Общая информация
Название Artificial Neural Networks (ANN) with Keras in Python and R
Тип
Размер 4.00Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[TGx]Downloaded from torrentgalaxy.to .txt 585б
1. Basic Terminologies.mp4 40.44Мб
1. Basic Terminologies.srt 9.52Кб
1. Building,Compiling and Training.mp4 130.73Мб
1. Building,Compiling and Training.srt 15.42Кб
1. Building Neural Network for Regression Problem.mp4 155.86Мб
1. Building Neural Network for Regression Problem.srt 21.71Кб
1. Building Regression Model with Functional AP.mp4 131.14Мб
1. Building Regression Model with Functional AP.srt 13.07Кб
1. Congratulations & About your certificate.html 1.60Кб
1. Different ways to create ANN using Keras.mp4 10.81Мб
1. Different ways to create ANN using Keras.srt 1.87Кб
1. Gathering Business Knowledge.mp4 22.29Мб
1. Gathering Business Knowledge.srt 3.90Кб
1. Hyperparameters.mp4 45.36Мб
1. Hyperparameters.srt 8.95Кб
1. Hyperparameter Tuning.mp4 60.64Мб
1. Hyperparameter Tuning.mp4 60.63Мб
1. Hyperparameter Tuning.srt 9.43Кб
1. Hyperparameter Tuning.srt 9.43Кб
1. Installing Python and Anaconda.mp4 16.28Мб
1. Installing Python and Anaconda.srt 2.58Кб
1. Installing R and R studio.mp4 35.70Мб
1. Installing R and R studio.srt 5.63Кб
1. Introduction.mp4 29.10Мб
1. Introduction.srt 4.60Кб
1. Keras and Tensorflow.mp4 14.92Мб
1. Keras and Tensorflow.srt 3.56Кб
1. Perceptron.mp4 44.76Мб
1. Perceptron.srt 9.69Кб
1. Python - Dataset for classification problem.mp4 56.18Мб
1. Python - Dataset for classification problem.srt 7.16Кб
1. Saving - Restoring Models and Using Callbacks.mp4 216.10Мб
1. Saving - Restoring Models and Using Callbacks.mp4 151.63Мб
1. Saving - Restoring Models and Using Callbacks.srt 18.79Кб
1. Saving - Restoring Models and Using Callbacks.srt 20.36Кб
1. Some Important Concepts.mp4 62.18Мб
1. Some Important Concepts.srt 13.10Кб
1. Test-train split.mp4 41.88Мб
1. Test-train split.srt 10.05Кб
10. Outlier Treatment in Python.mp4 70.25Мб
10. Outlier Treatment in Python.srt 13.00Кб
11. Outlier Treatment in R.mp4 30.75Мб
11. Outlier Treatment in R.srt 4.28Кб
12. Missing Value imputation.mp4 24.99Мб
12. Missing Value imputation.srt 4.08Кб
13. Missing Value Imputation in Python.mp4 23.42Мб
13. Missing Value Imputation in Python.srt 4.06Кб
14. Missing Value imputation in R.mp4 25.99Мб
14. Missing Value imputation in R.srt 3.46Кб
15. Seasonality in Data.mp4 17.04Мб
15. Seasonality in Data.srt 3.78Кб
16. Bi-variate Analysis and Variable Transformation.mp4 100.47Мб
16. Bi-variate Analysis and Variable Transformation.srt 18.29Кб
17. Variable transformation and deletion in Python.mp4 44.12Мб
17. Variable transformation and deletion in Python.srt 7.54Кб
18. Variable transformation in R.mp4 55.42Мб
18. Variable transformation in R.srt 9.04Кб
19. Non Usable Variables.mp4 20.25Мб
19. Non Usable Variables.srt 5.39Кб
2. Activation Functions.mp4 34.63Мб
2. Activation Functions.srt 7.85Кб
2. Basics of R and R studio.mp4 38.85Мб
2. Basics of R and R studio.srt 10.83Кб
2. Bias Variance trade-off.mp4 25.10Мб
2. Bias Variance trade-off.srt 6.37Кб
2. Building the Neural Network using Keras.mp4 79.14Мб
2. Building the Neural Network using Keras.srt 11.96Кб
2. Complex Architectures using Functional API.mp4 79.58Мб
2. Complex Architectures using Functional API.srt 8.28Кб
2. Course Resources.html 327б
2. Data Exploration.mp4 20.52Мб
2. Data Exploration.srt 3.60Кб
2. Evaluating and Predicting.mp4 99.26Мб
2. Evaluating and Predicting.srt 9.43Кб
2. Gradient Descent.mp4 60.33Мб
2. Gradient Descent.srt 11.93Кб
2. Installing Tensorflow and Keras in Python.mp4 20.07Мб
2. Installing Tensorflow and Keras in Python.srt 3.79Кб
2. Opening Jupyter Notebook.mp4 65.20Мб
2. Opening Jupyter Notebook.srt 9.14Кб
2. Python - Normalization and Test-Train split.mp4 44.21Мб
2. Python - Normalization and Test-Train split.srt 5.73Кб
2. Quiz.html 166б
2. Quiz.html 166б
2. Using Functional API for complex architectures.mp4 92.14Мб
2. Using Functional API for complex architectures.srt 11.50Кб
20. Dummy variable creation Handling qualitative data.mp4 36.84Мб
20. Dummy variable creation Handling qualitative data.srt 4.86Кб
21. Dummy variable creation in Python.mp4 26.54Мб
21. Dummy variable creation in Python.srt 5.51Кб
22. Dummy variable creation in R.mp4 43.98Мб
22. Dummy variable creation in R.srt 5.19Кб
3.1 House_Price.csv 53.49Кб
3. Back Propagation.mp4 122.20Мб
3. Back Propagation.srt 22.78Кб
3. Compiling and Training the Neural Network model.mp4 81.65Мб
3. Compiling and Training the Neural Network model.srt 9.59Кб
3. Installing TensorFlow and Keras in R.mp4 22.83Мб
3. Installing TensorFlow and Keras in R.srt 2.98Кб
3. Introduction to Jupyter.mp4 40.92Мб
3. Introduction to Jupyter.srt 12.31Кб
3. Packages in R.mp4 82.96Мб
3. Packages in R.srt 11.46Кб
3. Python - Creating Perceptron model.mp4 86.59Мб
3. Python - Creating Perceptron model.srt 14.53Кб
3. R - Dataset, Normalization and Test-Train set.mp4 111.80Мб
3. R - Dataset, Normalization and Test-Train set.srt 12.07Кб
3. Test train split in Python.mp4 44.86Мб
3. Test train split in Python.srt 8.05Кб
3. The Data and the Data Dictionary.mp4 69.34Мб
3. The Data and the Data Dictionary.srt 7.82Кб
4. Arithmetic operators in Python Python Basics.mp4 12.75Мб
4. Arithmetic operators in Python Python Basics.srt 3.99Кб
4. Evaluating performance and Predicting using Keras.mp4 69.87Мб
4. Evaluating performance and Predicting using Keras.srt 9.02Кб
4. Importing Data in Python.mp4 27.84Мб
4. Importing Data in Python.srt 5.58Кб
4. Inputting data part 1 Inbuilt datasets of R.mp4 40.73Мб
4. Inputting data part 1 Inbuilt datasets of R.srt 4.04Кб
4. Test train split in R.mp4 75.61Мб
4. Test train split in R.srt 8.37Кб
5. Importing the dataset into R.mp4 13.11Мб
5. Importing the dataset into R.srt 2.60Кб
5. Inputting data part 2 Manual data entry.mp4 25.52Мб
5. Inputting data part 2 Manual data entry.srt 2.96Кб
5. Strings in Python Python Basics.mp4 64.44Мб
5. Strings in Python Python Basics.srt 16.43Кб
6. Inputting data part 3 Importing from CSV or Text files.mp4 60.06Мб
6. Inputting data part 3 Importing from CSV or Text files.srt 6.39Кб
6. Lists, Tuples and Directories Python Basics.mp4 60.32Мб
6. Lists, Tuples and Directories Python Basics.srt 17.01Кб
6. Univariate Analysis and EDD.mp4 24.21Мб
6. Univariate Analysis and EDD.srt 3.44Кб
7. Creating Barplots in R.mp4 96.76Мб
7. Creating Barplots in R.srt 13.42Кб
7. EDD in Python.mp4 61.79Мб
7. EDD in Python.srt 10.36Кб
7. Working with Numpy Library of Python.mp4 43.89Мб
7. Working with Numpy Library of Python.srt 10.47Кб
8.1 Product.txt 139.48Кб
8.2 Customer.csv 64.02Кб
8. Creating Histograms in R.mp4 42.01Мб
8. Creating Histograms in R.srt 5.90Кб
8. EDD in R.mp4 96.98Мб
8. EDD in R.srt 11.55Кб
8. Working with Pandas Library of Python.mp4 46.90Мб
8. Working with Pandas Library of Python.srt 8.15Кб
9. Outlier Treatment.mp4 24.49Мб
9. Outlier Treatment.srt 4.46Кб
9. Working with Seaborn Library of Python.mp4 40.36Мб
9. Working with Seaborn Library of Python.srt 7.53Кб
TutsNode.com.txt 63б
Статистика распространения по странам
Польша (PL) 1
Австралия (AU) 1
Индия (IN) 1
Филиппины (PH) 1
Саудовская Аравия (SA) 1
Всего 5
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент