Torrent Info
Title A deep understanding of deep learning (with Python intro)
Category
Size 21.34GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
[TGx]Downloaded from torrentgalaxy.to .txt 585B
0 270B
001 Anatomy of a torch dataset and dataloader.en.srt 26.46KB
001 Anatomy of a torch dataset and dataloader.mp4 135.84MB
001 Bonus content.html 4.45KB
001 Convolution_ concepts.en.srt 32.50KB
001 Convolution_ concepts.mp4 98.06MB
001 Downloading and using the code.en.srt 9.41KB
001 Downloading and using the code.mp4 45.65MB
001 Explanation of weight matrix sizes.en.srt 17.18KB
001 Explanation of weight matrix sizes.mp4 68.98MB
001 GAN_ What, why, and how.en.srt 23.51KB
001 GAN_ What, why, and how.mp4 89.74MB
001 How to learn from the Python tutorial.en.srt 4.83KB
001 How to learn from the Python tutorial.mp4 21.97MB
001 How to learn from this course.mp4 54.97MB
001 How to learn topic _X_ in deep learning_.en.srt 12.32KB
001 How to learn topic _X_ in deep learning_.mp4 42.03MB
001 If-else statements.en.srt 21.71KB
001 If-else statements.mp4 66.80MB
001 Indexing.en.srt 18.10KB
001 Indexing.mp4 51.07MB
001 Inputs and outputs.en.srt 10.56KB
001 Inputs and outputs.mp4 29.49MB
001 Introduction to this section.en.srt 2.90KB
001 Introduction to this section.mp4 11.12MB
001 Overview of gradient descent.en.srt 20.89KB
001 Overview of gradient descent.mp4 68.44MB
001 Printing and string interpolation.en.srt 24.33KB
001 Printing and string interpolation.mp4 94.83MB
001 Project 1_ A gratuitously complex adding machine.en.srt 10.75KB
001 Project 1_ A gratuitously complex adding machine.mp4 48.55MB
001 Project 1_ Import and classify CIFAR10.en.srt 10.56KB
001 Project 1_ Import and classify CIFAR10.mp4 48.36MB
001 Regularization_ Concept and methods.en.srt 19.02KB
001 Regularization_ Concept and methods.mp4 80.05MB
001 Should you watch the Python tutorial_.en.srt 6.14KB
001 Should you watch the Python tutorial_.mp4 23.77MB
001 The canonical CNN architecture.en.srt 15.68KB
001 The canonical CNN architecture.mp4 55.83MB
001 The perceptron and ANN architecture.en.srt 26.80KB
001 The perceptron and ANN architecture.mp4 83.64MB
001 Transfer learning_ What, why, and when_.en.srt 24.76KB
001 Transfer learning_ What, why, and when_.mp4 96.61MB
001 Two perspectives of the world.en.srt 10.32KB
001 Two perspectives of the world.mp4 40.01MB
001 What are _metaparameters__.en.srt 7.35KB
001 What are _metaparameters__.mp4 32.70MB
001 What are autoencoders and what do they do_.en.srt 16.93KB
001 What are autoencoders and what do they do_.mp4 49.04MB
001 What are fully-connected and feedforward networks_.en.srt 6.94KB
001 What are fully-connected and feedforward networks_.mp4 25.53MB
001 What is a GPU and why use it_.en.srt 22.47KB
001 What is a GPU and why use it_.mp4 88.73MB
001 What is an artificial neural network_.en.srt 21.30KB
001 What is an artificial neural network_.mp4 65.38MB
001 What is overfitting and is it as bad as they say_.en.srt 18.32KB
001 What is overfitting and is it as bad as they say_.mp4 73.13MB
001 What is style transfer and how does it work_.en.srt 6.35KB
001 What is style transfer and how does it work_.mp4 40.57MB
001 Will AI save us or destroy us_.en.srt 14.36KB
001 Will AI save us or destroy us_.mp4 65.92MB
002 Accuracy, precision, recall, F1.en.srt 18.08KB
002 Accuracy, precision, recall, F1.mp4 72.57MB
002 A geometric view of ANNs.en.srt 19.37KB
002 A geometric view of ANNs.mp4 70.88MB
002 A surprising demo of weight initializations.en.srt 23.89KB
002 A surprising demo of weight initializations.mp4 121.57MB
002 CNN to classify MNIST digits.en.srt 38.02KB
002 CNN to classify MNIST digits.mp4 200.33MB
002 Cross-validation.en.srt 24.96KB
002 Cross-validation.mp4 88.19MB
002 Data size and network size.en.srt 23.39KB
002 Data size and network size.mp4 135.67MB
002 Denoising MNIST.en.srt 22.79KB
002 Denoising MNIST.mp4 118.53MB
002 Example case studies.en.srt 9.15KB
002 Example case studies.mp4 52.92MB
002 Feature maps and convolution kernels.en.srt 13.96KB
002 Feature maps and convolution kernels.mp4 70.41MB
002 How models _learn_.en.srt 18.75KB
002 How models _learn_.mp4 72.79MB
002 How to read academic DL papers.en.srt 25.43KB
002 How to read academic DL papers.mp4 141.85MB
002 If-else statements, part 2.en.srt 22.90KB
002 If-else statements, part 2.mp4 91.12MB
002 Implementation.en.srt 14.81KB
002 Implementation.mp4 76.60MB
002 Linear GAN with MNIST.en.srt 31.99KB
002 Linear GAN with MNIST.mp4 169.90MB
002 My policy on code-sharing.en.srt 2.52KB
002 My policy on code-sharing.mp4 10.24MB
002 Plotting dots and lines.en.srt 17.70KB
002 Plotting dots and lines.mp4 53.87MB
002 Project 1_ My solution.en.srt 17.15KB
002 Project 1_ My solution.en.srt 16.97KB
002 Project 1_ My solution.mp4 118.60MB
002 Project 1_ My solution.mp4 99.75MB
002 Python libraries (numpy).en.srt 20.01KB
002 Python libraries (numpy).mp4 63.39MB
002 Slicing.en.srt 17.97KB
002 Slicing.mp4 48.45MB
002 Spectral theories in mathematics.en.srt 13.58KB
002 Spectral theories in mathematics.mp4 51.06MB
002 The _wine quality_ dataset.en.srt 25.71KB
002 The _wine quality_ dataset.mp4 143.50MB
002 The Gram matrix (feature activation covariance).en.srt 16.79KB
002 The Gram matrix (feature activation covariance).mp4 66.49MB
002 The MNIST dataset.en.srt 18.71KB
002 The MNIST dataset.mp4 101.46MB
002 train() and eval() modes.en.srt 10.19KB
002 train() and eval() modes.mp4 38.34MB
002 Transfer learning_ MNIST -_ FMNIST.en.srt 14.58KB
002 Transfer learning_ MNIST -_ FMNIST.mp4 90.35MB
002 Using Udemy like a pro.en.srt 12.34KB
002 Using Udemy like a pro.mp4 54.37MB
002 Variables.en.srt 27.29KB
002 Variables.mp4 77.58MB
002 What about local minima_.en.srt 17.17KB
002 What about local minima_.mp4 67.08MB
003 ANN math part 1 (forward prop).en.srt 17.39KB
003 ANN math part 1 (forward prop).mp4 57.90MB
003 APRF in code.en.srt 9.38KB
003 APRF in code.mp4 51.79MB
003 CNN on shifted MNIST.en.srt 12.12KB
003 CNN on shifted MNIST.mp4 58.34MB
003 CodeChallenge_ How many units_.en.srt 28.86KB
003 CodeChallenge_ How many units_.mp4 135.38MB
003 CodeChallenge_ letters to numbers.en.srt 20.54KB
003 CodeChallenge_ letters to numbers.mp4 118.74MB
003 CodeChallenge_ Linear GAN with FMNIST.en.srt 13.88KB
003 CodeChallenge_ Linear GAN with FMNIST.mp4 62.73MB
003 CodeChallenge_ Minibatch size in the wine dataset.en.srt 23.05KB
003 CodeChallenge_ Minibatch size in the wine dataset.mp4 118.79MB
003 CodeChallenge_ Run an experiment on the GPU.en.srt 9.81KB
003 CodeChallenge_ Run an experiment on the GPU.mp4 52.99MB
003 CodeChallenge_ unbalanced data.en.srt 29.32KB
003 CodeChallenge_ unbalanced data.mp4 166.26MB
003 Convolution in code.en.srt 30.53KB
003 Convolution in code.mp4 173.10MB
003 Dropout regularization.en.srt 31.17KB
003 Dropout regularization.mp4 136.03MB
003 DUDL_PythonCode.zip 700.80KB
003 FFN to classify digits.en.srt 32.91KB
003 FFN to classify digits.mp4 161.85MB
003 For loops.en.srt 25.24KB
003 For loops.mp4 87.13MB
003 Generalization.en.srt 8.82KB
003 Generalization.mp4 32.44MB
003 Gradient descent in 1D.en.srt 24.75KB
003 Gradient descent in 1D.mp4 119.29MB
003 Math and printing.en.srt 26.80KB
003 Math and printing.mp4 78.50MB
003 Project 2_ CIFAR-autoencoder.en.srt 7.00KB
003 Project 2_ CIFAR-autoencoder.mp4 33.37MB
003 Project 2_ Predicting heart disease.en.srt 10.99KB
003 Project 2_ Predicting heart disease.mp4 50.61MB
003 Python libraries (pandas).en.srt 20.30KB
003 Python libraries (pandas).mp4 81.19MB
003 Some other possible ethical scenarios.en.srt 15.20KB
003 Some other possible ethical scenarios.mp4 66.25MB
003 Subplot geometry.en.srt 23.14KB
003 Subplot geometry.mp4 86.78MB
003 Terms and datatypes in math and computers.en.srt 10.68KB
003 Terms and datatypes in math and computers.mp4 38.08MB
003 Theory_ Why and how to initialize weights.en.srt 18.23KB
003 Theory_ Why and how to initialize weights.mp4 79.41MB
003 The role of DL in science and knowledge.en.srt 23.31KB
003 The role of DL in science and knowledge.mp4 121.55MB
003 The style transfer algorithm.en.srt 15.10KB
003 The style transfer algorithm.mp4 67.31MB
004 AEs for occlusion.en.srt 25.42KB
004 AEs for occlusion.mp4 138.20MB
004 ANN math part 2 (errors, loss, cost).en.srt 13.89KB
004 ANN math part 2 (errors, loss, cost).mp4 48.47MB
004 APRF example 1_ wine quality.en.srt 19.25KB
004 APRF example 1_ wine quality.mp4 107.35MB
004 Classify Gaussian blurs.en.srt 34.26KB
004 Classify Gaussian blurs.mp4 185.14MB
004 CNN GAN with Gaussians.en.srt 22.13KB
004 CNN GAN with Gaussians.mp4 135.70MB
004 CodeChallenge_ Binarized MNIST images.en.srt 7.37KB
004 CodeChallenge_ Binarized MNIST images.mp4 40.78MB
004 CodeChallenge_ unfortunate starting value.en.srt 16.00KB
004 CodeChallenge_ unfortunate starting value.mp4 77.09MB
004 CodeChallenge_ Weight variance inits.en.srt 18.42KB
004 CodeChallenge_ Weight variance inits.mp4 103.96MB
004 Converting reality to numbers.en.srt 9.57KB
004 Converting reality to numbers.mp4 33.21MB
004 Convolution parameters (stride, padding).en.srt 18.09KB
004 Convolution parameters (stride, padding).mp4 66.93MB
004 Cross-validation -- manual separation.en.srt 18.59KB
004 Cross-validation -- manual separation.mp4 98.30MB
004 Data normalization.en.srt 19.68KB
004 Data normalization.mp4 59.81MB
004 Dropout regularization in practice.en.srt 33.37KB
004 Dropout regularization in practice.mp4 183.23MB
004 Enumerate and zip.en.srt 16.03KB
004 Enumerate and zip.mp4 58.59MB
004 Famous CNN architectures.en.srt 8.70KB
004 Famous CNN architectures.mp4 41.28MB
004 Getting help on functions.en.srt 11.05KB
004 Getting help on functions.mp4 48.60MB
004 Lists (1 of 2).en.srt 20.48KB
004 Lists (1 of 2).mp4 55.04MB
004 Making the graphs look nicer.en.srt 26.98KB
004 Making the graphs look nicer.mp4 107.66MB
004 Project 2_ My solution.en.srt 27.78KB
004 Project 2_ My solution.mp4 155.73MB
004 Project 3_ FMNIST.en.srt 5.11KB
004 Project 3_ FMNIST.mp4 26.45MB
004 Running experiments to understand DL.en.srt 19.22KB
004 Running experiments to understand DL.mp4 74.84MB
004 Transferring the screaming bathtub.en.srt 32.28KB
004 Transferring the screaming bathtub.mp4 216.82MB
004 What to do about unbalanced designs_.mp4 54.21MB
004 Will deep learning take our jobs_.en.srt 14.90KB
004 Will deep learning take our jobs_.mp4 75.14MB
005 Accountability and making ethical AI.en.srt 16.71KB
005 Accountability and making ethical AI.mp4 70.06MB
005 ANN math part 3 (backprop).en.srt 15.23KB
005 ANN math part 3 (backprop).mp4 52.89MB
005 APRF example 2_ MNIST.en.srt 17.17KB
005 APRF example 2_ MNIST.mp4 98.62MB
005 Are artificial _neurons_ like biological neurons_.en.srt 24.16KB
005 Are artificial _neurons_ like biological neurons_.mp4 114.65MB
005 CodeChallenge_ Data normalization.en.srt 24.48KB
005 CodeChallenge_ Data normalization.mp4 96.25MB
005 CodeChallenge_ Gaussians with fewer layers.en.srt 8.94KB
005 CodeChallenge_ Gaussians with fewer layers.mp4 53.06MB
005 CodeChallenge_ Style transfer with AlexNet.en.srt 10.47KB
005 CodeChallenge_ Style transfer with AlexNet.mp4 53.47MB
005 Continue.en.srt 10.09KB
005 Continue.mp4 33.03MB
005 Creating functions.en.srt 30.89KB
005 Creating functions.mp4 88.43MB
005 Cross-validation -- scikitlearn.en.srt 30.46KB
005 Cross-validation -- scikitlearn.mp4 142.88MB
005 Data oversampling in MNIST.en.srt 24.16KB
005 Data oversampling in MNIST.mp4 122.59MB
005 Dropout example 2.en.srt 9.18KB
005 Dropout example 2.mp4 53.87MB
005 Examine feature map activations.en.srt 40.51KB
005 Examine feature map activations.mp4 260.56MB
005 Gradient descent in 2D.en.srt 21.35KB
005 Gradient descent in 2D.mp4 95.90MB
005 Lists (2 of 2).en.srt 14.58KB
005 Lists (2 of 2).mp4 46.69MB
005 Project 3_ FFN for missing data interpolation.en.srt 14.38KB
005 Project 3_ FFN for missing data interpolation.mp4 45.39MB
005 Project 4_ Psychometric functions in CNNs.en.srt 16.88KB
005 Project 4_ Psychometric functions in CNNs.mp4 76.27MB
005 Seaborn.en.srt 15.73KB
005 Seaborn.mp4 59.72MB
005 The Conv2 class in PyTorch.en.srt 18.90KB
005 The Conv2 class in PyTorch.mp4 100.19MB
005 The importance of data normalization.en.srt 13.75KB
005 The importance of data normalization.mp4 64.65MB
005 The latent code of MNIST.en.srt 31.66KB
005 The latent code of MNIST.mp4 161.81MB
005 Transfer learning with ResNet-18.en.srt 24.59KB
005 Transfer learning with ResNet-18.mp4 148.46MB
005 Vector and matrix transpose.en.srt 10.01KB
005 Vector and matrix transpose.mp4 37.66MB
005 Xavier and Kaiming initializations.en.srt 22.52KB
005 Xavier and Kaiming initializations.mp4 134.08MB
006 ANN for regression.en.srt 35.85KB
006 ANN for regression.mp4 135.50MB
006 Autoencoder with tied weights.en.srt 34.83KB
006 Autoencoder with tied weights.mp4 177.74MB
006 Batch normalization.en.srt 18.66KB
006 Batch normalization.mp4 76.81MB
006 CNN GAN with FMNIST.en.srt 9.23KB
006 CNN GAN with FMNIST.mp4 54.58MB
006 CodeChallenge_ 2D gradient ascent.en.srt 7.53KB
006 CodeChallenge_ 2D gradient ascent.mp4 39.36MB
006 CodeChallenge_ Choose the parameters.en.srt 10.12KB
006 CodeChallenge_ Choose the parameters.mp4 58.71MB
006 CodeChallenge_ MNIST with unequal groups.en.srt 12.70KB
006 CodeChallenge_ MNIST with unequal groups.mp4 62.37MB
006 CodeChallenge_ Softcode internal parameters.en.srt 25.03KB
006 CodeChallenge_ Softcode internal parameters.mp4 120.10MB
006 CodeChallenge_ VGG-16.en.srt 5.05KB
006 CodeChallenge_ VGG-16.mp4 20.28MB
006 CodeChallenge_ Xavier vs. Kaiming.en.srt 24.65KB
006 CodeChallenge_ Xavier vs. Kaiming.mp4 126.50MB
006 Cross-validation -- DataLoader.en.srt 28.57KB
006 Cross-validation -- DataLoader.mp4 172.32MB
006 Data noise augmentation (with devset+test).en.srt 18.62KB
006 Data noise augmentation (with devset+test).mp4 106.09MB
006 Distributions of weights pre- and post-learning.en.srt 22.05KB
006 Distributions of weights pre- and post-learning.mp4 116.26MB
006 Global and local variable scopes.en.srt 19.67KB
006 Global and local variable scopes.mp4 65.96MB
006 Images.en.srt 25.75KB
006 Images.mp4 93.56MB
006 Initializing variables.en.srt 25.61KB
006 Initializing variables.mp4 91.05MB
006 OMG it's the dot product!.en.srt 13.95KB
006 OMG it's the dot product!.mp4 50.11MB
006 Project 3_ My solution.en.srt 11.88KB
006 Project 3_ My solution.mp4 75.48MB
006 Tuples.en.srt 12.04KB
006 Tuples.mp4 35.75MB
006 Weight regularization (L1_L2)_ math.en.srt 27.07KB
006 Weight regularization (L1_L2)_ math.mp4 85.41MB
007 Batch normalization in practice.en.srt 11.05KB
007 Batch normalization in practice.mp4 61.76MB
007 Booleans.en.srt 27.78KB
007 Booleans.mp4 76.83MB
007 CodeChallenge_ CNN GAN with CIFAR.en.srt 11.65KB
007 CodeChallenge_ CNN GAN with CIFAR.mp4 60.77MB
007 CodeChallenge_ How wide the FC_.en.srt 16.49KB
007 CodeChallenge_ How wide the FC_.mp4 94.08MB
007 CodeChallenge_ Identically random weights.en.srt 17.92KB
007 CodeChallenge_ Identically random weights.mp4 88.17MB
007 CodeChallenge_ manipulate regression slopes.en.srt 28.31KB
007 CodeChallenge_ manipulate regression slopes.mp4 139.12MB
007 CodeChallenge_ MNIST and breadth vs. depth.en.srt 17.73KB
007 CodeChallenge_ MNIST and breadth vs. depth.mp4 95.21MB
007 Computation time.en.srt 14.26KB
007 Computation time.mp4 81.73MB
007 Copies and referents of variables.en.srt 7.24KB
007 Copies and referents of variables.mp4 23.78MB
007 Data feature augmentation.en.srt 28.32KB
007 Data feature augmentation.mp4 158.27MB
007 Export plots in low and high resolution.en.srt 11.37KB
007 Export plots in low and high resolution.mp4 43.57MB
007 L2 regularization in practice.en.srt 18.97KB
007 L2 regularization in practice.mp4 110.47MB
007 Matrix multiplication.en.srt 20.60KB
007 Matrix multiplication.mp4 85.67MB
007 Parametric experiments on g.d.en.srt 27.15KB
007 Parametric experiments on g.d.mp4 135.61MB
007 Pretraining with autoencoders.en.srt 28.75KB
007 Pretraining with autoencoders.mp4 156.58MB
007 Single-line loops (list comprehension).en.srt 21.74KB
007 Single-line loops (list comprehension).mp4 75.14MB
007 Splitting data into train, devset, test.en.srt 13.82KB
007 Splitting data into train, devset, test.mp4 79.21MB
007 Transpose convolution.en.srt 19.91KB
007 Transpose convolution.mp4 92.89MB
008 ANN for classifying qwerties.en.srt 34.00KB
008 ANN for classifying qwerties.mp4 151.12MB
008 Better performance in test than train_.en.srt 11.95KB
008 Better performance in test than train_.mp4 44.83MB
008 CIFAR10 with autoencoder-pretrained model.en.srt 25.89KB
008 CIFAR10 with autoencoder-pretrained model.mp4 153.34MB
008 Classes and object-oriented programming.en.srt 26.60KB
008 Classes and object-oriented programming.mp4 108.18MB
008 CodeChallenge_ Batch-normalize the qwerties.en.srt 7.52KB
008 CodeChallenge_ Batch-normalize the qwerties.mp4 41.43MB
008 CodeChallenge_ fixed vs. dynamic learning rate.en.srt 23.05KB
008 CodeChallenge_ fixed vs. dynamic learning rate.mp4 114.56MB
008 CodeChallenge_ Optimizers and MNIST.en.srt 9.92KB
008 CodeChallenge_ Optimizers and MNIST.mp4 46.26MB
008 Cross-validation on regression.en.srt 11.99KB
008 Cross-validation on regression.mp4 60.35MB
008 Dictionaries.en.srt 17.06KB
008 Dictionaries.mp4 50.67MB
008 Do autoencoders clean Gaussians_.en.srt 24.39KB
008 Do autoencoders clean Gaussians_.mp4 147.88MB
008 Freezing weights during learning.en.srt 19.25KB
008 Freezing weights during learning.mp4 93.15MB
008 Getting data into colab.en.srt 8.85KB
008 Getting data into colab.mp4 43.75MB
008 L1 regularization in practice.en.srt 17.44KB
008 L1 regularization in practice.mp4 99.44MB
008 Max_mean pooling.en.srt 26.69KB
008 Max_mean pooling.mp4 89.07MB
008 Softmax.en.srt 27.76KB
008 Softmax.mp4 95.96MB
008 while loops.en.srt 27.94KB
008 while loops.mp4 91.10MB
009 Activation functions.en.srt 26.49KB
009 Activation functions.mp4 97.03MB
009 Broadcasting in numpy.en.srt 21.34KB
009 Broadcasting in numpy.mp4 71.05MB
009 CodeChallenge_ AEs and occluded Gaussians.en.srt 14.03KB
009 CodeChallenge_ AEs and occluded Gaussians.mp4 89.45MB
009 Learning rates comparison.en.srt 36.24KB
009 Learning rates comparison.mp4 168.64MB
009 Learning-related changes in weights.en.srt 32.77KB
009 Learning-related changes in weights.mp4 146.78MB
009 Logarithms.en.srt 11.47KB
009 Logarithms.mp4 43.88MB
009 Pooling in PyTorch.en.srt 19.63KB
009 Pooling in PyTorch.mp4 81.02MB
009 Save and load trained models.en.srt 8.95KB
009 Save and load trained models.mp4 55.71MB
009 Scrambled MNIST.en.srt 11.24KB
009 Scrambled MNIST.mp4 60.17MB
009 Training in mini-batches.en.srt 16.88KB
009 Training in mini-batches.mp4 62.12MB
009 Vanishing and exploding gradients.en.srt 9.06KB
009 Vanishing and exploding gradients.mp4 30.24MB
010 Activation functions in PyTorch.en.srt 16.95KB
010 Activation functions in PyTorch.mp4 91.46MB
010 Batch training in action.en.srt 15.65KB
010 Batch training in action.mp4 89.10MB
010 CodeChallenge_ Custom loss functions.en.srt 29.89KB
010 CodeChallenge_ Custom loss functions.mp4 132.89MB
010 Entropy and cross-entropy.mp4 106.00MB
010 Function error checking and handling.en.srt 25.36KB
010 Function error checking and handling.mp4 99.87MB
010 Multilayer ANN.en.srt 29.40KB
010 Multilayer ANN.mp4 144.70MB
010 Save the best-performing model.en.srt 21.98KB
010 Save the best-performing model.mp4 126.50MB
010 Shifted MNIST.en.srt 16.47KB
010 Shifted MNIST.mp4 77.91MB
010 Tangent_ Notebook revision history.en.srt 2.76KB
010 Tangent_ Notebook revision history.mp4 22.18MB
010 To pool or to stride_.en.srt 14.28KB
010 To pool or to stride_.mp4 55.51MB
010 Use default inits or apply your own_.en.srt 6.34KB
010 Use default inits or apply your own_.mp4 28.05MB
011 Activation functions comparison.en.srt 13.59KB
011 Activation functions comparison.mp4 73.90MB
011 CodeChallenge_ The mystery of the missing 7.en.srt 15.78KB
011 CodeChallenge_ The mystery of the missing 7.mp4 74.25MB
011 Discover the Gaussian parameters.en.srt 23.25KB
011 Discover the Gaussian parameters.mp4 136.65MB
011 Image transforms.en.srt 23.92KB
011 Image transforms.mp4 129.90MB
011 Linear solutions to linear problems.en.srt 12.17KB
011 Linear solutions to linear problems.mp4 50.37MB
011 Min_max and argmin_argmax.en.srt 18.16KB
011 Min_max and argmin_argmax.mp4 88.21MB
011 The importance of equal batch sizes.en.srt 9.47KB
011 The importance of equal batch sizes.mp4 60.11MB
011 Where to find online datasets.en.srt 8.19KB
011 Where to find online datasets.mp4 41.70MB
012 CodeChallenge_ Compare relu variants.en.srt 11.29KB
012 CodeChallenge_ Compare relu variants.mp4 63.97MB
012 CodeChallenge_ Effects of mini-batch size.en.srt 18.09KB
012 CodeChallenge_ Effects of mini-batch size.mp4 95.42MB
012 Creating and using custom DataLoaders.en.srt 26.50KB
012 Creating and using custom DataLoaders.mp4 139.53MB
012 Mean and variance.en.srt 22.48KB
012 Mean and variance.mp4 80.57MB
012 The EMNIST dataset (letter recognition).en.srt 36.14KB
012 The EMNIST dataset (letter recognition).mp4 201.31MB
012 Universal approximation theorem.en.srt 11.70KB
012 Universal approximation theorem.mp4 49.18MB
012 Why multilayer linear models don't exist.en.srt 9.21KB
012 Why multilayer linear models don't exist.mp4 26.46MB
013 CodeChallenge_ Predict sugar.en.srt 24.98KB
013 CodeChallenge_ Predict sugar.mp4 122.10MB
013 Dropout in CNNs.en.srt 14.17KB
013 Dropout in CNNs.mp4 82.73MB
013 Multi-output ANN (iris dataset).en.srt 37.47KB
013 Multi-output ANN (iris dataset).mp4 186.77MB
013 Random sampling and sampling variability.en.srt 16.36KB
013 Random sampling and sampling variability.mp4 85.42MB
014 CodeChallenge_ How low can you go_.en.srt 9.95KB
014 CodeChallenge_ How low can you go_.mp4 55.36MB
014 CodeChallenge_ more qwerties!.en.srt 17.79KB
014 CodeChallenge_ more qwerties!.mp4 95.10MB
014 Loss functions.en.srt 24.18KB
014 Loss functions.mp4 90.30MB
014 Reproducible randomness via seeding.en.srt 11.76KB
014 Reproducible randomness via seeding.mp4 69.70MB
015 CodeChallenge_ Varying number of channels.en.srt 19.61KB
015 CodeChallenge_ Varying number of channels.mp4 92.37MB
015 Comparing the number of hidden units.en.srt 14.62KB
015 Comparing the number of hidden units.mp4 71.15MB
015 Loss functions in PyTorch.en.srt 26.87KB
015 Loss functions in PyTorch.mp4 138.10MB
015 The t-test.en.srt 19.38KB
015 The t-test.mp4 81.36MB
016 Depth vs. breadth_ number of parameters.en.srt 25.73KB
016 Depth vs. breadth_ number of parameters.mp4 132.07MB
016 Derivatives_ intuition and polynomials.en.srt 24.42KB
016 Derivatives_ intuition and polynomials.mp4 80.30MB
016 More practice with multioutput ANNs.en.srt 20.32KB
016 More practice with multioutput ANNs.mp4 99.80MB
016 So many possibilities! How to create a CNN_.en.srt 6.51KB
016 So many possibilities! How to create a CNN_.mp4 21.04MB
017 Defining models using sequential vs. class.en.srt 19.17KB
017 Defining models using sequential vs. class.mp4 89.48MB
017 Derivatives find minima.en.srt 12.19KB
017 Derivatives find minima.mp4 45.47MB
017 Optimizers (minibatch, momentum).mp4 98.07MB
018 Derivatives_ product and chain rules.en.srt 13.53KB
018 Derivatives_ product and chain rules.mp4 55.63MB
018 Model depth vs. breadth.en.srt 30.90KB
018 Model depth vs. breadth.mp4 158.91MB
018 SGD with momentum.en.srt 11.58KB
018 SGD with momentum.mp4 62.10MB
019 CodeChallenge_ convert sequential to class.en.srt 9.73KB
019 CodeChallenge_ convert sequential to class.mp4 51.44MB
019 Optimizers (RMSprop, Adam).en.srt 22.06KB
019 Optimizers (RMSprop, Adam).mp4 76.73MB
020 Diversity of ANN visual representations.html 1.40KB
020 Optimizers comparison.en.srt 14.64KB
020 Optimizers comparison.mp4 86.88MB
021 CodeChallenge_ Optimizers and... something.en.srt 9.36KB
021 CodeChallenge_ Optimizers and... something.mp4 49.77MB
021 Reflection_ Are DL models understandable yet_.en.srt 12.37KB
021 Reflection_ Are DL models understandable yet_.mp4 58.59MB
022 CodeChallenge_ Adam with L2 regularization.en.srt 10.30KB
022 CodeChallenge_ Adam with L2 regularization.mp4 53.00MB
023 Learning rate decay.en.srt 17.91KB
023 Learning rate decay.mp4 96.90MB
024 How to pick the right metaparameters.en.srt 16.65KB
024 How to pick the right metaparameters.mp4 61.74MB
1 1.01KB
10 102.80KB
100 921.38KB
101 949.93KB
102 1.27MB
103 1.57MB
104 1.79MB
105 1.81MB
106 1.83MB
107 895.29KB
108 1.12MB
109 1.22MB
11 1.36MB
110 339.52KB
111 593.86KB
112 601.50KB
113 365.78KB
114 1.27MB
115 279.11KB
116 652.01KB
117 827.84KB
118 1001.93KB
119 1.43MB
12 1.74MB
120 1.70MB
121 1.95MB
122 600.35KB
123 810.98KB
124 1.50MB
125 90.53KB
126 433.43KB
127 926.95KB
128 1.17MB
129 1.19MB
13 151.51KB
130 1.27MB
131 1.40MB
132 1.73MB
133 535.96KB
134 881.81KB
135 884.64KB
136 1.16MB
137 1.75MB
138 106.36KB
139 894.75KB
14 195.05KB
140 1.21MB
141 1.43MB
142 866.00KB
143 972.84KB
144 1.12MB
145 1.59MB
146 1.94MB
147 302.79KB
148 1.02MB
149 1.56MB
15 1.09MB
150 706.37KB
151 940.40KB
152 1.07MB
153 1.20MB
154 1.51MB
155 1.75MB
156 36.55KB
157 86.62KB
158 635.37KB
159 1.35MB
16 1.73MB
160 26.77KB
161 628.86KB
162 1.27MB
163 1.63MB
164 1.88MB
165 1.90MB
166 245.50KB
167 268.60KB
168 1.23MB
169 1.65MB
17 1.42MB
170 1.83MB
171 1.89MB
172 190.46KB
173 285.23KB
174 1.29MB
175 1.41MB
176 1.41MB
177 1.66MB
178 104.85KB
179 178.04KB
18 279.20KB
180 297.43KB
181 378.83KB
182 501.84KB
183 654.81KB
184 981.10KB
185 1.03MB
186 1.42MB
187 1.63MB
188 1.79MB
189 131.81KB
19 671.68KB
190 137.84KB
191 546.91KB
192 960.62KB
193 1.00MB
194 1.01MB
195 1.08MB
196 1.11MB
197 211.04KB
198 569.62KB
199 948.94KB
2 149B
20 901.52KB
200 967.34KB
201 1.33MB
202 1.39MB
203 1.63MB
204 1.89MB
205 237.97KB
206 835.96KB
207 986.61KB
208 1.40MB
209 1.45MB
21 1.54MB
210 1.53MB
211 1.55MB
212 1.64MB
213 1.31MB
214 1.74MB
215 359.09KB
216 545.38KB
217 622.21KB
218 1.17MB
219 122.41KB
22 122.73KB
220 255.22KB
221 438.25KB
222 1.97MB
223 311.51KB
224 579.70KB
225 735.45KB
226 1.22MB
227 1.43MB
228 1.99MB
229 659.37KB
23 1.22MB
230 1.66MB
231 1.92MB
232 344.67KB
233 252.05KB
234 642.03KB
235 812.85KB
236 993.71KB
237 1.30MB
238 1.56MB
239 1.76MB
24 1.30MB
240 525.46KB
241 1.95MB
242 1.54MB
243 1.55MB
244 476.28KB
245 227.35KB
246 236.88KB
247 1.82MB
248 31.29KB
249 982.61KB
25 513.10KB
250 1.72MB
251 903.81KB
26 1.12MB
27 150.25KB
28 482.29KB
29 900.01KB
3 366B
30 1.80MB
31 1.90MB
32 1.35MB
33 1.97MB
34 166.49KB
35 307.25KB
36 341.22KB
37 397.85KB
38 509.93KB
39 631.63KB
4 1.00MB
40 1.92MB
41 1.11MB
42 1.93MB
43 99.42KB
44 1.50MB
45 1.50MB
46 1.41MB
47 1.90MB
48 443.22KB
49 459.91KB
5 877.38KB
50 1.90MB
51 731.49KB
52 1.21MB
53 1.26MB
54 1.40MB
55 1.47MB
56 1.74MB
57 1.35MB
58 1.44MB
59 1.53MB
6 789.63KB
60 1.82MB
61 348.62KB
62 667.00KB
63 1.91MB
64 2.05KB
65 45.85KB
66 553.06KB
67 1.81MB
68 128.16KB
69 209.67KB
7 264.78KB
70 260.01KB
71 572.42KB
72 1.38MB
73 1.70MB
74 1.93MB
75 1.94MB
76 990.35KB
77 1.10MB
78 1.39MB
79 1.75MB
8 919.11KB
80 41.99KB
81 107.24KB
82 592.11KB
83 813.22KB
84 920.43KB
85 1.17MB
86 1.92MB
87 453.22KB
88 870.66KB
89 1.11MB
9 1.68MB
90 1.63MB
91 551.37KB
92 904.54KB
93 922.64KB
94 973.62KB
95 1.65MB
96 1.70MB
97 266.79KB
98 531.24KB
99 560.14KB
TutsNode.com.txt 63B
Distribution statistics by country
India (IN) 2
Russia (RU) 2
Republic of Korea (KR) 2
Japan (JP) 1
Poland (PL) 1
Brazil (BR) 1
Vietnam (VN) 1
Netherlands (NL) 1
Algeria (DZ) 1
France (FR) 1
Chile (CL) 1
United States (US) 1
Total 15
IP List List of IP addresses which were distributed this torrent