Общая информация
Название [FreeCourseSite.com] Udemy - Machine Learning A-Z Become Kaggle Master
Тип
Размер 13.97Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[CourseClub.NET].url 123б
[FCS Forum].url 133б
[FreeCourseSite.com].url 127б
1.1 AdvanceReg.zip.zip 1.11Мб
1.1 Boosting.zip.zip 1.26Мб
1.1 code-LR-Teclov.zip.zip 76.83Кб
1.1 CrossValidation_Linear Regression.zip.zip 342.22Кб
1.1 Datavisual.zip.zip 1.20Мб
1.1 DT_forudemy.zip.zip 4.03Мб
1.1 Gradient+Descent+Updated.zip.zip 161.15Кб
1.1 Hotstarcode-for-udemy.zip.zip 254.59Кб
1.1 KNN.zip.zip 1.34Мб
1.1 LogisticReg.zip.zip 983.68Кб
1.1 Multplr_LR_Code_for Udemy.zip.zip 521.01Кб
1.1 NaiveBayes.zip.zip 266.04Кб
1.1 Pandas.zip.zip 15.46Кб
1.1 PCA code for udemy.zip.zip 9.06Мб
1.1 SVM.zip.zip 15.41Мб
1.1 Teclov-numpy.ipynb.zip.zip 5.16Кб
1.1 training.zip.zip 59.99Мб
1.1 Unsupervised.zip.zip 7.38Мб
1.1 z-table.pdf.pdf 58.97Кб
1.2 RF_forudemy.zip.zip 1.05Мб
1.2 Teclov Project - Medical treatment.ipynb.zip.zip 1.28Мб
1.2 t-table.pdf.pdf 147.30Кб
1. Expectations.mp4 9.36Мб
1. Expectations.vtt 2.80Кб
1. Inferential Statistics.mp4 10.31Мб
1. Inferential Statistics.vtt 3.05Кб
1. Introduction.mp4 16.46Мб
1. Introduction.mp4 26.60Мб
1. Introduction.mp4 58.71Мб
1. Introduction.mp4 29.78Мб
1. Introduction.mp4 24.74Мб
1. Introduction.mp4 156.68Мб
1. Introduction.mp4 30.94Мб
1. Introduction.mp4 39.10Мб
1. Introduction.mp4 31.09Мб
1. Introduction.mp4 3.79Мб
1. Introduction.vtt 3.63Кб
1. Introduction.vtt 8.18Кб
1. Introduction.vtt 13.72Кб
1. Introduction.vtt 8.97Кб
1. Introduction.vtt 6.27Кб
1. Introduction.vtt 32.17Кб
1. Introduction.vtt 7.18Кб
1. Introduction.vtt 7.87Кб
1. Introduction.vtt 9.20Кб
1. Introduction.vtt 897б
1. Introduction to Classification.mp4 54.11Мб
1. Introduction to Classification.vtt 15.53Кб
1. Introduction to Clustering.mp4 59.13Мб
1. Introduction to Clustering.vtt 12.68Кб
1. Introduction to Ensembles.mp4 39.28Мб
1. Introduction to Ensembles.vtt 11.08Кб
1. Introduction to Machine Learning.mp4 11.16Мб
1. Introduction to Machine Learning.vtt 2.19Кб
1. Introduction to Naive Bayes.mp4 73.37Мб
1. Introduction to Naive Bayes.vtt 17.80Кб
1. Introduction to the course.mp4 93.85Мб
1. Introduction to the course.vtt 16.32Кб
1. Introduction to the Problem Statement.mp4 40.85Мб
1. Introduction to the Problem Statement.mp4 93.36Мб
1. Introduction to the Problem Statement.vtt 6.24Кб
1. Introduction to the Problem Statement.vtt 9.64Кб
1. Linear Algebra Vectors.mp4 162.41Мб
1. Linear Algebra Vectors.vtt 49.93Кб
1. Matplotlib.mp4 172.76Мб
1. Matplotlib.vtt 26.33Кб
1. Model Creation Case1.mp4 52.09Мб
1. Model Creation Case1.vtt 12.42Кб
1. Model Selection Part1.mp4 104.30Мб
1. Model Selection Part1.vtt 23.20Кб
1. Performance Metrics Part1.mp4 113.83Мб
1. Performance Metrics Part1.vtt 27.14Кб
1. Pre-Req For Gradient Descent Part1.mp4 61.24Мб
1. Pre-Req For Gradient Descent Part1.vtt 17.58Кб
10. Adaboost Part2.mp4 38.46Мб
10. Adaboost Part2.vtt 7.93Кб
10. Adjusted R Square.mp4 20.13Мб
10. Adjusted R Square.vtt 4.09Кб
10. Case Study.mp4 70.71Мб
10. Case Study.vtt 10.80Кб
10. Case Study 2 Part1.mp4 74.57Мб
10. Case Study 2 Part1.vtt 8.91Кб
10. Case Study Part2.mp4 61.33Мб
10. Case Study Part2.vtt 9.04Кб
10. Case Study Part5.mp4 45.73Мб
10. Case Study Part5.vtt 6.10Кб
10. DT Case Study Part2.mp4 95.71Мб
10. DT Case Study Part2.vtt 10.91Кб
10. Functions.mp4 85.62Мб
10. Functions.vtt 14.50Кб
10. groupby.mp4 46.92Мб
10. groupby.vtt 7.06Кб
10. Kernel Part2.mp4 71.13Мб
10. Kernel Part2.vtt 12.68Кб
10. Normal Distribution.mp4 19.02Мб
10. Normal Distribution.vtt 5.29Кб
10. Residual Square Error (RSE).mp4 4.55Мб
10. Residual Square Error (RSE).vtt 1.02Кб
10. Response encoding and one hot encoder.mp4 54.68Мб
10. Response encoding and one hot encoder.vtt 6.58Кб
10. Types of Error.mp4 15.30Мб
10. Types of Error.vtt 3.41Кб
10. Univariate Analysis Part1.mp4 82.78Мб
10. Univariate Analysis Part1.vtt 25.79Кб
11. Adaboost Case Study.mp4 53.65Мб
11. Adaboost Case Study.vtt 6.01Кб
11. Case Study 2.mp4 90.00Мб
11. Case Study 2.vtt 8.36Кб
11. Case Study 2 Part2.mp4 25.35Мб
11. Case Study 2 Part2.vtt 2.97Кб
11. Case Study Part6 (RFE).mp4 64.15Мб
11. Case Study Part6 (RFE).vtt 8.24Кб
11. Classification Case1.mp4 84.22Мб
11. Classification Case1.vtt 25.01Кб
11. Laplace Smoothing and Calibrated classifier.mp4 48.25Мб
11. Laplace Smoothing and Calibrated classifier.vtt 14.41Кб
11. Merging Part2.mp4 33.90Мб
11. Merging Part2.vtt 5.73Кб
11. More on Segmentation.mp4 18.06Мб
11. More on Segmentation.vtt 5.50Кб
11. String Part1.mp4 106.01Мб
11. String Part1.vtt 15.53Кб
11. t- distribution Part1.mp4 21.31Мб
11. t- distribution Part1.vtt 4.15Кб
11. Univariate Analysis Part2.mp4 60.85Мб
11. Univariate Analysis Part2.vtt 19.57Кб
11. z Score.mp4 23.80Мб
11. z Score.vtt 5.35Кб
12. Case Study 3 Part1.mp4 56.01Мб
12. Case Study 3 Part1.vtt 9.92Кб
12. Classification Case2.mp4 52.23Мб
12. Classification Case2.vtt 16.93Кб
12. Hierarchial Clustering.mp4 38.02Мб
12. Hierarchial Clustering.vtt 9.03Кб
12. Pivot Table.mp4 27.70Мб
12. Pivot Table.vtt 4.50Кб
12. Sampling.mp4 38.73Мб
12. Sampling.vtt 9.88Кб
12. Segmented Analysis.mp4 24.47Мб
12. Segmented Analysis.vtt 7.78Кб
12. Significance of first categorical column.mp4 71.74Мб
12. Significance of first categorical column.vtt 8.91Кб
12. String Part2.mp4 27.38Мб
12. String Part2.vtt 3.45Кб
12. t- distribution Part2.mp4 29.32Мб
12. t- distribution Part2.vtt 3.06Кб
12. XGBoost.mp4 23.11Мб
12. XGBoost.vtt 4.74Кб
13. Bivariate Analysis.mp4 60.60Мб
13. Bivariate Analysis.vtt 16.44Кб
13. Boosting Part1.mp4 13.69Мб
13. Boosting Part1.vtt 3.70Кб
13. Case Study.mp4 34.40Мб
13. Case Study.vtt 6.54Кб
13. Case Study 3 Part2.mp4 61.28Мб
13. Case Study 3 Part2.vtt 6.24Кб
13. Classification Case3.mp4 52.97Мб
13. Classification Case3.vtt 15.21Кб
13. List Part1.mp4 10.04Мб
13. List Part1.vtt 2.91Кб
13. Sampling Distribution.mp4 25.51Мб
13. Sampling Distribution.vtt 6.87Кб
13. Second Categorical column.mp4 45.70Мб
13. Second Categorical column.vtt 5.27Кб
14. Boosting Part2.mp4 35.51Мб
14. Boosting Part2.vtt 7.82Кб
14. Case Study 4.mp4 164.41Мб
14. Case Study 4.vtt 20.37Кб
14. Central Limit Theorem.mp4 13.10Мб
14. Central Limit Theorem.vtt 2.97Кб
14. Classification Case4.mp4 41.10Мб
14. Classification Case4.vtt 13.79Кб
14. Derived Columns.mp4 41.89Мб
14. Derived Columns.vtt 14.40Кб
14. List Part2.mp4 87.32Мб
14. List Part2.vtt 13.17Кб
14. Third Categorical column.mp4 66.72Мб
14. Third Categorical column.vtt 8.57Кб
15. Confidence Interval Part1.mp4 34.55Мб
15. Confidence Interval Part1.vtt 7.26Кб
15. Data pre-processing before building machine learning model.mp4 50.59Мб
15. Data pre-processing before building machine learning model.vtt 5.64Кб
15. List Part3.mp4 73.56Мб
15. List Part3.vtt 10.47Кб
15. XGboost Algorithm.mp4 38.76Мб
15. XGboost Algorithm.vtt 8.79Кб
16. Building Machine Learning model part1.mp4 124.01Мб
16. Building Machine Learning model part1.vtt 17.30Кб
16. Case Study Part1.mp4 141.54Мб
16. Case Study Part1.vtt 11.77Кб
16. Confidence Interval Part2.mp4 13.39Мб
16. Confidence Interval Part2.vtt 3.19Кб
16. List Part4.mp4 63.85Мб
16. List Part4.vtt 10.43Кб
17. Building Machine Learning model part2.mp4 135.18Мб
17. Building Machine Learning model part2.vtt 15.30Кб
17. Case Study Part2.mp4 136.70Мб
17. Case Study Part2.vtt 13.37Кб
17. Tuples.mp4 67.33Мб
17. Tuples.vtt 10.18Кб
18. Building Machine Learning model part3.mp4 38.41Мб
18. Building Machine Learning model part3.vtt 4.16Кб
18. Case Study Part3.mp4 75.43Мб
18. Case Study Part3.vtt 6.88Кб
18. Sets.mp4 58.16Мб
18. Sets.vtt 7.81Кб
19. Building Machine Learning model part4.mp4 33.07Мб
19. Building Machine Learning model part4.vtt 3.91Кб
19. Dictionaries.mp4 61.60Мб
19. Dictionaries.vtt 8.32Кб
2. Bagging.mp4 71.21Мб
2. Bagging.vtt 15.44Кб
2. Bayes Theorem.mp4 63.05Мб
2. Bayes Theorem.vtt 12.74Кб
2. Case Study part1.mp4 83.04Мб
2. Case Study part1.vtt 8.51Кб
2. Data Sourcing and Cleaning part1.mp4 15.56Мб
2. Data Sourcing and Cleaning part1.vtt 4.05Кб
2. Defining Classification Mathematically.mp4 39.99Мб
2. Defining Classification Mathematically.vtt 9.02Кб
2. Example of DT.mp4 40.59Мб
2. Example of DT.vtt 9.17Кб
2. Example Part1.mp4 27.48Мб
2. Example Part1.vtt 6.03Кб
2. Hyperplane Part1.mp4 27.07Мб
2. Hyperplane Part1.vtt 6.11Кб
2. Introduction.mp4 48.76Мб
2. Introduction.vtt 10.57Кб
2. Introduction to Kaggle.mp4 90.07Мб
2. Introduction to Kaggle.vtt 11.15Кб
2. Linear Algebra Matrix Part1.mp4 95.26Мб
2. Linear Algebra Matrix Part1.vtt 16.85Кб
2. Model Creation Case2.mp4 34.67Мб
2. Model Creation Case2.vtt 8.78Кб
2. Model Selection Part2.mp4 41.33Мб
2. Model Selection Part2.vtt 14.54Кб
2. NULL And Alternate Hypothesis.mp4 28.79Мб
2. NULL And Alternate Hypothesis.vtt 7.52Кб
2. Numpy Operations Part1.mp4 128.75Мб
2. Numpy Operations Part1.vtt 23.83Кб
2. PCA.mp4 98.39Мб
2. PCA.vtt 26.45Кб
2. Performance Metrics Part2.mp4 90.48Мб
2. Performance Metrics Part2.vtt 19.15Кб
2. Playing With Data.mp4 81.36Мб
2. Playing With Data.vtt 11.90Кб
2. Playing With The Data.mp4 137.05Мб
2. Playing With The Data.vtt 17.90Кб
2. Pre-Req For Gradient Descent Part2.mp4 32.90Мб
2. Pre-Req For Gradient Descent Part2.vtt 8.96Кб
2. Probability Theory.mp4 54.79Мб
2. Probability Theory.vtt 13.87Кб
2. Seaborn.mp4 184.74Мб
2. Seaborn.vtt 26.01Кб
2. Segmentation.mp4 28.65Мб
2. Segmentation.vtt 8.70Кб
2. Series.mp4 61.49Мб
2. Series.vtt 9.58Кб
2. Sigmoid Function.mp4 44.31Мб
2. Sigmoid Function.vtt 11.63Кб
2. Types of Machine Learning.mp4 35.38Мб
2. Types of Machine Learning.vtt 9.00Кб
20. Building Machine Learning model part5.mp4 41.94Мб
20. Building Machine Learning model part5.vtt 5.09Кб
20. Comprehentions.mp4 70.54Мб
20. Comprehentions.vtt 8.08Кб
21. Building Machine Learning model part6.mp4 50.82Мб
21. Building Machine Learning model part6.vtt 9.10Кб
3.1 Python-code-udemy.zip.zip 16.42Кб
3.2 Installing-Python.Teclov.pdf.pdf 1.37Мб
3. Advantages.mp4 14.87Мб
3. Advantages.vtt 5.07Кб
3. Building Model Part1.mp4 55.07Мб
3. Building Model Part1.vtt 5.84Кб
3. Case Study.mp4 113.20Мб
3. Case Study.vtt 12.91Кб
3. Case Study part2.mp4 98.41Мб
3. Case Study part2.vtt 12.18Кб
3. Cost Functions.mp4 13.16Мб
3. Cost Functions.vtt 2.83Кб
3. DataFrame.mp4 66.19Мб
3. DataFrame.vtt 9.32Кб
3. Data Sourcing and Cleaning part2.mp4 15.62Мб
3. Data Sourcing and Cleaning part2.vtt 2.53Кб
3. Example Part2.mp4 45.11Мб
3. Example Part2.vtt 10.74Кб
3. Examples.mp4 27.75Мб
3. Examples.vtt 6.68Кб
3. Gridsearch Case study Part1.mp4 124.24Мб
3. Gridsearch Case study Part1.vtt 13.48Кб
3. History.mp4 61.86Мб
3. History.vtt 17.97Кб
3. Homogenity.mp4 20.61Мб
3. Homogenity.vtt 5.84Кб
3. Hyperplane Part2.mp4 65.32Мб
3. Hyperplane Part2.vtt 16.77Кб
3. Installation of Python and Anaconda.mp4 82.29Мб
3. Installation of Python and Anaconda.vtt 11.12Кб
3. Introduction to KNN.mp4 47.13Мб
3. Introduction to KNN.vtt 13.69Кб
3. Introduction to Linear Regression (LR).mp4 17.88Мб
3. Introduction to Linear Regression (LR).vtt 2.97Кб
3. Kmeans.mp4 57.71Мб
3. Kmeans.vtt 10.13Кб
3. Linear Algebra Matrix Part2.mp4 77.99Мб
3. Linear Algebra Matrix Part2.vtt 19.40Кб
3. Log Odds.mp4 41.83Мб
3. Log Odds.vtt 10.91Кб
3. Maths Behind PCA.mp4 96.82Мб
3. Maths Behind PCA.vtt 25.52Кб
3. Model Selection Part3.mp4 35.66Мб
3. Numpy Operations Part2.mp4 169.97Мб
3. Numpy Operations Part2.vtt 29.79Кб
3. Performance Metrics Part3.mp4 24.02Мб
3. Performance Metrics Part3.vtt 6.24Кб
3. Practical Example from NB with One Column.mp4 80.59Мб
3. Practical Example from NB with One Column.vtt 10.68Кб
3. Probability Distribution.mp4 24.24Мб
3. Probability Distribution.vtt 5.47Кб
3. Translating the Problem In Machine Learning World.mp4 113.02Мб
3. Translating the Problem In Machine Learning World.vtt 11.88Кб
4.1 Python-code-udemy.zip.zip 16.42Кб
4. Accuracy of KNN.mp4 57.16Мб
4. Accuracy of KNN.vtt 14.85Кб
4. Building Model Part2.mp4 87.80Мб
4. Building Model Part2.vtt 9.31Кб
4. Case Study.mp4 198.20Мб
4. Case Study.vtt 20.41Кб
4. Case Study Part1.mp4 45.47Мб
4. Case Study Part1.vtt 6.08Кб
4. Case Study part3.mp4 68.67Мб
4. Case Study part3.vtt 7.75Кб
4. Data Sourcing and Cleaning part3.mp4 10.03Мб
4. Data Sourcing and Cleaning part3.vtt 3.37Кб
4. Dealing with Text Data.mp4 98.05Мб
4. Dealing with Text Data.vtt 9.90Кб
4. Defining Cost Functions More Formally.mp4 36.51Мб
4. Defining Cost Functions More Formally.vtt 8.59Кб
4. Expected Values Part1.mp4 24.25Мб
4. Expected Values Part1.vtt 5.52Кб
4. Gini Index.mp4 44.19Мб
4. Gini Index.vtt 8.88Кб
4. Gridsearch Case study Part2.mp4 178.88Мб
4. Gridsearch Case study Part2.vtt 18.44Кб
4. How LR Works.mp4 58.68Мб
4. How LR Works.vtt 9.93Кб
4. Linear Algebra Going From 2D to nD Part1.mp4 27.71Мб
4. Linear Algebra Going From 2D to nD Part1.vtt 9.94Кб
4. Maths Behind Kmeans.mp4 53.75Мб
4. Maths Behind Kmeans.vtt 13.18Кб
4. Maths Behind SVM.mp4 24.04Мб
4. Maths Behind SVM.vtt 8.15Кб
4. OneTwo Tailed Tests.mp4 38.00Мб
4. OneTwo Tailed Tests.vtt 10.14Кб
4. Operations Part1.mp4 12.02Мб
4. Operations Part1.vtt 1.44Кб
4. Optimal Solution.mp4 65.23Мб
4. Optimal Solution.vtt 16.71Кб
4. Perceptron.mp4 29.78Мб
4. Perceptron.vtt 8.24Кб
4. Practical Example from NB with Multiple Columns.mp4 59.83Мб
4. Practical Example from NB with Multiple Columns.vtt 13.16Кб
4. Python Introduction.mp4 10.25Мб
4. Python Introduction.vtt 3.54Кб
4. Runtime.mp4 16.38Мб
4. Runtime.vtt 4.66Кб
4. Seaborn On Time Series Data.mp4 54.06Мб
4. Seaborn On Time Series Data.vtt 5.60Кб
5. Adjusted R Square.mp4 8.08Мб
5. Adjusted R Square.vtt 855б
5. Building Model Part3.mp4 48.52Мб
5. Building Model Part3.vtt 4.65Кб
5. Case study.mp4 73.09Мб
5. Case study.mp4 39.97Мб
5. Case study.vtt 6.89Кб
5. Case study.vtt 4.21Кб
5. Case Study Part2.mp4 123.06Мб
5. Case Study Part2.vtt 18.98Кб
5. Critical Value Method.mp4 24.71Мб
5. Critical Value Method.vtt 4.55Кб
5. Data Sourcing and Cleaning part4.mp4 10.37Мб
5. Data Sourcing and Cleaning part4.vtt 3.85Кб
5. Effectiveness of KNN.mp4 48.23Мб
5. Effectiveness of KNN.vtt 15.86Кб
5. Expected Values Part2.mp4 14.49Мб
5. Expected Values Part2.vtt 3.87Кб
5. Gradient Descent.mp4 37.66Мб
5. Gradient Descent.vtt 12.51Кб
5. Information Gain Part1.mp4 29.29Мб
5. Information Gain Part1.vtt 6.68Кб
5. Linear Algebra 2D to nD Part2.mp4 25.78Мб
5. Linear Algebra 2D to nD Part2.vtt 8.16Кб
5. More Maths.mp4 9.43Мб
5. More Maths.vtt 2.91Кб
5. Multi Layered Perceptron.mp4 63.83Мб
5. Multi Layered Perceptron.vtt 14.50Кб
5. Naive Bayes On Text Data Part1.mp4 54.74Мб
5. Naive Bayes On Text Data Part1.vtt 9.99Кб
5. Operations Part2.mp4 44.10Мб
5. Operations Part2.vtt 6.10Кб
5. Some Fun With Maths Behind LR.mp4 52.75Мб
5. Some Fun With Maths Behind LR.vtt 10.98Кб
5. Support Vectors.mp4 11.04Мб
5. Support Vectors.vtt 3.95Кб
5. Train, Test And Cross Validation Split.mp4 116.21Мб
5. Train, Test And Cross Validation Split.vtt 12.27Кб
5. Variables in Python.mp4 110.46Мб
5. Variables in Python.vtt 20.73Кб
6. Case Study Part1.mp4 68.55Мб
6. Case Study Part1.vtt 8.83Кб
6. Data Sourcing and Cleaning part5.mp4 12.41Мб
6. Data Sourcing and Cleaning part5.vtt 3.73Кб
6. Distance Metrics.mp4 47.90Мб
6. Distance Metrics.vtt 14.65Кб
6. Indexes.mp4 50.11Мб
6. Indexes.vtt 7.44Кб
6. Information Gain Part2.mp4 27.37Мб
6. Information Gain Part2.vtt 5.65Кб
6. Introduction to Boosting.mp4 33.05Мб
6. Introduction to Boosting.vtt 6.47Кб
6. Kmeans plus.mp4 51.78Мб
6. Kmeans plus.vtt 11.43Кб
6. Naive Bayes On Text Data Part2.mp4 46.06Мб
6. Naive Bayes On Text Data Part2.vtt 6.58Кб
6. Neural Network Playground.mp4 103.70Мб
6. Neural Network Playground.vtt 13.60Кб
6. Numeric Operations in Python.mp4 36.92Мб
6. Numeric Operations in Python.vtt 7.14Кб
6. Optimisation.mp4 21.68Мб
6. Optimisation.vtt 5.06Кб
6. Regularization.mp4 48.60Мб
6. Regularization.vtt 10.32Кб
6. R Square.mp4 52.47Мб
6. R Square.vtt 12.33Кб
6. Slack Variable.mp4 33.27Мб
6. Slack Variable.vtt 10.22Кб
6. Understanding Evaluation Matrix Log Loss.mp4 85.50Мб
6. Understanding Evaluation Matrix Log Loss.vtt 19.98Кб
6. Verification of Model.mp4 39.49Мб
6. Verification of Model.vtt 4.74Кб
6. Without Experiment.mp4 28.68Мб
6. Without Experiment.vtt 7.20Кб
6. z Table.mp4 58.63Мб
6. z Table.vtt 8.80Кб
7. Advantages and Disadvantages of DT.mp4 15.45Мб
7. Advantages and Disadvantages of DT.vtt 4.43Кб
7. Binomial Distribution.mp4 17.58Мб
7. Binomial Distribution.vtt 4.21Кб
7. Building A Worst Model.mp4 68.49Мб
7. Building A Worst Model.vtt 10.66Кб
7. Case Study Part2.mp4 72.90Мб
7. Case Study Part2.vtt 12.31Кб
7. Closed Form Vs Gradient Descent.mp4 26.61Мб
7. Closed Form Vs Gradient Descent.vtt 5.77Кб
7. Data Sourcing and Cleaning part6.mp4 53.70Мб
7. Data Sourcing and Cleaning part6.vtt 4.36Кб
7. Distance Metrics Part2.mp4 28.83Мб
7. Distance Metrics Part2.vtt 9.26Кб
7. Examples.mp4 26.42Мб
7. Examples.vtt 3.55Кб
7. Laplace Smoothing.mp4 55.26Мб
7. Laplace Smoothing.vtt 4.94Кб
7. loc and iloc.mp4 59.37Мб
7. loc and iloc.vtt 9.34Кб
7. Logical Operations.mp4 17.32Мб
7. Logical Operations.vtt 3.22Кб
7. LR Case Study Part1.mp4 137.50Мб
7. LR Case Study Part1.vtt 17.46Кб
7. Ridge and Lasso.mp4 39.95Мб
7. Ridge and Lasso.vtt 7.70Кб
7. SVM Case Study Part1.mp4 74.15Мб
7. SVM Case Study Part1.vtt 6.49Кб
7. Value of K.mp4 35.82Мб
7. Value of K.vtt 7.62Кб
7. Weak Learners.mp4 17.90Мб
7. Weak Learners.vtt 3.11Кб
8. Bernoulli Naive Bayes.mp4 27.11Мб
8. Bernoulli Naive Bayes.vtt 2.04Кб
8. Case Study.mp4 106.22Мб
8. Case Study.vtt 10.68Кб
8. Case Study Part3.mp4 66.56Мб
8. Case Study Part3.vtt 7.65Кб
8. Commulative Distribution.mp4 8.37Мб
8. Commulative Distribution.vtt 2.72Кб
8. Data Cleaning part1.mp4 76.24Мб
8. Data Cleaning part1.vtt 16.71Кб
8. Evaluating Worst ML Model.mp4 58.87Мб
8. Evaluating Worst ML Model.vtt 7.07Кб
8. Finding k.mp4 33.32Мб
8. Finding k.vtt 11.49Кб
8. Gradient Descent case study.mp4 71.66Мб
8. Gradient Descent case study.vtt 6.85Кб
8. Hopkins test.mp4 12.27Мб
8. Hopkins test.vtt 3.02Кб
8. If else Loop.mp4 64.01Мб
8. If else Loop.vtt 10.03Кб
8. LR Case Study Part2.mp4 53.38Мб
8. LR Case Study Part2.vtt 5.44Кб
8. More Examples.mp4 16.47Мб
8. More Examples.vtt 3.38Кб
8. Preventing Overfitting Issues in DT.mp4 40.29Мб
8. Preventing Overfitting Issues in DT.vtt 11.77Кб
8. Reading CSV.mp4 42.47Мб
8. Reading CSV.vtt 6.93Кб
8. Shallow Decision Tree.mp4 14.96Мб
8. Shallow Decision Tree.vtt 2.73Кб
8. SVM Case Study Part2.mp4 66.16Мб
8. SVM Case Study Part2.vtt 8.41Кб
9. Adaboost Part1.mp4 41.53Мб
9. Adaboost Part1.vtt 8.25Кб
9. Case Study 1.mp4 95.46Мб
9. Case Study 1.vtt 10.81Кб
9. Case Study Part1.mp4 95.82Мб
9. Case Study Part1.vtt 13.18Кб
9. Case Study Part4.mp4 132.20Мб
9. Case Study Part4.vtt 17.82Кб
9. Data Cleaning part2.mp4 29.70Мб
9. Data Cleaning part2.vtt 11.04Кб
9. DT Case Study Part1.mp4 125.45Мб
9. DT Case Study Part1.vtt 12.92Кб
9. First Categorical column analysis.mp4 71.13Мб
9. First Categorical column analysis.vtt 14.66Кб
9. for while Loop.mp4 77.78Мб
9. for while Loop.vtt 12.99Кб
9. Kernel Part1.mp4 49.24Мб
9. Kernel Part1.vtt 9.36Кб
9. KNN on Regression.mp4 9.28Мб
9. KNN on Regression.vtt 2.92Кб
9. LR Case Study Part3.mp4 46.44Мб
9. LR Case Study Part3.vtt 5.54Кб
9. Merging Part1.mp4 30.01Мб
9. Merging Part1.vtt 4.34Кб
9. Model Selection.mp4 31.30Мб
9. Model Selection.vtt 6.52Кб
9. PDF.mp4 21.00Мб
9. PDF.vtt 5.42Кб
9. p Value.mp4 33.48Мб
9. p Value.vtt 6.47Кб
Статистика распространения по странам
США (US) 6
Индия (IN) 2
ОАЭ (AE) 1
Великобритания (GB) 1
Россия (RU) 1
Перу (PE) 1
Нидерланды (NL) 1
Испания (ES) 1
Нигерия (NG) 1
Бразилия (BR) 1
Франция (FR) 1
Всего 17
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент