srt |
9.36KB |
021 CodeChallenge_ Optimizers and... something.mp4 |
49.77MB |
021 Reflection_ Are DL models understandable yet_.en.srt |
12.37KB |
021 Reflection_ Are DL models understandable yet_.mp4 |
58.59MB |
022 CodeChallenge_ Adam with L2 regularization.en.srt |
10.30KB |
022 CodeChallenge_ Adam with L2 regularization.mp4 |
53.00MB |
023 Learning rate decay.en.srt |
17.91KB |
023 Learning rate decay.mp4 |
96.90MB |
024 How to pick the right metaparameters.en.srt |
16.65KB |
024 How to pick the right metaparameters.mp4 |
61.74MB |
1 |
1.01KB |
10 |
102.80KB |
100 |
921.38KB |
101 |
949.93KB |
102 |
1.27MB |
103 |
1.57MB |
104 |
1.79MB |
105 |
1.81MB |
106 |
1.83MB |
107 |
895.29KB |
108 |
1.12MB |
109 |
1.22MB |
11 |
1.36MB |
110 |
339.52KB |
111 |
593.86KB |
112 |
601.50KB |
113 |
365.78KB |
114 |
1.27MB |
115 |
279.11KB |
116 |
652.01KB |
117 |
827.84KB |
118 |
1001.93KB |
119 |
1.43MB |
12 |
1.74MB |
120 |
1.70MB |
121 |
1.95MB |
122 |
600.35KB |
123 |
810.98KB |
124 |
1.50MB |
125 |
90.53KB |
126 |
433.43KB |
127 |
926.95KB |
128 |
1.17MB |
129 |
1.19MB |
13 |
151.51KB |
130 |
1.27MB |
131 |
1.40MB |
132 |
1.73MB |
133 |
535.96KB |
134 |
881.81KB |
135 |
884.64KB |
136 |
1.16MB |
137 |
1.75MB |
138 |
106.36KB |
139 |
894.75KB |
14 |
195.05KB |
140 |
1.21MB |
141 |
1.43MB |
142 |
866.00KB |
143 |
972.84KB |
144 |
1.12MB |
145 |
1.59MB |
146 |
1.94MB |
147 |
302.79KB |
148 |
1.02MB |
149 |
1.56MB |
15 |
1.09MB |
150 |
706.37KB |
151 |
940.40KB |
152 |
1.07MB |
153 |
1.20MB |
154 |
1.51MB |
155 |
1.75MB |
156 |
36.55KB |
157 |
86.62KB |
158 |
635.37KB |
159 |
1.35MB |
16 |
1.73MB |
160 |
26.77KB |
161 |
628.86KB |
162 |
1.27MB |
163 |
1.63MB |
164 |
1.88MB |
165 |
1.90MB |
166 |
245.50KB |
167 |
268.60KB |
168 |
1.23MB |
169 |
1.65MB |
17 |
1.42MB |
170 |
1.83MB |
171 |
1.89MB |
172 |
190.46KB |
173 |
285.23KB |
174 |
1.29MB |
175 |
1.41MB |
176 |
1.41MB |
177 |
1.66MB |
178 |
104.85KB |
179 |
178.04KB |
18 |
279.20KB |
180 |
297.43KB |
181 |
378.83KB |
182 |
501.84KB |
183 |
654.81KB |
184 |
981.10KB |
185 |
1.03MB |
186 |
1.42MB |
187 |
1.63MB |
188 |
1.79MB |
189 |
131.81KB |
19 |
671.68KB |
190 |
137.84KB |
191 |
546.91KB |
192 |
960.62KB |
193 |
1.00MB |
194 |
1.01MB |
195 |
1.08MB |
196 |
1.11MB |
197 |
211.04KB |
198 |
569.62KB |
199 |
948.94KB |
2 |
149B |
20 |
901.52KB |
200 |
967.34KB |
201 |
1.33MB |
202 |
1.39MB |
203 |
1.63MB |
204 |
1.89MB |
205 |
237.97KB |
206 |
835.96KB |
207 |
986.61KB |
208 |
1.40MB |
209 |
1.45MB |
21 |
1.54MB |
210 |
1.53MB |
211 |
1.55MB |
212 |
1.64MB |
213 |
1.31MB |
214 |
1.74MB |
215 |
359.09KB |
216 |
545.38KB |
217 |
622.21KB |
218 |
1.17MB |
219 |
122.41KB |
22 |
122.73KB |
220 |
255.22KB |
221 |
438.25KB |
222 |
1.97MB |
223 |
311.51KB |
224 |
579.70KB |
225 |
735.45KB |
226 |
1.22MB |
227 |
1.43MB |
228 |
1.99MB |
229 |
659.37KB |
23 |
1.22MB |
230 |
1.66MB |
231 |
1.92MB |
232 |
344.67KB |
233 |
252.05KB |
234 |
642.03KB |
235 |
812.85KB |
236 |
993.71KB |
237 |
1.30MB |
238 |
1.56MB |
239 |
1.76MB |
24 |
1.30MB |
240 |
525.46KB |
241 |
1.95MB |
242 |
1.54MB |
243 |
1.55MB |
244 |
476.28KB |
245 |
227.35KB |
246 |
236.88KB |
247 |
1.82MB |
248 |
31.29KB |
249 |
982.61KB |
25 |
513.10KB |
250 |
1.72MB |
251 |
903.81KB |
26 |
1.12MB |
27 |
150.25KB |
28 |
482.29KB |
29 |
900.01KB |
3 |
366B |
30 |
1.80MB |
31 |
1.90MB |
32 |
1.35MB |
33 |
1.97MB |
34 |
166.49KB |
35 |
307.25KB |
36 |
341.22KB |
37 |
397.85KB |
38 |
509.93KB |
39 |
631.63KB |
4 |
1.00MB |
40 |
1.92MB |
41 |
1.11MB |
42 |
1.93MB |
43 |
99.42KB |
44 |
1.50MB |
45 |
1.50MB |
46 |
1.41MB |
47 |
1.90MB |
48 |
443.22KB |
49 |
459.91KB |
5 |
877.38KB |
50 |
1.90MB |
51 |
731.49KB |
52 |
1.21MB |
53 |
1.26MB |
54 |
1.40MB |
55 |
1.47MB |
56 |
1.74MB |
57 |
1.35MB |
58 |
1.44MB |
59 |
1.53MB |
6 |
789.63KB |
60 |
1.82MB |
61 |
348.62KB |
62 |
667.00KB |
63 |
1.91MB |
64 |
2.05KB |
65 |
45.85KB |
66 |
553.06KB |
67 |
1.81MB |
68 |
128.16KB |
69 |
209.67KB |
7 |
264.78KB |
70 |
260.01KB |
71 |
572.42KB |
72 |
1.38MB |
73 |
1.70MB |
74 |
1.93MB |
75 |
1.94MB |
76 |
990.35KB |
77 |
1.10MB |
78 |
1.39MB |
79 |
1.75MB |
8 |
919.11KB |
80 |
41.99KB |
81 |
107.24KB |
82 |
592.11KB |
83 |
813.22KB |
84 |
920.43KB |
85 |
1.17MB |
86 |
1.92MB |
87 |
453.22KB |
88 |
870.66KB |
89 |
1.11MB |
9 |
1.68MB |
90 |
1.63MB |
91 |
551.37KB |
92 |
904.54KB |
93 |
922.64KB |
94 |
973.62KB |
95 |
1.65MB |
96 |
1.70MB |
97 |
266.79KB |
98 |
531.24KB |
99 |
560.14KB |
TutsNode.com.txt |
63B |